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Finite element modeling of interdiffusion phenomena in solid metals
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A Lagrangian approach is proposed for modeling interdiffusion phenomena in solid met-
als. In the first section, a formulation of diffusion equations in terms of mass fraction is
developed. The specificity of this approach lies in the choice of the convection velocity.
In this work, it is defined as being equal to the massic average velocity. An interdiffusion
strain rate tensor is also proposed to model the mass movements induced by interdiffu-
sion phenomena. In the second section, a finite element procedure is proposed to simulate
the coupled problem which includes diffusion equations and momentum balance. A one-
dimensional example is presented to show the relevance of the approach developed for an
interdiffusion couple.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Une approche lagrangienne est proposée pour modéliser les phénomènes d’interdiffusion
dans les métaux à l’état solide. Dans une première partie, une formulation des équations de
diffusion en fraction massique est développée. La spécificité de cette approche réside dans
le choix de la vitesse de convection. Dans ce travail, elle est définie comme étant égale à
la vitesse moyenne de masse. Un tenseur des taux de déformation d’interdiffusion est éga-
lement proposé pour modéliser les mouvements de masse induits par les phénomènes de
diffusion. Dans une seconde partie, une technique éléments finis est proposée pour simuler
l’ensemble du problème couplé à savoir les équations de diffusion et le bilan de quantité
de mouvement. Un exemple unidimensionnel est présenté pour montrer la pertinence de
l’approche proposée pour un couple d’interdiffusion.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The modeling of interdiffusion is a complex problem that can occur, for example, in the study of interdiffusion couples,
diffusion welding or oxidation phenomena. Diffusion in solid metals can be very intense and can produce significant mass
transfer. For example, this can occur during oxidation as studied by Nicolas et al. for a Ni–16Cr–9Fe alloy oxidized at
950 ◦C [1]. Indeed, in this example, the movements of atoms are so important that, a very high depletion of chromium
is observed in the base material under the oxide layer. This can lead to the appearance of internal stresses which may
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themselves influence diffusion phenomena. Therefore, the simulation of this type of problem requires a strong coupling
between diffusion modeling and stress analysis.

To date, in physico-chemistry, these phenomena are studied mainly in terms of diffusion of species by means of the
first and second Fick’s laws [2,3] coupled with the thermodynamic principles. For engineering, it looks more convenience to
couple the diffusion phenomena with stress analysis for taking into account other mechanical effects such as, for example,
residual stresses or plasticity. The coupling with the momentum balance is not evident from the kinematic point of view
because the convection velocity is often taken as being equal to the average velocity of atoms regardless of their mass.
However, in solid mechanics, movements are described using the mean mass velocity field.

The aim of this paper is to propose a coupled finite element approach for the coupling between interdiffusion phenomena
using chemical potential gradient and the balance of momentum based on average massic velocity. All this formulation is
proposed in a Lagrangian approach for solids considered as closed systems. In the first section, a formulation of diffusion
equations in terms of mass fraction is developed. The specificity of this approach lies in the choice of the convection
velocity. In this work, it is defined as being equal to the average massic velocity. An interdiffusion strain rate tensor is also
proposed to model the mass movements induced by interdiffusion phenomena in stress analysis. In the second section,
a finite element procedure is proposed to simulate the coupled problem which includes diffusion equations and momentum
balance. Finally, an example is presented to show the relevance of the proposed approach.

2. Theory

2.1. Diffusion equations

The studied closed system is assumed to be composed of n chemical elements. During interdiffusion phenomena, the
mass balance must be satisfied for each element i. In an arbitrary volume V fixed in the laboratory frame of reference, it is
given by the following expression:∫

V

∂ρi

∂t
dV +

∫
S

ρi vi .n dS = 0

In this expression, n is the unit normal outward vector to the boundary S; ρi is the mass of chemical element i per unit
volume. vi denotes the velocity of element i in the reference frame linked to the laboratory. The local form of this law can
be written as follows

∂ρi

∂t
+ div(ρcivi) = 0 (1)

where ρ = ∑
k ρk denotes the mass of all chemical elements per unit volume and ci = ρi

ρ is the mass fraction. The flux civi

can be decomposed in a diffusion part and a convective part:

civi = Ji + civ (2)

where Ji denotes the diffusion flux. v is the average velocity. In mechanics, v is taken as equal to the average massic velocity
of all species: v = ∑

k ckvk . The sum of the diffusion fluxes Ji is then equal to zero. The diffusion equation for a species i is
obtained by rewriting Eq. (1) as follows

ci

(
∂ρ

∂t
+ div(ρv)

)
+ ρ

(
∂ci

∂t
+ v grad ci + div(Ji) + Ji

gradρ

ρ

)
= 0

Considering the total mass conservation of all chemical elements, the first term is equal to zero. The diffusion equation in
terms of mass fraction is then given by

dci

dt
+ div(Ji) + Ji

gradρ

ρ
= 0 (3)

where d
dt = ∂

∂t + v grad is the Lagrangian derivative linked to the material movement satisfying the momentum balance.

2.2. Diffusion fluxes

In metallic systems, the diffusion volumic flux of each chemical element i is proportional to the diffusion coefficient
Di and to the gradient of the chemical potential μi . They are not necessarily such as their sum is equal to zero. Thence,
arises a net flux of material which can vary in space and time. For a mechanism of diffusion involving point defects such as
vacancies, there is a flux of vacancies qv . One can note that vacancies differ fundamentally from chemical species because
they have no mass and they can be created or annihilated locally quasi-instantaneously. Assuming that the number of sites
occupied by atoms or vacancies per unit volume is constant [2], the sum of all diffusion fluxes with qv is such that
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div

(
qv −

∑
k

Dk gradμk

)
= div

(
qv) −Rv = 0

where Rv denotes the source of vacancies which represents the rate of gain or lost of volume due to interdiffusion phe-
nomena. One can note that the hypothesis of a constant number of sites is not correct when the molar volume varies
significantly with the composition. Nevertheless, when this hypothesis can be acceptable, it allows to obtain easily the
expression of the flux of vacancies since, without rigid body motion, qv is given by

qv =
∑

k

Dk gradμk (4)

The interdiffusion volumic fluxes qi can then be defined by the bi-velocity (Darken) method which is commonly accepted
in materials science to represent the Kirkendall shift in solids [4–6]. The bi-velocity concept is based on the division in two
parts of the interdiffusion volumic flux; a first one which depends on the chemical potential gradient and is independent of
the choice of the reference frame and a second one which is due to the imbalance of diffusion fluxes:

qi = −Di gradμi + f iq
v (5)

where f i represents the volume fraction such that
∑

k fk = 1. In the reference frame of the laboratory, the volumic flux
f ivi of the species i is not only due to interdiffusion phenomena. Indeed, without interdiffusion, the volumic flux of the
material can be caused by elasto-plastic strains involved by stresses in solid metals. Assuming an additive decomposition of
the volumic flux with a first part composed of the interdiffusion volumic flux and a second part influenced by elasto-plastic
strains, we get

f ivi = qi + f iv
∗ = −Di gradμi + f iq

v + f iv
∗ (6)

where v∗ corresponds to the material velocity due to elasto-plastic strains. Therefore, the massic flux civi can be expressed

in terms of chemical potentials by multiplying this expression with the ratio ci
f i

=
∑

l clΩl
Ωi

where Ωi denotes the massic
volume of the chemical element i:

civi = Qi + civ
∗

where

Qi =
(∑

l clΩl

Ωi

)
qi

Qi denotes the interdiffusion massic flux of element i. The sum of all the massic fluxes leads to the following expression of
the average massic velocity:

v = vd + v∗

where

vd =
∑

k

Qk

vd denotes the mass drift velocity resulting from the combined effect of the assumption of a constant number of sites
par unit volume and of the difference of massic volumes Ωi . In this expression, Qi can be expressed in terms of chemical
potentials by combining Eqs. (4) and (5):

Qi = −
∑

k

D̃ik gradμk with D̃ik =
(∑

l clΩl

Ωi

)
(δik − f i)Dk (7)

where δik denotes the Kronecker symbol. As a consequence, the diffusion flux Ji can be expressed by means of Eq. (2) as
follows

Ji = −
∑

k

D∗
ik gradμk with D∗

ik =
∑

l

(δil − ci)D̃lk (8)
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2.3. Interdiffusion strain rate

The momentum balance is governed by the following expression:

divσ = 0

where σ is the Cauchy stress tensor. In a Lagrangian approach, its time derivative σ̂ linked to the mass movement is
assumed to depend linearly to the elastic strain rate tensor De by means of the fourth rank elastic tensor C as follows

σ̂ = C : De

In the context of large strain, this hypothesis corresponds to a hypoelastic behavior where σ̂ can be defined by the Jaumann
derivative of the form

σ̂ = σ̇ − �.σ + σ .�

where � denotes the rotation rate tensor of the material and σ̇ is the derivative of σ in time without taking into account
the possible rotation of the material. Just like the majority of classical elasto-plastic models for solid metals in large strain,
the proposed approach is based on the assumption of additive decomposition of the strain rate into elastic and plastic
parts added to a contribution due to interdiffusion phenomena, D = De + Dp + Dd . We shall not insist on these standard
considerations. Dp is the rate of plastic deformation given by the constitutive model. Dd is the rate of interdiffusion strains
which models mass movements. We propose to define Dd with the symmetric part of the gradient of the mass drift velocity
vd as follows

Dd = 1

2

(
grad

(
vd) + gradT (

vd)) (9)

The thermodynamic equilibrium is assumed to be taken into account through the material behavior contrary to the
works of Danielewski and Wierzba [6] which consider explicitly the thermodynamic principles.

3. Finite element modeling

From the simulation point of view, a staggered approach must be used to take into account the interactions between
interdiffusion phenomena and mechanics. Thus the solution at each time step starts with the diffusion analysis which is
followed by the mechanical analysis. The main difficulty for the numerical modeling lies in the finite element simulation of
diffusion which is detailed in this section.

3.1. Strong formulation of the diffusion problem

In this paper, the chemical potentials are taken equal to the mass fraction for each chemical element for more conve-
nience. Therefore, the strong Lagrangian formulation for diffusion phenomena in a closed material system Ω composed of
n chemical elements with boundary ∂Ω can be written as follows:

Find ci and Qi defined on Ω × [0, T ] verifying the initial–boundary value problem given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div

(∑
k

D∗
ik grad ck

)
+

∑
k

D∗
ik grad ck.

gradρ

ρ
= dci

dt
(i = 1, . . . ,n) in Ω

−
∑

k

D̃ik grad ck = Qi (i = 1, . . . ,n) in Ω

J (p)

i + λi
(
c(p)

i − ci
) = −Ji .n (i = 1, . . . ,n) on ∂Ω∑

k

(
J (p)

k + λk
(
c(p)

k − ck
)) = 0 on ∂Ω

(10)

with the initial conditions

ci(t = 0) = c0
i (i = 1, . . . ,n) (11)

In these equations the J (p)

i ’s are prescribed “input diffusion fluxes”; the c(p)

i ’s are prescribed values; and the λi ’s are
“transfer coefficients”.

One can note that the two first equations of this problem are not strongly coupled. Indeed, the only unknown variables
are the mass fractions in the first equation (10)1 corresponding to the diffusion equation (3) and, in the related boundary
conditions (10)3 and (10)4. Therefore, building an approximation of the mass fraction fields by means of standard finite
elements allows to compute the mass fractions, their gradient and then, the interdiffusion massic fluxes at Gauss integration
points with Eq. (7). Unfortunately, this is not sufficient for the mechanical coupling which needs to compute the strain rate
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tensor Dd based on the gradient of the interdiffusion massic fluxes. This is the reason why we introduce the second equation
where the interdiffusion massic fluxes Qi are considered as unknowns of the problem. In this way, they are approximated
with standard finite elements which allow to compute their gradients.

3.2. Weak formulation and numerical solution strategy

For the finite element simulation of diffusion, the weak formulation is obtained by multiplying respectively Eqs. (10)1
and (10)2 by some weighting functions c∗

i and Q∗
i and by integrating over the domain Ω . Integrating the first equation by

parts and accounting for the boundary condition (10)3, one thus obtains the following weak formulation of the problem:
Find functions ci , Qi such that for all functions c∗

i , Q∗
i ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

dci

dt
c∗

i dV +
∫
Ω

∑
k

D∗
ik grad ck.

(
grad c∗

i − gradρ

ρ
c∗

i

)
dV +

∫
∂Ω

λicic
∗
i dS

−
∫

∂Ω

(
J (p)

i + λic
(p)

i

)
c∗

i dS = 0 (i = 1, . . . ,n)

∫
Ω

(
Qi +

∑
k

D̃ik grad ck

)
Q∗

i dV = 0 (i = 1, . . . ,n)

(12)

The finite element approximations are of the form:

ci(x) =
N∑

p=1

cip Np(x) ⇒ dci

dt
(x) =

N∑
p=1

dcip

dt
Np(x); Qi(x) =

N∑
p=1

Qip Np(x) (13)

In these expressions N denotes the number of nodes. cip and Qip are the values of ci and Qi at node p. N p(x) is the
shape function associated to this node. In this paper, only linear finite elements are considered such as recommended by
Feulvarch et al. [7] and Dalhuijsen and Segal [8] for non-linear diffusion problems. For the resolution, the principle of the
staggered approach consists in computing successively ct+�t

i and Qt+�t
i on the geometry at time t . Then, the mechanical

analysis gives the new geometry, stresses and strains at time t + �t using a classical incremental Lagrangian approach. The
mass per unit volume is then updated for each finite element by means of the gradient of the displacements. Unfortunately,
it is not sufficient for the diffusion problem which needs the gradient of the mass per unit volume. To overcome this
difficulty, a finite element approximation of ρt+�t is build in the same way than for the interdiffusion massic fluxes Qt+�t

i
as explained in the previous section.

3.3. Solution procedure for a 1D problem with 2 elements

For two elements, we have c1 + c2 = 1 which allows to reduce the size of the numerical problem by eliminating one of
the two diffusion equations. Substituting the nodal approximation (13) into the variational formulation (12)1 of the problem
and applying an implicit time integration [7], we obtain the following non-linear system of equations at each instant t +�t:

{Rc1} ≡
(

K + [M]
�t

)
.
{

c1(t + �t)
} − [M]

�t
.
{

c1(t)
} − {Fc1} = {0} (14)

In this system [K] ≡ (K p,q)1�p,q�N , [M] ≡ (M p,q)1�p,q�N and {Fc1} ≡ (Fc1 p)1�p�N are defined by

K p,q ≡
∫
Ωt

(
D∗

11 − D∗
12

)(∂Np

∂x
− Np

1

ρ

∂ρ

∂x

)
∂Nq

∂x
dV +

∫
∂Ωt

λ1Np Nq dS

Mp,q ≡
∫
Ωt

δpq Np dV

Fc1 p ≡
∫

∂Ωt

Np
(

J (p)
1 + λ1c(p)

1

)
dS

The matrix [M] is lumped in order to eliminate spurious oscillations in the time integration for linear elements as used
in this paper. Eq. (14) is solved by a quasi-Newton iterative method and each iteration consists of solving the linear system

[K] + [M]
�t

.{δc1} = −{Rc1}
where {δc1} denotes the increments of {c1(t + �t)} looked for.
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Fig. 1. Component distributions of Si and Ge, at 700 K after 2.78 h.

After convergence, the vectors {Q1(t + �t)} and {Q2(t + �t)} are obtained by computing the following linear system
related to the weak formulation (12)2{

Qi(t + �t)
} = [M]−1.

{
GQi(t + �t)

}
where {GQi } ≡ (GQi p)1�p�N is defined by

G Q i p ≡
∫
Ωt

Np(D̃i2 − D̃i1)
∂c1

∂x
dV

After solving the diffusion problem, the geometry, the mass per unit volume and its gradient at time t +�t are obtained
applying a Lagrangian incremental approach in large strain considering the increment of interdiffusion strain given by

�εd(x) =
N∑

p=1

∂Np(x)

∂x

(
Q1p(t + �t) + Q2p(t + �t)

)
�t

4. 1D example

The application envisaged here involves one-dimensional modeling of the interdiffusion between pure Si and Ge at 700 K.
This example is based on the one proposed by Danielewski and Wierzba [6]. One can note that the molar volumes of these
elements are different but the SiGe system has the interest to show the strong dependency of diffusivities on the mixture
composition.

The volumes per unit mass Ωi of the components Si and Ge at 700 K are equal to: ΩSi = 0.286 cm3 g−1 and
ΩGe = 0.17 cm3 g−1. In this example, the approximation proposed by Beke et al. is used for the evolution of the diffu-
sion coefficients [9]. They are defined by DSi = 3 × 10−2 exp(−10x) nm2 s−1 and DGe = 4 × 10−5 exp(−10x) nm2 s−1 where
x equals the molar fraction of Si if it is greater than 0.5, otherwise x = 0.5. These evolutions have been obtained after
numerical experiences and comparisons with the results of Beke et al.

Fig. 1 shows the component distributions obtained with a finite element mesh composed of two-node linear elements.
The element size h is uniform and the time step �t is invariable. The value of h is 6 × 10−2 nm and a value of �t = 50 s
is used. Results are plotted in terms of molar fraction as for most of profiles obtained experimentally. Fig. 2 shows the
distribution of displacements after 2.78 h. This illustrates the mass movements and therefore the atom movements in the
solid solution. These results show a maximal displacement at the initial position of the Kirkendall plane at x = 6 nm. This
phenomenon agrees with the Kirkendall effect in the case where the ratio of the diffusion coefficients is constant as in this
example. One can note that the Kirkendall plane moves with the maximum displacement for lots of other solid solutions
(FeNi, CuNi, AuCu, AuAg, . . . ) [2].

5. Conclusion

A finite element modeling for interdiffusion phenomena in solid metals has been developed in a Lagrangian way. This
is based on the coherent coupling between diffusion equations and stress analysis. A one-dimensional example has been
presented to show the ability of the technique developed to model the Kirkendall effect for an interdiffusion couple. In this
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Fig. 2. Distribution of displacements at 700 K after 2.78 h.

case, one can note that stresses are always equal to zero but the technique developed can be used for multi-dimensional
problems. The mean difficulty lies in the knowledge of the material behavior which can depend on the mixture composition.

References

[1] A. Nicolas, V. Barnier, E. Aublant, K. Wolski, Auger electron spectroscopy analysis of chromium depletion in a model Ni–16Cr–9Fe alloy oxidized at
950 ◦C, Scr. Mater. 65 (2011) 803–806.

[2] J. Philibert, Atom Movements – Diffusion and Mass Transport in Solids, Monographies de physique, Les éditions de physique, ISBN 2-86883-161-3, 1991.
[3] M.E. Glicksman, Diffusion in Solids, Wiley, ISBN 978-0-471-23972-7, 2000.
[4] K. Holly, M. Danielewski, Interdiffusion and free-boundary problem for r-component (r � 2) one-dimensional mixtures showing constant concentration,

Phys. Rev. B: Condens. Matter Mater. Phys. 50 (1994) 13336–13346.
[5] G.B. Stephenson, Deformation during interdiffusion, Acta Metall. Mater. 36 (1988) 2663–2683.
[6] M. Danielewski, B. Wierzba, Thermodynamically consistent bi-velocity mass transport phenomenology, Acta Mater. 58 (2010) 6717–6727.
[7] E. Feulvarch, J.M. Bergheau, J.B. Leblond, An implicit finite element algorithm for the simulation of diffusion with phase changes in solids, Int. J. Numer.

Meth. Eng. 78 (2009) 1492–1512.
[8] A.J. Dalhuijsen, A. Segal, Comparison of finite element techniques for solidification problems, Int. J. Numer. Meth. Eng. 23 (1986) 1807–1829.
[9] D.L. Beke, P. Nemes, Z. Erdelyi, I.A. Szabo, D.G. Langer, Stress effects and non-linearities in diffusional mixing of multilayers, Mater. Res. Soc. Symp. Proc.

(1998) 527.


	Finite element modeling of interdiffusion phenomena in solid metals
	1 Introduction
	2 Theory
	2.1 Diffusion equations
	2.2 Diffusion ﬂuxes
	2.3 Interdiffusion strain rate

	3 Finite element modeling
	3.1 Strong formulation of the diffusion problem
	3.2 Weak formulation and numerical solution strategy
	3.3 Solution procedure for a 1D problem with 2 elements

	4 1D example
	5 Conclusion
	References


