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We extend the study of Licht et al. (2013) [1] devoted to the dynamic response of a
structure made of two linearly elastic bodies connected by a thin soft adhesive layer
made of a Kelvin–Voigt-type nonlinear viscoelastic material to the case of a generalized
standard material with a positive definite quadratic density of free energy. A concise
formulation in terms of an evolution equation in a Hilbert space of possible states with
finite energy makes it possible to identify the asymptotic behavior, when some geometrical
and mechanical parameters tend to their natural limits, like the response of the two
bodies connected by a mechanical constraint. Its law has the same structure as that of
the adhesive but with coefficients accounting for the relative behavior of the parameters.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étend au cas d’un matériau standard généralisé l’étude de Licht et al. (2013) [1]
consacrée à la réponse dynamique d’un assemblage de deux corps linéairement élastiques
liés par une couche adhésive mince et molle constituée d’un matériau viscoélastique non
linéaire de type Kelvin–Voigt. Une formulation concise en termes d’équation d’évolution
dans un espace de Hilbert d’états possibles d’énergie mécanique finie permet d’identifier le
comportement asymptotique, lorsque des paramètres géométriques et mécaniques tendent
vers leurs limites naturelles, comme celui de la réponse de l’assemblage des deux corps
par une liaison mécanique. Sa loi a la même structure que celle de l’adhésif, mais avec des
coefficients rendant compte du comportement relatif des paramètres.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For both theoretical and practical reasons, it is important to study the behavior of thin adhesively bonded joints not
only in static or quasistatic cases but also in dynamic ones. Here we extend a previous study [1] devoted to a Kelvin–
Voigt-type nonlinear viscoelastic material to a general inelastic one. More precisely, the adhesive is assumed to be made of
a generalized standard material [2,3] with a positive definite quadratic density of free energy. The key point is a concise
formulation of the problem of determining the dynamic response of a structure made of two linearly elastic bodies perfectly
connected by a thin soft layer in terms of an evolution equation in a Hilbert space of possible states with finite energy.
Hence, it is possible to adapt the strategy of [1] in order to first obtain existence and uniqueness results and then to study
the asymptotic behavior when some geometrical and mechanical data, now regarded as parameters, tend to their natural
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limits. The limit behavior, which prompted our proposal of a simplified but accurate enough model for the initial physical
situation, corresponds to the dynamic response to the initial load of two linearly elastic bodies linked by a mechanical
constraint along the surface the adhesive layer shrinks to. Its constitutive equations keep the memory of the adhesive joint
in the sense that they have the same generalized standard structure but with various coefficients depending on the relative
behaviors of the parameters. In the following, we focus on specifying the necessary adjustments to [1].

2. Setting the problem

We study the dynamic response of a structure consisting of two adherents connected by a thin adhesive layer which
is subjected to a given load. The reference configuration of the structure is a bounded connected open set of R

3 with
a Lipschitz-continuous boundary ∂Ω . Let {e1, e2, e3} be an orthonormal basis of R

3 assimilated to the Euclidean physical
space and, for all ξ = (ξ1, ξ2, ξ3) in R

3, ξ̂ stands for (ξ1, ξ2). The intersection S of Ω with {x3 = 0} is assumed to have
a positive two-dimensional Hausdorff measure H2(S), and it is also assumed that there exists ε0 > 0 such that Bε0 :=
{x ∈ Ω; |x3| < ε0} is equal to S × (−ε0, ε0). Let ε < ε0, then the adhesive occupies the layer Bε while each of the two
adherents occupies Ω±

ε := {x ∈ Ω; ±x3 > ε}, and let Ωε = Ω+
ε ∪ Ω−

ε . Adherents and adhesive are assumed to be perfectly
stuck together along Sε = S+

ε ∪ S−
ε , S±

ε := {x ∈ Ω; x3 = ±ε}. The structure is clamped on a part Γ0 of ∂Ω , with H2(Γ0) > 0,
and is subjected to body forces in Ω and surface forces on Γ1 = ∂Ω \ Γ0 having densities f and g , respectively, during the
time interval [0, T ]; let Γ ±

0 = Γ0 ∩ {±x3 > 0}. The adherents are modeled as linearly elastic materials with a strain energy
density W , such that⎧⎨⎩ W (x, e) = 1

2
a(x)e · e a.e. x ∈ Ω, ∀e ∈ S3

a ∈ L∞(
Ω; Lin

(
S3)); ∃cm, cM > 0 s.t. cm|e|2 � a(x)e · e � cM |e|2 ∀e ∈ S3

(1)

where S3 is the space of (3×3) symmetric matrices with the usual inner product and norm denoted by · and | | (as for R3),
and Lin(S3) denotes the space of linear mappings from S3 into S3. The adhesive is assumed to be made of a homogeneous
generalized standard material [2,3]. In addition to strain e, there exists another inner or hidden state variable α which takes
values in a finite dimensional space Ξ (whose inner product and norm are also denoted by · and | | and the same for
Θ := S3 × Ξ ), and the densities of free energy and dissipation potential read as (Wλμ,bD) where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– λ,μ,b are strictly positive real numbers

– Wλμ(e,α) = λW1(esph, jα) + μW2(e,α) ∀(e,α) ∈ Θ

– esph is the spherical part of e

– j is a not necessarily injective element of Lin(Ξ)

– W1, W2 are quadratic forms satisfying:

∃ci
m, ci

M > 0; ci
m|θ |2 � W i(θ) � ci

M |θ |2 ∀(i, θ) ∈ {1,2} × Θ

– D is a convex function on Θ satisfying:

∃p ∈ [1,2], ∃c′
m, c′

M > 0 s.t. c′
m|θ̇ |p �D(θ̇ ) � c′

M |θ̇ |p ∀θ̇ ∈ Θ

(2)

with the upper dot ˙ denoting the time derivative.
Let ρ > 0 and ρM > ρm > 0. If ρ is a measurable function such that ρm � ρ(x) � ρM a.e. x in Ω , the density γ of

the structure is ρ in Ωε and ρ in Bε . Thus, the problem (P s) of determining the dynamic evolution of the assembly
involves a quintuplet s := (ε,λ,μ,b,ρ) of data, and hereafter all the fields involved will be indexed by s. In the following,
t denotes the time, e(u) is the linearized strain tensor associated with the field of displacement u, and ∂ J (v) denotes the
subdifferential at v of any lower semi-continuous convex function J , while D J(v) stands for the differential at v of any
Fréchet differentiable function J . Hence, the constitutive equations of the adhesive read as

(σs,0) ∈ DWλμ

(
e(us),αs

) + b∂D
(

e

(
∂us

∂t

)
,
∂αs

∂t

)
(3)

where σs denotes the field of stresses, so if U o
s = (u0

s ,α
0
s , v0

s ) is the initial state, a formulation of (P s) could be

(P s)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find us sufficiently smooth in Ω × [0, T ] such that us = 0 on Γ0 × (0, T ](
us(·,0),αs(·,0),

∂us

∂t
(·,0)

)
= U o

s and there exists ζ in ∂D
(

e

(
∂us

∂t

)
,
∂αs

∂t

)
satisfying:∫

Ω

γ
∂2us

∂t2
· v dx +

∫
Ωε

ae(us) · e(v)dx +
∫
Bε

(
DWλμ

(
e(us),αs

) + bζ
) · (e(v),α

)
dx

=
∫
Ω

f · v dx +
∫
Γ1

g · v dH2
for all (v,α) sufficiently smooth in Ω and v vanishing on Γ0
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3. Existence and uniqueness

Assuming

( f , g) ∈ B V
(
0, T ; L2(Ω;R3)) × B V (2)

(
0, T ; L2(Γ1;R3)) (H1)

where for any Banach space X , B V (0, T ; X) is the subspace of L1(0, T ; X) consisting of all elements whose time derivative
in the sense of distributions is a bounded X-valued measure on (0, T ), and B V (2)(0, T ; X) is the subspace of B V (0, T ; X)

made of all elements whose time derivative in the sense of distributions belongs to B V (0, T ; X), we seek zs := (us,αs) in
the form

zs = ze
s + zr

s (4)

where ze
s is the unique solution to

ze
s (t) ∈ Zs; ϕs

(
ze

s (t), z
) = L(t)(v) ∀z ∈ Zs, ∀t ∈ [0, T ] (5)

with

Zs = H1
Γ0

(
Ω;R3) × L2(Bε;Ξ)

H1
Γ0

(
Ω;R3) := {

v ∈ H1(Ω;R3); v = 0 on Γ0 in the sense of traces
}

(6)

ϕs
(
z, z′) :=

∫
Ωε

ae(v) · e
(

v ′)dx +
∫
Bε

DWλμ

(
e(v),α

) · (e
(

v ′),α′) dx ∀z = (v,α), z′ = (
v ′,α′) ∈ Zs

Φs(z) := ϕs(z, z) (7)

L(t)(v) :=
∫
Γ1

g(x, t) · v(x)dH2 ∀v ∈ H1
Γ0

(
Ω;R3), ∀t ∈ [0, T ] (8)

As g 
→ ze
s is linear continuous from L2(Γ1;R3) into Zs , we have

ze
s ∈ B V (2)(0, T ; Zs) (9)

The remaining part zr
s will therefore be involved in an evolution equation governed by a maximal monotone operator As

defined in a Hilbert space Hs of possible states with finite total mechanical energy. Given the kinetic forms ks , Ks

ks
(

v, v ′) :=
∫
Ω

γ (x)v(x) · v ′(x)dx, Ks(v) := ks(v, v), ∀v, v ′ ∈ L2(Ω;R3) (10)

Hs reads as

Hs = Zs × L2(Ω;R3) (11)

where, for all U i = (zi, vi), i = 1,2, the inner product and norm are(
U 1, U 2)

s := ϕs
(
z1, z2) + ks

(
v1, v2), ∣∣U i

∣∣2
s := (

U i, U i)
s (12)

while As is defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D(As) =

{
U = (z, v) ∈ Hs;

{
i) v ∈ H1

Γ0
(Ω;R3)

ii) ∃(w, β, ζ ) ∈ L2(Ω;R3) × L2(Bε;Ξ) × ∂D(e(v),β) with

ks(w, v ′) + ϕs(z, z′) + b
∫

Bε
ζ · (e(v ′),α′)dx = 0 ∀z′ = (v ′,α′) ∈ Zs

}
AsU = (−v,0,0) + {

(0,−β,−w); ii) of the definition of D(As) is satisfied
} (13)

Proposition 3.1. Operator As is maximal monotone and, for all ψ = (ψ1,ψ2,ψ3) in Hs,

{
U s = (us,αs, vs) s.t.

U s + AsU s � ψ
⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Zs � ξ s = (vs,αs); J s(ξ s) � J s(z) ∀z ∈ Zs

J s(z) := 1

2
Ks(v) − ks

(
ψ3, v

) + 1

2
Φs(z) + ϕs

((
ψ1,0

)
, z

)
+ b

∫
Bε

D
(
e(v),α − ψ2)dx ∀z = (v,α) ∈ Zs

us = vs + ψ1

(14)
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Proof. Let U i = (zi, vi) in D(As) and V i = −(vi, β i, wi) in AsU i , i = 1,2, the definition of D(As) implies that there exists ζ i

in ∂D(e(vi), β i) such that

ks
(

w1 − w2, v1 − v2) + ϕs
(
z1 − z2,

(
v1 − v2, β1 − β2)) + b

∫
Bε

(
ζ 1 − ζ 2) · (e

(
v1 − v2), β1 − β2)dx = 0

Hence,

(
V 1 − V 2, U 1 − U 2)

s = −ϕs
((

v1 − v2, β1 − β2), z1 − z2) − ks
(

w1 − w2, v1 − v2)
= b

∫
Bε

(
ζ 1 − ζ 2) · (e

(
v1 − v2), β1 − β2)dx

and the monotonicity of As stems from that of ∂D.
If U s + AsU s � ψ , the very definition of As means that us − vs = ψ1 and that there exists ζs in ∂D(e(vs),αs − ψ2) such

that

ks
(

vs − ψ3, v
) + ϕs

((
vs + ψ1,αs

)
, (v,α)

) + b

∫
Bε

ζs · (e(v),α
)

dx = 0 ∀(v,α) ∈ Zs

that is to say, (vs,αs) is the unique minimizer in Zs of the strictly convex, continuous and coercive function J s . Conversely,
if us := vs + ψ1, then clearly U s := (us,αs, vs) belongs to D(As) and U s + AsU s � ψ . �

Then, taking (H1), (4), (5), (9), (13) into account, it is straightforward that (P s) is formally equivalent to

dU r
s

dt
+ AsU r

s � Fs :=
(

−dze
s

dt
, f /γ

)
, U r

s(0) = U o
s − (

ze
s (0),0

)
(15)

and consequently [4] we have the following result:

Theorem 3.1. If ( f , g) satisfies (H1) and U o
s ∈ (ze

s (0),0) + D(As), then (15) has a unique solution such that U r
s belongs to

W 1,∞(0, T ; Hs) and (15) is satisfied almost everywhere in [0, T ]. Hence, there exists a unique zs = (us,αs) in W 1,∞(0, T ; Zs) with
us in W 2,∞(0, T ; L2(Ω;R3)) which satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃ζs ∈ ∂D
(

e

(
dus

dt

)
,

dαs

dt

)
such that∫

Ω

γ
d2us

dt2
· v dx +

∫
Ωε

ae(us) · e(v)dx +
∫
Bε

(
DWλμ

(
e(us),αs

) + bζs
) · (e(v),α

)
dx

=
∫
Ω

f · v dx +
∫
Γ1

g · v dH2, ∀(v,α) ∈ Zs, a.e. t ∈ (0, T ]
(

zs(0),
dus

dt
(0)

)
= U o

s

(16)

We set

U e
s = (

ze
s ,0

)
, Us = U r

s + U e
s (17)

4. Asymptotic behavior

Now we regard the quintuplet s of geometrical and mechanical data as a quintuplet of parameters taking values in a
countable subset of (0, ε0) × (0,+∞)4 with a single cluster point s and study the asymptotic behavior of U s in order to
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obtain a simplified but accurate enough model for the initial physical situation. The following assumptions account for the
magnitudes of thickness, stiffness and density:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i) s ∈ {0} × [0,+∞)2 × [0,+∞] × [0,+∞)

ii) ∃(λ,μ) ∈ [0,+∞]2 s.t. (λ/2ε,μ/2ε) → (λ,μ)

iii) lim
s→s̄

bε = 0,∃b ∈ [0,+∞] s.t. b = lim
s→s̄

b/(2ε)p−1

iv) μ ∈ (0,+∞] if min
{
H2(Γ ±

0

)} = 0

v) lim
s→s̄

ε2/μ < +∞
vi) ∃r ∈ [0,1) s.t. lim

s→s̄
εr/ρ < +∞

(H2)

4.1. The limit behavior

From our previous study [1], it is easy to guess what the limit behavior may be and thus introduce the following
concepts. We will consider five cases indexed by I: I = 1 if (λ,μ) ∈ [0,+∞) × {0}; I = 2 if (λ,μ) ∈ {+∞,0}; I = 3 if
(λ,μ) ∈ [0,∞) × (0,+∞); I = 4 if (λ,μ) ∈ {+∞} × (0,+∞); I = 5 if μ = +∞. As any element in H1

Γ0
(Ω \ S;R3) has

restrictions u± to Ω± = Ω ∩ {±x3 > 0} in H1(Ω±;R3), we denote the difference between the traces on S of u+ and u−
by [u] which belongs to L2(S;R3) and represents the relative displacement of bodies occupying Ω± . Let

1Hd := H1
Γ0

(
Ω \ S;R3), 2Hd := {

u ∈ 1H; [u]3 = 0
}
, 3Hd := 1Hd

4Hd := 2Hd, 5Hd := H1
Γ0

(
Ω;R3)

3X := L2(S;Ξ), 4X := {
α ∈ 3X; jα = 0

}
IZ := IHd if I ∈ {1,2,5}, IZ := IHd × IX if I ∈ {3,4} (18)

such that IZ will be the space of the state variables describing the limit behavior; this suggests that when I = 1,2,5 an
additional state variable to the displacement is not necessary! It is convenient to introduce some operators:

I = 3,4 z = (u,α) ∈ IZ 
→ (
zd = u, zh = α, Π z = ([u] ⊗S e3,α

)) ∈ IZ × L2(S;Θ)

I = 1,2,5 z(= u) ∈ IZ 
→ (
zd = u, Π z = [u] ⊗S e3) ∈ IZ × L2(S; S3) (19)

where (ξ ⊗S ζ )i j = 1
2 (ξiζ j + ξ jζi) ∀(ξ, ζ ) ∈ R

3.
The following forms define an inner product and a norm on IZ:

Iϕ
(
z, z′) :=

∫
Ω\S

ae
(
zd) · e

(
z′d) dx +

∫
S

DW λμ(Π z) · Π z′ dx̂, IΦ(z) := Iϕ(z, z) (20)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
I = 1 W λμ(e) = λW ⊥

1 (esph), W ⊥
1 (e) = inf

{
W1(e,α);α ∈ Ξ

}
I = 2,5 W λμ = 0

I = 3 W λμ(Π z) = λW1
([

zd
]

3e3 ⊗S e3, jzh
) + μW2(Π z)

I = 4 W λμ(Π z) = μW2(Π z)

so the Hilbert space of possible “limit” states with finite energy should be

IH = IZ × L2(Ω;R3) (21)

where, for all U i = (zi, vi) in IH, the inner product and norm are((
U 1, U 2))

I := Iϕ
(
z1, z2) + k

(
v1, v2), ‖U‖2

I := ((U , U ))I (22)

with

k
(

v, v ′) :=
∫

ρv · v ′ dx ∀(
v, v ′) ∈ L2(Ω;R3) (23)
Ω
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The limit global potential of dissipation will be the functional
∫

S D(ż)dx, with

I = 3,4 D(ż) =
{

bD∞,p(Π ż) if b ∈ [0,+∞)

I{0}(Π ż) if b = ∞

I = 1,2,5 D(ż) =
{

b(D∞,p)⊥(Π ż) if b ∈ [0,+∞)

I{0}(Π ż) if b = ∞ (24)

where (D∞,p)⊥(ė) = Inf{D∞,p(ė, α̇), α̇ ∈ Ξ}, IC is the indicator function of any convex set C and D∞,p(e) =
limt→∞ D(te)/t p , with

∃cδ > 0 and δ ∈ (0, p); ∣∣D(θ) −D∞,p(θ)
∣∣ � cδ

(
1 + |θ |δ) ∀θ ∈ Θ (H3)

Finally, the evolution operator I A can be defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
(I A

) =
{

U = (z, v) ∈ IH;
⎧⎨⎩ i) v ∈ IHd and [v] = 0 if b = ∞,

ii) I = 1,2,5 ∃(w, ζ ) ∈ L2(Ω;R3) × ∂D(v) s.t.
I = 3,4 ∃(w, β, ζ ) ∈ L2(Ω;R3) × L2(S;Ξ) × ∂D(v, β) s.t.

k(w, z′d) + Iϕ(z, z′) + ∫
S ζ · Π(z′)dx̂ = 0 ∀z′ ∈ IZ

}
I AU =

{
(−v,0,0) + {(0,−β,−w); ii) of the definition of D(I A) is satisfied} if I = 3,4

(−v,0) + {(0,−w); ii) of the definition of D(I A) is satisfied} if I = 1,2,5

(25)

When arguing as in the case of As , it can easily be checked that I A is maximal monotone and, especially, that for all
ψ = (ψ1,ψ2) in IH:

{
IU = (I z, I v

)
s.t.

IU + I AIU � ψ
⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

IZ � Iξ =
{

(I v, I z̄h) I = 3,4
I v I = 1,2,5

s.t. I J (Iξ) � I J (z) ∀z ∈ IZ

I J (z) := 1

2
K

(
zd) − k

(
ψ2, zd) + 1

2
IΦ(z) + Iϕ

(
ψ̌1, z

) +
∫
S

D
(
z − ψ̃1)dx̂

ψ̌1 = (
ψ1d,0

)
, ψ̃1 = (

0,ψ1h) if I = 3,4, ψ̌1 = ψ1, ψ̃1 = 0 if I = 1,2,5
Iu

(= I z̄d) = I v + ψ1d

(26)

Consequently, the same statement as that of Theorem 3.1 is valid for the following equation, which will be shown to
describe the asymptotic behavior of zs:

dIU
r

dt
+ I AIU r � I F :=

(
−dI ze

dt
, f /ρ

)
, IU r(0) = IU ro (27)

with

I ze ∈ B V (2)
(
0, T ; IZ

); Iϕ
(I ze(t), z

) = L(t)
(
zd) ∀z ∈ IZ,∀t ∈ [0, T ] (28)

We set

IU e = (I ze,0
)
, IU = IU e + IU r (29)

4.2. Convergence

As in [1], to prove the convergence of zs toward I z = I ze + I zr , we will use the framework of a nonlinear version of
Trotter’s theory of convergence of semigroups acting on variable spaces ([5,6] and consider the Appendix of [7]) because zr

s
and I zr do not inhabit the same space.

First, to introduce a linear operator I P s from IH into Hs in order to compare the elements of IH and Hs it suffices, if need
be, to add to that of [1] an obviously suitable operator to deal with the additional state variable; let Rε be the smoothing
operator, which is also linear continuous from IHd into H1

Γ0
(Ω;R3) defined by

Rεu(x) =
{

us(x) + Min{|x3|/ε,1}ua(x) ∀x in Bε (30)

u(x) ∀x in Ωε
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where us(x) = 1
2 (u(x̂, x3) + u(x̂,−x3)), ua(x) = 1

2 (u(x̂, x3) − u(x̂,−x3)). Then operator I P s is defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I = 1 U = (u, v) ∈ 1H 
→ 1 P sU = (Rεu,0, v) ∈ Hs

I = 2 U = (u, v) ∈ 2H 
→ 2 P sU = (
Rε(û,0) + (0, u3),0, v

) ∈ Hs

I = 3 U = (u,α, v) ∈ 3H 
→ 3 P sU = (Rεu,α/2ε, v) ∈ Hs

I = 4 U = (u,α, v) ∈ 4H 
→ 4 P sU = (
Rε(û,0) + (0, u3),α/2ε, v

) ∈ Hs

I = 5 U = (u,α, v) ∈ 5H 
→ 5 P sU = (u,α/2ε, v) ∈ Hs

(31)

where α/2ε is also considered to be a function of x ∈ Bε: α(x)/2ε = α(x̂)/2ε, has the fundamental properties:

Proposition 4.1.

i) There exists a strictly positive constant C I such that |I P sU |s � C I‖U‖I , ∀U ∈ IH.
ii) When s tends to s̄, |I P sU |s converges toward ‖U‖I for all U in IH.

Next we state that:

(Us) in Hs converges in the sense of Trotter toward U in IH if lim
s→s̄

∣∣I P sU − Us
∣∣
s = 0 (32)

Even if this is the right notion from a mechanical point of view, it could be of interest to consider this convergence with
respect to some classical conventional notions:

Proposition 4.2. For all U = (z, v) in IH, if Us = (us,αs, vs) in Hs converges in the sense of Trotter toward U , then

i) 1Ωε e(us) converges strongly in L2(Ω \ S; S3) toward e(zd) and, for all positive η, the sequence (us) converges strongly in
H1

Γ0
(Ωη;R3) toward u := zd;

ii) the traces on S±
ε of us regarded as elements of L2(S;R3) converge strongly in L2(S;R3) toward the traces on S of u±;

iii)
∫ ε
−ε e(us)(·, x3)dx3 converges strongly in L2(S;R3) toward [u] ⊗S e3 if μ ∈ (0,+∞];

iv) (us) is bounded in L2(Ω;R3) and converges strongly in L2(Ω;R3) toward u, when lims→s̄ ε
2/μ = 0, in Lq(Ω;R3), ∀q < 2,

when lims→s̄ ε
2/μ ∈ (0,+∞);

v)
∫ ε
−ε αs(·, x3)dx3 converges strongly toward α in L2(S;Ξ) if μ ∈ (0,+∞];

vi) 1Ωε vs converges strongly in L2(Ω;R3) toward v and vs converges strongly in L2/(1+r)(Ω;R3) toward u.

Of course, 1Ωε denotes the characteristic function of Ωε , and the new points iii) and v) are a simple consequence of the
Cauchy–Schwarz inequality.

Lastly, we conclude by using a suitable nonlinear version (see [6,7]) of Trotter’s theory of convergence of semigroups,
where it suffices to make an additional assumption (H5) about the initial states and to establish the following “static” result:

Proposition 4.3. We have

i) ∀ψ ∈ IH, lims→s |I P s(I + I A)−1ψ − (I + As)
−1 I P sψ |s = 0,

ii) lims→s̄|I P sU e(t) − U e
s (t)|s = 0 uniformly on [0, T ],

iii) lims→s̄
∫ T

0 |I P s F (t) − Fs(t)|s dt = 0.

As I P s F reads as (×, 0,×), the proof of ii)–iii) given in [1] which necessitates the additional assumption:

i) f ∈ B V
(
0, T ; L2/(1−r)

(
Bε0;R3

))
where r was defined in (H2)vi).

ii) supp(g) ∩ Bε0 = ∅ ∀t ∈ [0, T ] and

if Min
{
H2

(
Γ ±

0

)} = 0, say H2
(
Γ −

0

) = 0, then supp g ∩ (
∂Ω−

ε0

) = ∅ (H4)

is still valuable. As regards point i), we use the same strategy as in [1] which, taking due account of (14) and (26), establishes
the variational convergence toward I J of J̃ s defined by

J̃ s(z) = 1

2
Ks(v) − ks

(
ψ2, v

) + 1

2
Φs(z) + ϕs

((I P 1ψ
)1

, z
) + b

∫
Bε

D
(
e(v),α − ψ̃1) dx

∀z = (v,α) ∈ Zs , ψ = (ψ1,ψ2), ψ̃1 = ψ1h if I = 3,4, ψ̃1 = 0 if I = 1,2,5. Indeed, when μ ∈ (0,+∞] or b ∈ (0,+∞], a simple
use of the Hölder and Jensen inequalities gives the following additional (with respect to Lemma 4.2 of [1]) compactness
property for a sequence (ws) = ((vs,αs)) such that J̃ s(ws) is uniformly bounded: (

∫ ε e(vs)(·, x3)dx3,
∫ ε

αs(·, x3)dx3)
−ε −ε
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converges (up to a subsequence) weakly in Lq(S;Θ) toward ([v] ⊗S e3,α) with q = 2 if μ ∈ (0,+∞] or q = p if b ∈ (0,+∞].
This dramatically simplifies the proof of the optimal lower bound for J̃ s(ws) by a simple use of the Jensen inequality and
a standard lower semi-continuity argument for convex integral functionals in Lq(S;Θ) and is the source of terms like W ⊥

1
and (D∞,p)⊥ when μ = 0!. . . As W1(e,0) or D∞,p(ė,0) generally differs from W ⊥

1 (e) or (D∞,p)⊥(ė), it is worthwhile
to note that in the cases I = 1,2,5, where the additional state variable disappears, it cannot be replaced by 0 in order to
uniformize formulation of the spaces, functionals and equations! Thus, we deduce the convergence uniformly on [0, T ] in
the sense of Trotter of the solution of (15) toward that of (27) with IU ro = IU o − IU e(0) and the additional conditions of
convergence and compatibility between the initial state and loading:

∃IU o ∈ IU e(0) + D
(I A

); U o
s ∈ U e

s (0) + D(As) and lim
s→s̄

∣∣I P s
IU o − U o

s

∣∣
s = 0 (H5)

This can be rephrased in a more explicit way with respect to (P s):

Theorem 4.1. The solution to

dUs

dt
+ As

(
Us − U e

s

) � (0, f /γ ), Us(0) = U o
s (33)

converges toward the solution to

dIU

dt
+ I A

(IU − IU e) � (0, f /ρ̄), IU (0) = IU o (34)

in the sense lims→s̄|I P s
IU (t) − Us(t)|s = 0, lims→s̄|Us(t)|s = ‖IU (t)‖I uniformly on [0, T ].

5. Concluding result

A more explicit way of writing (34) is

– if b < +∞, ∃ζ ∈ ∂D( dI z
dt ) such that∫

Ω

ρ
d2Iu

dt2
· zd dx +

∫
Ω\S

ae
(Iu

) · e
(
zd)dx +

∫
S

(
DW λμ

(
Π I z

) + ζ
) · Π z dx̂

=
∫
Ω

f · zd dx +
∫
Γ1

g · zd dH2 ∀z ∈ IZ

– if b = ∞, [ dIu
dt ] = 0 and∫

Ω

ρ
d2Iu

dt2
· zd dx +

∫
Ω\S

ae
(Iu

) · e
(
zd)dx +

∫
S

DW λμ

(
Π I z

) · Π z dx̂

=
∫
Ω

f · zd dx +
∫
Γ1

g · zd dH2 ∀z ∈ IZ ∩ {[
zd] = 0

}
(I z(0), dIu

dt (0)) = IU o with I z = (Iu,α) if I = 3,4, I z = Iu if I = 1,2,5.

Hence, the limit behavior concerns the dynamic response to the initial loads ( f , g) of the assembly of two linearly elastic
adherents occupying Ω± as reference configurations and linked along S by a dissipative mechanical constraint, which can
be written:(Iσ e3,0

) ∈ DW λμ

(
Π I z

) + ∂D
(

dI z

dt

)
where Iσ e3 is the stress vector along S . This constitutive equation is of the same algebraic form as that of the adhesive layer.
It enters the formalism of generalized standard materials [2,3]. The contact state is described by the relative displacement
[I zd] and possibly an additional state variable I zh when μ ∈ (0,∞) while the constitutive equation is derived from a free

energy like Wλμ(Π I z) and a potential of dissipation D( dI z
dt ). It may degenerate when the values of one of the coefficients

λ, μ, b are in {0,+∞}.
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• b = 0

μ

0 finite and positive +∞
z = u z = (u,α) z = u

λ

0 σ e3 = 0 (σ e3,0) = μDW2(Π z) [u] = 0
finite and positive σT = 0 (σ e3,0) = DWλμ(Π I z) [u] = 0

σN = λDW ⊥
1 ([u]N e3 ⊗S e3)

+∞ σT = 0 (σ e3,0) = μDW2(Π z) [u] = 0
[u]N = 0 [u]N = 0, jα = 0

with [u]N = [u]3, σN = σ e3 · e3, σT = σ e3 − σN e3. They are elastic constraints.

• b ∈ (0,+∞): we have to add some element ζ in ∂D( dI z
dt ) in the previous left upper 2 × 2 block. The other boxes

on the right are not changed whereas we have to add ζT to the bottom left boxes. Thus, as seen in [6], the case
(λ,μ) = (+∞,0) corresponds to a generalized Norton–Hoff (1 < p � 2) or Tresca (p = 1) tangential friction with bilat-
eral contact.

• b = +∞: the relative displacement along S is always equal to its initial value (which is zero if μ = ∞ and has a
vanishing normal component if λ = ∞), regardless of the values of λ, μ, the relative motion along S is frozen!
In practice, the geometrical and mechanical data obviously “do not tend to some limits”, so our proposal of a simplified
but accurate enough model for the behavior of the real structure is that obtained in the case I = 3 by replacing λ, μ, b
by the real values λ/2ε, μ/2ε and b/(2ε)p−1!

A major defect in this modeling is that it supplies a mechanical constraint which permits the unrealistic interpenetration
of the two bodies. This is due to the framework of small deformations used, which is rather questionable because λ, μ
are assumed to take rather low values. That is why, in order to avoid the highly delicate framework of large deformations,
especially in the dynamic case, we introduced not only one “stiffness parameter” μ but also a couple (λ,μ) of “stiffness
coefficients” which, when λ = ∞, supplies realistic bilateral contact conditions. When μ = 0, the limit constraint corre-
sponds to a Norton- or Tresca-like friction and, when μ ∈ (0,∞), the limit constraint involves a new type (but entering the
formalism of generalized standard materials) of law of friction involving an additional state variable.

For the sake of simplification and to condense the presentation, we considered a special type Wλμ of free en-
ergy for the adhesive involving only one couple of “stiffness coefficients” (like in a linearized Hooke law) with the de-
fect that the additional state variable disappears when μ = 0. However, by systematically considering the fact that if∫ ε
−ε qs(·, x3)dx3 has a weak limit q in L p(S; X), X ∈ {S3,Ξ}, when (ε,b) tends to zero, then lim(ε,b)→0 b

∫
Bε
W(qεb(x))dx �

lim(ε,b)→0(
b

εq−1 )
∫

S W(q(x̂))dx̂ for all q-positively homogeneous convex functions W and the trick of introducing W⊥ , it is
possible to treat many more generalized standard materials. Here are two important examples where α is the inelastic
strain.

Example 5.1 (Poynting–Thomson-like material). Free energy: W (e,α) = Wλ1,μ1 (e) + Wλ2μ2 (e − α), Wλμ(e) = λ| tr e|2 + μ|e|2,
dissipation potential: D(ė, α̇) = D(α̇). If μi , λi , bi are the expected limits of μi/2ε, λi/2ε, bi/(2ε)p−1, the state variables
for the limit contact law are [u], α ∈ S3 (only [u] if μ1 = μ2 = 0) while the free energy and dissipation potential are

Wλ1μ1

([u] ⊗S e3) + Wλ2μ2

([u] ⊗S e3 − α
)
, bD∞,p(α̇)

so that the case λ1 = λ2 = ∞, μ1 = 0, μ2 ∈ (0,∞) supplies a kind of “Maxwell friction” with bilateral contact:

[uN ] = 0, σT ∈ b∂D(α̇) = 2μ2
([u]T /2 − (

αe3)
T

)
, αsph = 0

Example 5.2 (Elastoplasticity with strain hardening). Free energy: Wλ1μ1 (e − α) + Wλ2μ2 (α), dissipation potential: b|α̇|. The
state variables of the limit constraint are [u], α ∈ S3 (only [u] if μ1 = 0). If μ1 = 0 the bodies are free to separate (σ e3 = 0),
in the other cases the surface energy and dissipation potential read as

Wλ1μ1

([u] ⊗S e3 − α
) + Wλ2μ2

(α), b|α̇|
and the case λ1 = λ2 = ∞, μ1 ∈ (0,∞), μ2 = 0 corresponds to a kind of “elasto-perfecto plastic friction” with bilateral
contact:

[u]N = 0, σT ∈ b∂| |(α̇) = 2μ1
([u]T /2 − (

αe3)
T

)
, αsph = 0

Eventually, we obtained a result of existence and unicity for the dynamic response of two elastic bodies in bilateral
contact with a tangential friction law given through a very general dissipation potential and quadratic convex energy because
this problem can be formulated as (34).
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