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Predicting the effective elasticity of a composite material based on the elasticity of the
constituent materials is extremely difficult, even when the microstructure is known. In this
paper we consider a link between effective elastic tensors of composites with the same
microgeometry but different constituent materials. Information about the effective tensor
of one composite can then be used to determine the other. The general theory of exact
relations allows us to identify all such links in principle. Here we describe a special set of
links, for which one of the composites can be chosen arbitrarily. Several applications are
considered and a number of microstructure-independent relations satisfied by the effective
elastic tensors is derived.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The great benefit of composite materials lies in the fact that the undesirable properties of the constituent materials may
not be present in the resulting composite. Here we use the term composite to describe any material with heterogeneous
structure on the micro-scale that behaves like a homogeneous material on a macro-scale. Whether by layering, laminating,
injecting, or encasing different constituent materials, engineers have developed new composites with effective properties
that cannot be found in nature. There now exist materials that are both lightweight and strong and therefore useful in
applications ranging from orthopedic casting to aerospace technology. Modern ski construction uses composites to obtain a
unique combination of flexibility and torsional rigidity. Yet exactly when and how a composite will retain the properties of
its constituent materials and when and how it will not remains a largely unanswered question. Certainly the microstructure
of the composite material plays a significant role. However, there are also relations that hold regardless of microstructure.

For example, an elastic composite material made of two isotropic materials may in many cases be anisotropic. However, if
the two constituent materials have the same shear modulus, μ, then the composite will be isotropic with shear modulus μ,
regardless of the microstructure of the material [1]. Furthermore, the bulk modulus κ∗ of such a composite will be given by

1

3κ∗ + 4μ
= θ1

3κ1 + 4μ
+ θ2

3κ2 + 4μ
(1)

where θ1 and θ2 represent the volume fractions and κ1 and κ2 represent the bulk moduli of the two constituents. Given the
high cost of producing composite materials, the ability to obtain results such as these without conducting expensive tests is
valuable.

An exact relation describes a material property that is maintained in the construction of composites, regardless of mi-
crostructure. That is, it represents a characteristic of tensors for constituent materials that is always present in the effective
tensors of composites made with those materials. In Hill’s example above, the set of isotropic materials with a given shear
modulus forms an exact relation. It is therefore helpful to be aware of exact relations both so that we may take advantage
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of them when we hope to maintain a characteristic and also so that we may avoid them when we want to change a given
property.

Much of the early work on exact relations was on uniform field relations (UFR). These arise whenever there exist constant
stress and strain (in the case of elasticity) tensors σ and ε such that

C(x)ε = σ ∀x

In this case the uniform fields σ and ε also satisfy C∗ε = σ , where C∗ is the effective tensor. So the set of materials
satisfying a certain uniform field relation form an exact relation. The exact relation in (1) stems from this idea. So does
the exact relation identified by Hill in [2] and described in [3] regarding materials that exhibit cubic symmetry. If C is the
elasticity tensor of such a material and I represents the 3 × 3 identity matrix, then there exists κ > 0 such that C I = κ I .
So we can think of κ as representing the bulk modulus of the material even though the material is not fully isotropic.
A simple uniform field argument tells us that the effective bulk modulus of a statistically isotropic polycrystal made with
this material is the same as the bulk modulus of the pure crystal. This result was generalized by He [4] to all materials that
respond isotropically to isotropic stress or strain.

Hill’s work in elasticity was followed by results from Lurie, Cherkaev, and Fedorov [5–7] and Francfort and Tartar [8].
Cribb [9], Rosen [10], Hashin [11], Schulgasser [12], and Dvorak [13] found exact relations in the context of thermoelas-
ticity. Dvorak also specifically applied uniform field arguments to fiber-reinforced elastic composites [14]. Exact results for
piezoelectric composites were discovered by Benveniste and Dvorak [15–18] while Milgrom and Shtrikman studied ther-
moelectricity [19–21]. Benveniste also found exact relations specifically for polycrystalline composites in the context of
thermopiezoelectricity [22]. An excellent summary of exact relations can be found in [23]. Finally in [24–26], the elegant
mathematical theory of exact relations and links was developed, allowing us to find all exact relations in a wide range
of physical contexts including all of the above. In [27], To used this theory to find all exact relations for 3D conductors
exhibiting the Hall effect, all of which were of the UFR type.

In this paper we use the theory of exact relations to obtain information about fiber-reinforced elastic composites. Fiber-
reinforced composites are those whose microstructure is independent of the longitudinal coordinate and can therefore be
described by a single transverse cross section. Furthermore, we focus our attention on polycrystalline exact relations. In
other words, we require that if a material with elastic tensor C is an admissible constituent, then so is the rotated material
R · C where R ∈ SO(2) represents a rotation in the transverse plane. The image we have in mind is a composite created by
injecting anisotropic fibers into an isotropic matrix. Fiber rotations around the longitudinal axis can be arbitrary. The exact
relations we seek are the ones that hold regardless of fiber position, orientation, and cross section.

The theory described here takes a geometric point of view, seeing exact relations as surfaces in the space of elasticity
tensors. It utilizes an explicit diffeomorphism that maps all such surfaces to SO(2)-invariant subspaces with special algebraic
properties. Tools from representation theory help to identify all subspaces that satisfy these properties, and hence all exact
relations.

Here we apply the theory of exact relations to compute links between tensors. When two composites have the same
microstructure but different constituent materials, their effective tensors may be related. In this case we say that a link
exists between the two composites. For example, in [28], it was found that for any two-dimensional local conductivity
tensor σ(x), if a second tensor is defined by

σ ′(x) = σ(x)

detσ(x)

then the same relation holds between the effective tensors of the two composites:

σ ′ ∗ = σ ∗

detσ ∗ (2)

We choose to focus on links because in general they give more information than exact relations. Links map exact relations
to exact relations. They can also generate exact relations. For example, the set of tensors unchanged by a link forms an
exact relation.

By re-characterizing links as exact relations in a higher dimensional space, we can use the theory of exact relations to
find and describe links. For the sake of completeness, we will begin with a brief overview of the theory of exact relations
and links as well as the tools needed to complete the calculations for the case of fiber-reinforced elastic composites. We
then use this theory to compute a special set of links that establishes equivalence between exact relation surfaces passing
through different points. Finally, we apply our link to the case of a composite material made from two transversely isotropic
materials and the case of a polycrystalline composite made from one orthotropic or tetragonal material.

2. Theory of exact relations

Without loss of generality, let us assume that the fibers in our composite are oriented vertically. Let

D := {
n = (n1,n2,0) ∈R

3: ‖n‖ = 1
}
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represent the set of directions in the transverse plane. Let Sym(R3) denote the Euclidean space of 3 × 3 symmetric matrices
with the inner product

〈E1, E2〉 = 1

2
Tr(E1 E2)

For each n = (n,0) = (n1,n2,0) ∈D, we define

En = {
a ⊗ n + n ⊗ a: a ∈R

3}
Jn = {

σ ∈ Sym
(
R

3): σn = 0
}

where for each a = (a1,a2,a3) and b = (b1,b2,b3) in R
3, we define the 3 × 3 matrix a ⊗ b = aib j . Note that Sym(R3) =

En ⊕Jn for each n. Let Sym(Sym(R3)) denote the set of symmetric linear maps from Sym(R3) to itself. Now fix an arbitrary
reference tensor C0 in the set of positive definite elasticity tensors,

T = {
C ∈ Sym

(
Sym

(
R

3)): 〈Cξ, ξ〉 > 0 for all ξ ∈ Sym
(
R

3), ξ �= 0
}

Let Γ (n) be the orthogonal projection onto C1/2
0 En . Following [29] we define:

Wn(C) = [
I − (

I − C−1/2
0 CC−1/2

0

)
Γ (n)

]−1(
I − C−1/2

0 CC−1/2
0

)
(3)

This map has a special property in the case of laminates. If C∗ represents the effective tensor of a laminate made with
materials C1 and C2 taken in volume fractions f1 and f2, then

Wn
(
C∗) = f1Wn(C1) + f2Wn(C2) (4)

where n is the direction of lamination. If the surface M is an exact relation then certainly M is closed under lamination.
Thus (4) implies that Wn(M) is a convex subset of some affine subspace, Πn ⊂ Sym(Sym(R3)), whose dimension is the
same as M. In fact, if we pick C0 ∈ M, then Πn is a vector space. Furthermore, from [26] we know that Wn is a diffeo-
morphism on T , the subspaces Πn do not depend on n, and Π := Πn (for any n) has a special algebraic structure, which
we will now describe.

Fix n0 ∈D and define

A = Span
{
Γ (n) − Γ (n0): n ∈ D

}
Then A encodes the fiber-reinforced structure of the composite and does not depend on the choice of n0. In fact, if

Γ̄ := 1

2π

2π∫
0

Γ
(
cos(t), sin(t),0

)
dt

then

A = Span
{
Γ (n) − Γ̄ : n ∈ D

}
(5)

For each A ∈A, define a product ∗A on Sym(Sym(R3)) by:

K1 ∗A K2 = 1

2
(K1 AK2 + K2 AK1)

for all K1, K2 ∈ Sym(Sym(R3)). If M is an exact relation and Π is the vector space containing Wn(M) as described above,
then

K1 ∗A K2 ∈ Π (6)

for all A ∈ A and for all K1, K2 ∈ Π . The product ∗A is commutative and non-associative. It is called a Jordan product [30].
We say Π is a Jordan multi-algebra since Π is closed with respect to a whole family of Jordan multiplications.

That Π satisfies (6) follows from the stability of M with respect to making laminates and is certainly necessary for
M to be an exact relation. In addition to this necessary condition, we have a related sufficient condition. We say that Π

satisfies the j-chain property if for all K1, K2, . . . , K j ∈ Π and A1, A2, . . . , A j−1 ∈A,

K1 A1 K2 A2 · · · A j−1 K j + K j A j−1 · · · A2 K2 A1 K1 ∈ Π (7)

In [26] it was shown that if Π satisfies the j-chain property for j = 2,3, and 4, then it represents the image of an exact
relation. However, so far every subspace found to satisfy the 2-chain property has satisfied 3- and 4-chain properties. Note
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also that (K1 AK2 + K2 AK1) ∈ Π for all K1, K2 ∈ Π and for all A ∈ A if and only if K AK ∈ Π for all K ∈ Π and for all
A ∈A.

Because we are interested in polycrystalline exact relations and links, transversely isotropic tensors will be important. For
each

R =
[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]
in SO(2) let

R̃ =
[R 0

0 1

]
so that for an arbitrary

E =
[

E e

eT ε

]
(8)

in Sym(R3), we can define

R · E = R̃ER̃T =
[RERT Re

(Re)T ε

]
(9)

Now if we define the action of R on C ∈ T by

R · (C E) = (R · C)(R · E)

for all E ∈ Sym(R3), then R · C describes the elasticity tensor of the rotated material. We say C is transversely isotropic if
R · C = C .

Suppose M is an exact relation. If our reference tensor C0 ∈M is transversely isotropic, then

R · Wn(C) = WRn(R · C)

for all C ∈ M. Therefore Π is rotation-invariant if and only if M is polycrystalline. Thanks to the representation theory of
two-dimensional rotations, we can easily find all rotation-invariant subspaces of Sym(Sym(R3)). We then investigate which
of these subspaces satisfy the algebraic condition (6). Finally, we need to invert Wn to describe the polycrystalline exact
relations in physical variables. Hereafter when we say exact relation we will mean polycrystalline exact relation. In [31] we
have found a complete list of solutions of (6), containing over 200 exact relations. The work of converting them to physical
variables and exploring their consequences remains to be done.

3. Theory of links

We can now apply these ideas to the concept of links. Given local elasticity tensors of two composites C(x) and C ′(x),
a function G on T ×T is called a link if G(C∗, C ′ ∗) = 0 whenever G(C(x), C ′(x)) = 0. In the example from Mendelson above,
we have a link given by G(σ ,σ ′) = σ

detσ − σ ′ . It is easy to see that links are simply exact relations in T × T when we
define

M̂ = {(
C, C ′): G

(
C, C ′) = 0

}
and note that M̂ represents a link if (C, C ′) ∈ M̂ implies (C∗, C ′ ∗) ∈ M̂. We can therefore use the theory described in
Section 2 to find links. If we have a pair of fixed transversely isotropic tensors (C1, C2) ∈ M̂ we can map this link to the set

Ŵn(M̂) = {(
W 1

n(C), W 2
n

(
C ′)):

(
C, C ′) ∈ M̂

}
(10)

where W i
n is defined as in (3) using C0 = Ci for i = 1,2. Once again, Ŵn(M̂) is a convex subset of some subspace Π̂ , which

has the same dimension as M.
Let Γi(n) be the orthogonal projection onto C1/2

i En . Define

Â = Span
{(

Γ1(n) − Γ̄1,Γ2(n) − Γ̄2
)
: n ∈ D

}
(11)

Rewriting Â ∈ Â and K̂ ∈ Π̂ as matrices, the general theory of exact relations tells us that if M̂ represents a link, then Π̂

is a subspace satisfying[
K1 0

0 K2

][
A1 0

0 A2

][
K1 0

0 K2

]
∈ Π̂

for all (A1, A2) = Â ∈ Â and for all (K1, K2) = K̂ ∈ Π̂ .
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We will focus in this paper on a special set of links corresponding to

Π̂ = {(
K ,Φ(K )

)
: K ∈ Sym

(
Sym

(
R

3))} (12)

where Φ is a linear bijection. Furthermore, since M̂ is an exact relation, we have from (6) that[
K 0

0 Φ(K )

][
A1 0

0 A2

][
K̃ 0

0 Φ(K̃ )

]
+

[
K̃ 0

0 Φ(K̃ )

][
A1 0

0 A2

][
K 0

0 Φ(K )

]

is in Π̂ for all K , K̃ ∈ Sym(Sym(R3)) and for all (A1, A2) ∈ Â. But this implies

Φ
(

K ∗A1 K̃
) = Φ(K ) ∗A2 Φ(K̃ ) (13)

for all (A1, A2) ∈ Â, and for all K , K̃ ∈ Sym(Sym(R3)).
Because we are focusing on polycrystalline exact relations, the subspace Π̂ is SO(2)-invariant and therefore

R · Φ(K ) = Φ(R · K ) (14)

for all R ∈ SO(2) and for all K ∈ Sym(Sym(R3)). We can find all Φ satisfying (13) and (14) using representation theory.
These maps are described in Section 4. Then we will use the maps W 1

n and W 2
n to convert Π̂ back to physical variables.

This inversion is far from routine. The procedure is described in Section 5. The set of links M̂ corresponding to all such Φ

is then described in Section 6.

4. Algebraic structure

We find it convenient to write elasticity tensors as 3 × 3 block matrices. If we think of R
3 = R

2 ⊕ R, then we may
decompose

Sym
(
R

3) = Sym
(
R

2) ⊕ Hom
(
R

2,R
) ⊕ Sym(R)

where Hom(R2,R) represents the set of linear maps from R
2 to R. First let us write the three-dimensional stress and strain

matrices

σ =
⎡
⎣ σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎤
⎦ and ε =

⎡
⎣ εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎤
⎦

in the block form

σ =
[

σ̃ s

sT ς

]
and ε =

[
ε̃ e

eT δ

]

where

σ̃ =
[
σxx σxy

σxy σyy

]
, ε̃ =

[
εxx εxy

εxy εyy

]

s =
[

σxz

σyz

]
, e =

[
εxz

εyz

]
, ς = σzz, δ = εzz

Then we can write the elasticity tensor C effecting the constitutive relation σ = Cε in the form

C =
⎡
⎣ C C c

C∗ C c

c∗ c∗ γ

⎤
⎦

where

C : Sym
(
R

2) → Sym
(
R

2), C : R2 → Sym
(
R

2), c : R→ Sym
(
R

2), C : R2 →R
2

c : R →R
2, C∗ : Sym

(
R

2) →R
2, c∗ : Sym

(
R

2) →R, c∗ : R2 →R, γ : R →R

and where the dual spaces to Sym(R2),R2, and R are identified with themselves via the inner products

〈E1,E2〉 = 1
Tr(E1E2), 〈e1, e2〉 = e1 · e2, and 〈δ1, δ2〉 = δ1δ2 (15)
2
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respectively. In addition, the maps C and C are symmetric and the maps c, c, and γ can be identified with the corresponding
images of 1 ∈ R. That is, we identify c with the matrix c ∈ Sym(R2) into which the operator c maps 1 ∈ R, the map c with
the vector c ∈ R

2, and the map γ with the number γ ∈R.
With these conventions and notations, the constitutive relation σ = Cε can be written as

σ̃ = Cε̃ + Ce + δ√
2

c, s = C∗ε̃ + Ce + δ√
2

c, ς = 1√
2

Tr(cε̃) + √
2(c · e) + γ δ

The coefficients of 1/
√

2 appear merely as consequences of aligning different forms of the inner product.
We are now equipped to describe the fixed transversely isotropic tensor, C0, the projector Γ (n), and the subspace

A ⊂ Sym(Sym(R3)). We will skip most of the details of the calculations which can be found in [31]. If G0 is transversely
isotropic, then we can write it as

G0 =
⎡
⎣C(κ0,μ0) 0 α0I

0 ρ0I 0

α0I 0 γ0

⎤
⎦

for some κ0,μ0,α0,ρ0, γ0 ∈ R, where C(κ,μ) is a two-dimensional elastic isotropic tensor with bulk modulus κ/2 and
shear modulus μ/2. Let C0 = G2

0. If c ∈ C is written as c = α + iβ where α,β ∈ R, let us define

ψ(c) =
[
α β

β −α

]

Then any matrix in Sym(R2) can be written as rI + ψ(c) for some r ∈ R and c ∈ C. From (5) we see that, having computed
the orthogonal projector Γ (n) onto G0En , what we are truly interested in is the difference:

Γ (n) − Γ̄ = 1

ϑ0

⎡
⎢⎣

A2D(κ0μ0 v,− 1
2 (κ2

0 + α2
0)v2) 0 ψ(α0μ0 v)

0 ψ( 1
2 ϑ0 v) 0

ψ(α0μ0 v) 0 0

⎤
⎥⎦ (16)

where ϑ0 = κ2
0 + α2

0 + μ2
0, v = n2 (n ∈ C ∼= R

2 comes from n = (n,0),‖n‖ = 1), and we define A2D(z, w) : Sym(R2) →
Sym(R2) by the action

A2D(z, w)
(
rI + ψ(c)

) = 〈z, c〉I + ψ(rz + c̄w)

Now, as seen in (5), A consists of the real span of all tensors of the form in (16). It is a simple exercise to show that the
real span of {(v, v2): v ∈C, ‖v‖ = 1} is simply C

2. From this it follows that we may write the subspace

A =
⎧⎨
⎩
⎡
⎣A2D(2κ0μ0z, w) 0 ψ(2α0μ0z)

0 ψ(ϑ0z) 0

ψ(2α0μ0z) 0 0

⎤
⎦ : w, z ∈C

⎫⎬
⎭

To make our calculations easier, it is desirable to put A in a simpler form. Suppose B1 is an arbitrary transversely
isotropic tensor, not necessarily symmetric. Let Π ′ = B−T

1 Π B−1
1 and let A′ = B1ABT

1 . Then

K1 ∗A K2 ∈ Π ⇔ K ′
1 ∗A′

K ′
2 ∈ Π ′

for all A′ = B1 ABT
1 ∈A′ and for all K ′

1 = B−T
1 K1 B−1

1 , K ′
2 = B−T

1 K2 B−1
1 ∈ Π ′ . In the case of fiber-reinforced periodic compos-

ites, we find that by choosing an appropriate B1, we can simplify A′ so that

A′ =
⎧⎨
⎩
⎡
⎣A2D(z, w) 0 0

0 ψ(z) 0

0 0 0

⎤
⎦ : w, z ∈C

⎫⎬
⎭ (17)

This simplification was key in calculating the complete list of solutions to (6) in [31].
However, in the case of links we have two copies of A, each of which depends on a different fixed transversely isotropic

tensor. Therefore, as we simplified A using B1, we will simplify Â using B̂ so that

B̂ Â B̂ T =
[

B1 0

0 B2

][
A1 0

0 A2

][
BT

1 0

0 BT
2

]
=

[
A′ 0

0 A′

]

and now Â′ = {[A′, A′]: A′ ∈ A′}. This will simplify our task of finding the maps Φ as in (12). Such Φ will satisfy (13)
and (14), so they can also be regarded as symmetries (or automorphisms) of Eq. (6). As such, they form a group. In [31] we
prove that all such Φ have the form Φ(K ′) = X K ′ X T where
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X ∈
⎧⎨
⎩
⎡
⎣ I 0 0

0 φ(±1) 0

σ I 0 τ

⎤
⎦ : σ ,τ ∈ R, τ �= 0

⎫⎬
⎭ (18)

and I is the identity operator on Sym(R2).

5. Inversion formula

Inverting the maps Wn and Ŵn and calculating exact relations and links in physical variables is not straightforward.
While we could use the matrix notation above to write elasticity tensors as 6 × 6 matrices and ask a computer algebra
program to calculate the inverse, we would then struggle to interpret the formula in terms of the block structure we
have developed. Instead we solve a simpler problem. We take advantage of the following statement proved in [26]. If
M0 ∈ Sym(Sym(R3)) is such that

K ′(B1Γ̄ BT
1 − M0

)
K ′ ∈ Π ′

for all K ′ ∈ Π ′ , then

M = {
C = C0 − C1/2

0 BT
1

(
I + K ′M0

)−1
K ′B1C1/2

0 : K ′ ∈ Π ′} (19)

Certainly M0 = B1Γ̄ BT
1 will work in every case, however simpler choices of M0 are often possible.

For the case of links, this formula means we need M1, M2 such that[
K 0

0 Φ(K )

][
B1Γ̄1 BT

1 − M1 0

0 B2Γ̄2 BT
2 − M2

][
K 0

0 Φ(K )

]
∈ Π̂

for all K ∈ Sym(Sym(R3)). That is, by definition of Π̂ , we need

Φ
(

K
(

B1Γ̄1 BT
1 − M1

)
K
) = Φ(K )

(
B2Γ̄2 BT

2 − M2
)
Φ(K ) (20)

for all K ∈ Sym(Sym(R3)). Using the definition Φ(K ) = X K X T with (20) and a quick simplification, this implies

B1Γ̄1 BT
1 − M1 = X T (B2Γ̄2 BT

2 − M2
)

X (21)

Using (19), write our two linked tensors C and C ′ as

C = C1 − C1/2
1 BT

1

(
K −1

1 + M1
)−1

B1C1/2
1 (22)

C ′ = C2 − C1/2
2 BT

2

(
K −1

2 + M2
)−1

B2C1/2
2 (23)

By definition of the link, K2 = Φ(K1). So solving (22) for K −1
1 , using the fact that K −1

2 = X−T K −1
1 X−1, and substituting this

into (23), we have

C ′ = C2 − C1/2
2 BT

2

(
X−T [B1C1/2

1 (C1 − C)−1C1/2
1 BT

1 − M1
]

X−1 + M2
)−1

B2C1/2
2 (24)

We show in [31] that B2Γ̄2 BT
2 has a special block diagonal structure with zero in the bottom right block. Combining this fact

with the description of X given in (18), we can see that X T B2Γ̄2 BT
2 X = B2Γ̄2 BT

2 . Therefore, expanding (24) and selecting
any pair (M1, M2) satisfying (21), terms cancel such that we can write

C ′ = C2 − [
I + �(C)H

]−1
�(C) (25)

where

H = C−1/2
2 B−1

2

(−B1Γ̄1 BT
1 + B2Γ̄2 BT

2

)
B−T

2 C−1/2
2

and

�(C) = S − Q C Q T

and where S and Q are transversely isotropic tensors defined by

S = C1/2
2 BT

2 X B−T
1 B−1

1 X T B2C1/2
2 (26)

and

Q = C1/2
2 BT

2 X B−T
1 C−1/2

1 (27)
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6. Link

Then, if H �= 0, the link (25) takes the form

C ′ =
⎡
⎢⎣

a2
1(G0Θ(C)G0 − a0G0) a1a2G0Θ(C)C a4I + a1a3G0Θ(C)(c + a5I)

(C ′
1,2)

T a2
2(CT Θ(C)C + C) a2a3(c + CT Θ(C)(c + a5I))

(C ′
1,3)

T (C ′
2,3)

T a6 + a2
3(γ + 〈Θ(C)(c + a5I), (c + a5I)〉)

⎤
⎥⎦ (28)

where ai ∈R for i = 0, . . . ,6 and

Θ(C) := (
a−1

0 G0 − C
)−1

(29)

Here the map G0 : Sym(R2) → Sym(R2) is defined by its action on E = φ(ω) + ψ(z) ∈ Sym(R2):

G0E = φ(ω) − ψ(z)

So we can think of G0 as a two-dimensional isotropic elasticity tensor with bulk modulus 1
2 and shear modulus − 1

2 . In
other words, if we define the inner product of two symmetric 2 × 2 matrices as in (15) then

〈G0E,E〉 = det E

When H = 0, the link (25) becomes linear and has the form

C ′ = C2 − S + Q C Q T (30)

where S and Q are as defined in (26) and (27) and

F = C2 − S =
⎡
⎣ 0 0 f1I

0 0 0

f1I 0 f2

⎤
⎦ and Q =

⎡
⎣ d1I 0 0

0 d2I 0

d4I 0 d3

⎤
⎦

for some f1, f2,d1,d2,d3,d4 ∈ R. The link is then

C ′ =
⎡
⎢⎣

d2
1C d1d2C f1I + d1d3c + d1d4CI

(C ′
1,2)

T d2
2C d2d3c + d2d4CT I

(C ′
1,3)

T (C ′
2,3)

T f2 + d2
3γ + 2d3d4〈c, I〉 + d2

4〈CI, I〉

⎤
⎥⎦ (31)

This special case corresponds to the limit of the general link when certain constants go to zero or infinity. Using the
Neumann series expansion,

Θ(C) = a0G0 + a2
0G0CG0 + O

(
a3

0

)
Fix a2 = d2 and a3 = d3 and let a0 → 0 and a1,a4,a5,a6 → ∞ be such that

a0a1 → d1, a0a5 → d4

a3
, a4 + a0a1a3a5 → f1, a6 + a0a2

3a2
5 → f2

Then the limit of the general case converges to the linear link C ′ = F + Q C Q T .
We make one further observation to clarify the relationship between the general case and the linear case: the essential

nonlinearity in the general case (28) is manifested entirely in a0. That is, we can rewrite any element of the general case as
the composition of an element of the linear case and a special element of the general case involving only a0. More explicitly,
let F represent an arbitrary element of the general case (28) with parameters ai . Then fix F0 to be a special case of (28)
with parameters a0

i where a0
1 = a0

2 = a0
3 = 1, a0

4 = a0
5 = a0

6 = 0, and a0
0 = a0. That is,

F0(C) =
⎡
⎣a0G0Θ(C)C G0Θ(C)C G0Θ(C)c

CT Θ(C)G0 CT Θ(C)C + C CT Θ(C)c + c

cΘ(C)G0 cΘ(C)C + cT 〈Θ(C)c, c〉 + γ

⎤
⎦

If we let Flin represent the linear link (31) with

d1 = a1, d2 = a2, d3 = a3, d4 = a0a3a5

f1 = a4 + a0a1a3a5, and f2 = a6 + a0a2
3a2

5

then we have

F1
(
Flin(C)

) = F(C)

for all tensors C ∈ T .
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7. Applications

7.1. Two isotropic materials

Suppose we make a composite with two transversely isotropic materials, C1 and C2. We can write these as

Ci =
⎡
⎣Ci(κi,μi) 0 αiI2

0 ρiI2 0

αiI2 0 γi

⎤
⎦

The parameters above relate to the standard engineering constants in Voigt notation in the following ways:

κi = K i
11 + K i

12, μi = 2K i
66, ρi = 2K i

44, γi = K i
33, and αi = √

2K i
13 (32)

Alternately, [14] uses the following six constants and one relation to describe transversely isotropic materials. The Young
moduli in the longitudinal and transverse directions are given by

Ei
L = 1

κi

(
γiκi − α2

i

)
and

Ei
T = 2μi(κiγi − α2

i )

(κi + μi)γi − α2
i

The Poisson ratio for loading on the longitudinal axis is

ν i
L = αi√

2κi

while the Poisson ratio describing the orthogonal contraction within the transverse plane due to tension applied in the
transverse plane is

ν i
T = (κi − μi)γi − α2

i

(κi + μi)γi − α2
i

Finally, the shear moduli in the longitudinal and transverse directions are simply

Gi
L = 1

2
ρi and Gi

T = 1

2
μi

The relation indicating the dependence between these constants is

Gi
T = Ei

T

2(1 + ν i
T )

Our linear link maps these transversely isotropic materials to two new transversely isotropic materials given by

C ′
i =

⎡
⎣C′

i(κ
′
i ,μ

′
i) 0 α′

i I2

0 ρ ′
i I2 0

α′
i I2 0 γ ′

i

⎤
⎦

=
⎡
⎢⎣

d2
1Ci(κi,μi) 0 ( f1 + d1d3αi + d1d4κi)I2

0 d2
2ρiI2 0

( f1 + d1d3αi + d1d4κi)I2 0 f2 + d2
3γi + 2d3d4αi + d2

4κi

⎤
⎥⎦ (33)

We can always set α′
i = 0 so that the C ′

i are block diagonal, which allows us to take advantage of the following lemma.

Lemma 7.1. If C represents the elasticity tensor of a fiber reinforced composite and is block diagonal of the form

C =
⎡
⎣C 0 0

0 C 0

0 0 γ

⎤
⎦

then its effective tensor is of the form
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C∗ =
⎡
⎣C∗ 0 0

0 C∗ 0

0 0 〈γ 〉

⎤
⎦

where C∗ and C∗ represent the effective elasticity and conductivity tensors of a two-dimensional composite with local elasticity tensor
C and local conductivity tensor C and with the same microstructure as the original fiber-reinforced composite’s transverse cross section.

Proof. Let u = (u1, u2, u3) = (u′, u3) represent a deformation. Then we can write

e(u) =
⎡
⎢⎣

∂u1
∂x1

1
2 ( ∂u1

∂x2
+ ∂u2

∂x1
) 1

2 ( ∂u1
∂x3

+ ∂u3
∂x1

)

1
2 ( ∂u1

∂x2
+ ∂u2

∂x1
) ∂u2

∂x2

1
2 ( ∂u2

∂x3
+ ∂u3

∂x2
)

1
2 ( ∂u1

∂x3
+ ∂u3

∂x1
) 1

2 ( ∂u2
∂x3

+ ∂u3
∂x2

)
∂u3
∂x3

⎤
⎥⎦

=
[

e(u′) 1
2 ( ∂u′

∂x3
+ ∇′u3)

1
2 ( ∂u′

∂x3
+ ∇′u3)

T ∂u3
∂x3

]
∈ Sym

(
R

3)
and any arbitrary ξ ∈ Sym(R3) as

ξ =
[

ξ ′ ξ̄

ξ̄ T
√

2ξ33

]

We assume for fiber reinforced composites that C is independent of x3. Let us now suppose that a solution u exists to

∇ · C
(
e(u) + ξ

) = 0 (34)

which is independent of x3 as well. Then (34) becomes

∇′ ·
(

C
(
e
(
u′) + ξ ′) + C

(
1

2
∇′u3 + ξ̄

)
+ cξ33

)
= 0 (35)

∇′ ·
(
CT (e

(
u′) + ξ ′) + C

(
1

2
∇′u3 + ξ̄

)
+ cξ33

)
= 0 (36)

where the top line is a vector equation while the bottom is a scalar equation.
Now, if C is block diagonal, then the top vector equation simplifies to

∇′ · (C(
e
(
u′) + ξ ′)) = 0 (37)

while the scalar equation on the bottom becomes

∇′ ·
(

C
(

1

2
∇′u3 + ξ̄

))
= 0 (38)

But we know solutions u′ and u3 to (37) and (38) exist and are unique. Therefore the unique solution u = (u′, u3) to (34)
is x3-independent. Since the effective tensor is defined by

C∗ξ = 〈
C
(
e(u) + ξ

)〉
for all ξ ∈ Sym(R3) and C is block diagonal, we have⎡

⎣ C∗ξ ′ + C∗ξ̄ + c∗ξ33

C∗T ξ ′ + C∗ξ̄ + c∗ξ33

c∗T ξ ′ + c∗T ξ̄ + γ ∗ξ33

⎤
⎦ =

〈 C(e(u′) + ξ ′)
C( 1

2 ∇′u3 + ξ̄ )

γ ξ33

〉

which implies C∗, c∗, and c∗ are all zero. Furthermore, the effective tensors C∗ and C∗ are defined by the formulas

C∗ξ ′ = 〈
C
(
e
(
u′) + ξ ′)〉

and

C∗ξ̄ =
〈
C
(

1

2
∇′u3 + ξ̄

)〉

for all ξ ′ ∈ Sym(R2) and all ξ̄ ∈ R
2, while γ ∗ = 〈γ 〉. �
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Since we do not need to change the two-dimensional elasticity block or the two-dimensional conductivity block, we may
assume d1 = d2 = 1. Let us assume C1 and C2 are ordered such that κ1 > κ2. Then we can set

d4 = −α1 − α2

κ1 − κ2
and f1 = −α1 + α1 − α2

κ1 − κ2
κ1

to ensure α′
1 = α′

2 = 0 and

f2 = 2
α1 − α2

κ1 − κ2
α2

to ensure that κ ′
i > 0 for i = 1,2. Then, taking advantage of the lemma, we have the effective tensors

(
C ′)∗ =

⎡
⎣C∗ 0 0

0 C∗ 0

0 0 〈γ ′〉

⎤
⎦

and

C∗ =
⎡
⎣C∗ 0 c∗

0 C∗ 0

c∗ 0 γ ∗

⎤
⎦ (39)

where

c∗ = �α

2�κ

(
C∗I

) +
(

〈α〉 − �α

�κ
〈κ〉

)
I, γ ∗ = 〈γ 〉 +

(
�α

2�κ

)2((
C∗I, I

) − 〈2κ〉)
and

�β = β1 − β2

This result was found by Rosen and Hashin [10] in the context of two-dimensional thermoelasticity where C∗ is the effective
two-dimensional elasticity tensor, c∗ is the effective thermal expansion tensor, and γ ∗ is the coefficient of specific heat.

If μ1 = μ2 = μ, then μ′
1 = μ′

2 and we can apply Hill’s exact relation to the two-dimensional elasticity block. Note that
we can rewrite (1) as

1

κ∗ + μ
=

〈
1

κ + μ

〉
(40)

Then (39) can be augmented by the explicit formulas

C∗ = C
(
κ∗,μ

)
, c∗ = α∗I2, and γ ∗ = 〈γ 〉 +

(
�α

�κ

)2(
κ∗ − 〈κ〉)

where

κ∗ =
〈

1

κ + μ

〉−1

− μ, α∗ = 〈α〉 + �α

�κ

(
κ∗ − 〈κ〉)

and C(κ∗,μ) is the elasticity tensor of a two-dimensional isotropic composite.

7.2. Polycrystal made from an orthotropic monocrystal

We can also apply the link to the case of a polycrystal made from an orthotropic material. We define an orthotropic
material to be one that can be rotated into an orientation in which the material is invariant to flips along each of the three
coordinate axes. The tensor of such a material (rotated into the appropriate position) is therefore invariant with respect to
rotations in the group

Q =
⎧⎨
⎩
⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦ ,

⎡
⎣1 0 0

0 −1 0

0 0 −1

⎤
⎦ ,

⎡
⎣−1 0 0

0 1 0

0 0 −1

⎤
⎦ ,

⎡
⎣−1 0 0

0 −1 0

0 0 1

⎤
⎦
⎫⎬
⎭

A straightforward calculation shows us that Q-invariant tensors can be written in the form

C0 =
⎡
⎣C0 0 c0

0 C0 0

⎤
⎦

c0 0 γ0
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where C0 sends diagonal matrices to diagonal matrices and C0 and c0 are diagonal. We would like to set the c-block equal
to zero. We may let d1 = d2 = d3 = 1 and fix d4 and f1 so that

c′ = c0 + f1I + d4C0I = 0 (41)

This is possible if and only if c0 is a scalar multiple of the identity or I is not an eigenvector of C0.
Since the linked tensor C ′

0 is now block diagonal, we may again apply the lemma to see that for a polycrystal made
using C ′

0, the effective tensor (C ′
0)

∗ is block diagonal. For the polycrystal made using C0 we may then write C∗
0 as

C∗
0 =

⎡
⎣C∗

0 0 c∗
0

0 C∗
0 0

c∗
0 0 γ ∗

0

⎤
⎦

where if

C0I =
[
κ0 + υ0 0

0 κ0 − υ0

]
and c0 =

[
α0 + ζ0 0

0 α0 − ζ0

]
then

c∗
0 = α0I + ζ0

υ0

(
C∗

0I − κ0I
)

and γ ∗
0 = γ0 + ζ 2

0

υ2
0

(〈
C∗

0I, I
〉 − κ0

)
(42)

This result was shown for the isotropic case by Hashin [11] and generalized by Schulgasser [12], both in context of ther-
moelasticity.

In particular, if C0 sends scalar matrices to scalar matrices, i.e. if υ0 = 0, then [4] tells us that C∗
0 does as well and

κ∗ = κ0. In order to establish (41) we will need c0 = α0I. In this case, (42) become

c∗
0 = α0I and γ ∗

0 = γ0 (43)

Furthermore, if the texture of the polycrystal is statistically isotropic, then, taking advantage of (2) on the C-block, we have
(43) and

C∗
0 = I

√
det C0

Of course this also holds for the special case when C0 itself is scalar. Tensors satisfying all of these conditions, i.e. tensors
such that

υ0 = ζ0 = 0 and C0 = ρ0I

represent materials that are tetragonal. Such materials have a fourfold rotational symmetry about the transverse axis. The
above then tells us that the effective tensor of a fiber-reinforced polycrystalline composite made with one tetragonal material
will itself be tetragonal and

κ∗ = κ0, α∗ = α0, ρ∗ = ρ0, and γ ∗ = γ0
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