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The simplest system where the microscopic physical nature of thermodiffusion can be
understood theoretically is a binary mixture. The case of a liquid mixture is considered
here, starting from the equilibrium state such as described by thermodynamics. Under a
uniform temperature, gradients of composition and/or pressure bring about a non-
equilibrium state where local enthalpy is not minimum and/or local entropy is not
maximum. The gradients of enthalpy and entropy define a thermodynamic force which is
shown to drive composition and pressure diffusions. The thermodynamic force considered
in this paper has the physical dimension of a force, it is defined per particle, it is invariant
under gauge transformations of enthalpy and entropy and lastly it obeys Newton’s third
law. Under a non-uniform temperature, it is shown that such a thermodynamic force does
not account for thermodiffusion. The thermodiffusive force is of a non-thermodynamic
essence. The kinetic-theory account of the transport coefficients is examined in mixtures
of long macromolecules with small solvent molecules.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Thermodiffusion was discovered more than 150 years ago [1,2], but the frequent meetings held on thermodiffusion show
that a simple explanation is still lacking in the liquid state. In the gaseous state, thermodiffusion is accounted for by the
Chapman–Enskog solution to the Boltzmann kinetic equation [3–5], yet the case of polyatomic molecules is still under
study [6]. This contribution focuses on the simplest physical system – a binary liquid mixture – in order to bring out simple
theoretical ideas. A suspension of colloidal particles in a unary liquid is not a binary mixture in the thermodynamic sense
because a suspension consists of two phases (liquid and solid) instead of one, so that different thermodynamic tools are
called for [7]. Therefore, suspensions are not considered herein but they are referred to in Section 5 where very asymmetric
binary mixtures are envisaged.

The paper has been organised as follows. Section 2 recalls how the interdiffusion current density in a binary mix-
ture arises in describing the kinetics of mixing or unmixing. Section 3 deals with interdiffusion caused by a gradient of
composition (“ordinary diffusion”) or of pressure (“barodiffusion”). Both phenomena can be accounted for by means of a
thermodynamic driving force (derived from the thermodynamic functions of the mixture) and the account given in Section 3
is equivalent to the one of Landau and Lifshitz [8]. The nexus of the paper is Section 4 where it is argued that interdif-
fusion caused by a temperature gradient cannot be accounted for by a thermodynamic force because the two sides of the
force, energetic and entropic, cancel each other exactly as a consequence of double gauge invariance, previously noticed
in a study of thermoelectric effects [9]. The thermodiffusive driving force thereby calls for a kinetic coefficient, while the
response to the total force requires another kinetic coefficient, namely mobility. The kinetic theory of the coefficients is the
subject of Section 5, where the issue is: may we ignore correlations between two-body molecular encounters (i.e. assume
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the Stoßzahlansatz to hold) or not? We proceed inductively from the available experimental evidence; dilute solutions of
long polymer chains provide a clue. Section 6 summarizes the main points.

2. Absolute transport and relative transport

The continuity equations (∂nA,B/∂t) + div jA,B = 0 expressing local conservation of particles involve the number density
nA (nB) and number-current density jA (jB) of species A (B). Transport velocities uA and uB are associated to those current
densities through jA,B = nA,BuA,B; they are mesoscopic ensemble averages. From the transport velocities of A and B, one can
define an overall velocity of particle (u) or mass (v) transport,

u = xAuA + xBuB or v = ωAuA + ωBuB (1)

where xA = nA/(nA + nB) is the particle fraction, ωA = mAnA/(mAnA + mBnB) is the mass fraction, mA is the mass of A, and
likewise for B. The velocity u or v is an absolute velocity in the kinematic sense. The other combination of the transport
velocities is the relative velocity uB − uA of component B with respect to component A.

The evolution of composition (∂xB/∂t) = (nA + nB)−1[xA(∂nB/∂t) − xB(∂nA/∂t)] is obtained from the continuity equations
where jA,B = nxA,BuA,B and n = nA + nB. A similar calculation yields (∂ωB/∂t). It is found that

n

(
∂

∂t
+ u · ∇

)
xB + div JB = 0 or ρ

(
∂

∂t
+ v · ∇

)
ωB + divϑB = 0 (2)

where ρ = mAnA + mBnB is the mass density, ∇ = ∂/∂r is the gradient operator and

JB = nxAxB(uB − uA) or ϑB = ρωAωB(uB − uA) (3)

is the particle or mass interdiffusion current density. The mixing/unmixing of A and B only involves the relative velocity
through JB or ϑB. That velocity is intrinsic, i.e. observer-independent. The absolute transport velocity u or v, which depends
on the observer through the choice of a frame of reference (rigid coordinate system), is unrelated to the mixing or unmixing.
Accordingly, the absolute current density nu = jA + jB or ρv = mAjA + mBjB cannot play any role in the kinetics of mixing.
The mass-transport velocity v is governed by the Navier–Stokes equation [8,10].

It is worth remarking that the interdiffusion current density cannot serve to express conservation of either B or A,
for (∂nB/∂t) + div JB = −n div(xBu) does not vanish. In like manner [10,11], introducing the advective derivative D/Dt =
∂/∂t + u · ∇, there is a “source” term in:

DnB

Dt
+ div JB = −nB div u (4)

The “source” term in Eq. (4) is fake since B is conserved. Therefore JB/nB = uB − u cannot be thought of as the ensemble
average of the peculiar velocity of species B defined as the velocity of the molecule with respect to coordinates moving with
the number-average velocity u (formula 7.2-5 in [12]). This comes about because the non-vanishing divergence of u forbids
considering a coordinate system of local velocity u (with respect to the laboratory) as a frame of reference in the sense of
kinematics. The divergence of the velocity field u(r, t) or v(r, t) embodies the deformable nature of the medium [10,11].

3. Interdiffusion as the kinetics of mixing: isothermal case

3.1. Interdiffusion driven by composition and pressure gradients

In non-equilibrium thermodynamics, the interdiffusion current density is written as a linear combination of the gra-
dients of the independent intensive state variables, namely pressure p, temperature T and composition xB (for JB) or ωB
(for ϑB) [8]. Interdiffusion due to ∇xB is often called ordinary diffusion while interdiffusion due to ∇p is called pressure
diffusion or barodiffusion. In Section 3 temperature is taken to be uniform (∇T = 0).

Consider first pressure diffusion. It drives each component toward places of lower pressure through the buoyancy force
−vA∇p or −vB∇p, where vA,B = (∂ gA,B/∂ p) is the partial volume of A or B (per molecule) and gA,B is the partial Gibbs
energy (chemical potential) of A or B (per molecule). The relative transport of B with respect to A is driven by the differential
force −(vB − vA)∇p = −(∂2 g/∂ p∂xB)∇p, where g = xA gA + xB gB is the Gibbs energy per molecule. The component of larger
partial volume will concentrate in the places of lower pressure.

The upshot of ∇p is to filter out (partially unmix) components A and B according to their partial volumes: a compo-
sition gradient ∇xB grows up. This in turn affects interdiffusion since gA and gB depend on xB. Ordinary diffusion drives
components A and B through the forces −(∂ gA/∂xB)∇xB and −(∂ gB/∂xB)∇xB. The relevant force driving relative transport
of B with respect to A is the differential force −[(∂ gB/∂xB) − (∂ gA/∂xB)]∇xB = −(∂2 g/∂x2

B)∇xB. As the thermodynamic
stability of the mixture requires (∂2 g/∂x2

B) > 0, the differential force opposes the growth of ∇xB. Whereas pressure diffu-
sion causes unmixing, ordinary diffusion causes mixing. In a steady state involving both pressure and ordinary diffusions,
−(∂2 g/∂ p∂xB)∇p − (∂2 g/∂x2

B)∇xB = 0, i.e. −∇gBA = 0, where the subscript BA henceforth denotes the difference (here
gB − gA) between the partial thermodynamic functions of B and A.
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No external force field such as gravity g has been included in this picture. That field adds up the forces mAg and mBg
and entails a sedimentation kinetics where the component i of smaller partial specific volume vi/mi tends to concentrate
at lower locations [13].

3.2. Thermodynamic driving force

It is possible to write g = h− T s where s = −(∂ g/∂T ) is the entropy per molecule. The tendency to minimizing the Gibbs
energy g stems from the universal competition of energy h and entropy s [14] occurring under constant (here, spatially
constant) temperature. (Since we are not considering that the volume of the container has a given value, enthalpy h is used
instead of internal energy.) The driving force −∇g is a thermodynamic force in that it has two sides: one is mechanical
(derived from energy h), whereas the other is unmechanical (derived from entropy). Statistical-thermodynamically speaking,
the latter side of the force is formally proportional to Boltzmann’s constant k [14]. In the binary case considered herein,
a molecule A is apportioned an enthalpy hA and an entropy sA, and likewise for B, so that h = xAhA + xBhB and s =
xAsA + xBsB. The corresponding thermodynamic forces acting upon A and B obey Newton’s third law since the force per
unit volume, whether enthalpic or entropic, vanishes as the result of the Euler identity linking the partial thermodynamic
functions, namely:

nA(−∇hA) + nB(−∇hB) = 0 (5)

nA(T ∇sA) + nB(T ∇sB) = 0 (6)

As remarked by de Groot [15], when the Gibbs energy per particle and other functions of thermodynamics are allowed
to depend on position, (non-equilibrium) thermodynamics becomes a field theory. Enthalpy and entropy give rise to force
fields driving the particles. In the next section, we remark that enthalpy and entropy actually are gauge fields, and gauge
invariances have to be ensured in order to ensure the meaningfulness of the thermodynamic force. We only consider global
gauge transformations whereby the enthalpy or entropy per particle is shifted by the same amount at all locations.

4. Thermodiffusion and the “third side of the force”

It is henceforth considered that a temperature gradient is present. A problem arises if the response JB is written as a
linear combination of the “driving forces” −∇gBA and ∇T , namely:

JB = α(−∇gBA) + β∇T (7)

The problem is that −∇gBA has no physical meaning, because it is not invariant under a change of the entropy gauge s →
s + s0: as entropy is gauged differently, β → β + αs0 is modified. Note that s0 is independent of position so that the gauge
transformation is global, not local; but s0 may be chosen arbitrarily large. Therefore, calling α and β phenomenological
coefficients is misleading. Because it is reliant on the choice of a gauge for entropy, the coefficient β is not the reflection of
a phenomenon.

Likewise, the “driving force” −∇(gBA/T ) is unphysical because it is not invariant under a change of the energy gauge
h → h + h0 (h0 is independent of position r and time t and can be arbitrarily large). If JB is written as a combination of
−∇(gBA/T ) and ∇(1/T ), namely:

JB = a

[
−∇

(
gBA

T

)]
+ b∇

(
1

T

)
(8)

the coefficient b depends on the choice of a gauge for energy: h → h + h0 entails b → b + ah0. Thus, the coefficient b is not
genuinely phenomenological.

The only gauge-invariant thermodynamic force is −∇hBA + T ∇sBA = −∇gBA + sBA∇T [9,16]. Expressing that force as a
linear combination of the gradients ∇xB, ∇p and ∇T yields no ∇T term as a result of the identity:

−
(

∂h

∂T

)
+ T

(
∂s

∂T

)
= 0 or dh|p,xB = T ds|p,xB (9)

The identity embodies the ambivalent (energetic and entropic) status of heat. The absence of a ∇T term in −∇h + T ∇s
means that no force built from thermostatic quantities (i.e. quantities derived from g) can drive thermodiffusion, it being
understood that a thermodynamic force must be gauge-invariant with respect to both energy and entropy gauges. To ensure
gauge invariances, one must write, instead of (7) or (8):

JB = α(−∇hBA + T ∇sBA) + β∇T (10)

Many works on thermodiffusion refer to de Groot and Mazur’s book [17]. The authors make use of an isothermal gradient
of the chemical potential, e.g. ∇T gA, where ∇T is defined as ∇ − ∇T (∂/∂T ), see also Eq. (5.5) of [18]. Obviously, for
mathematical reasons, ∇T gA = (∂ gA/∂xB)∇xB + (∂ gA/∂ p)∇p has no contribution from ∇T , and ∇T gA = ∇T hA − T ∇T sA is
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invariant under both energy and entropy gauge transformations. Our point in this paper is one of physics: we have shown
that ∇hA − T ∇sA is a linear combination of ∇xB and ∇p without ∇T . This is a physical result inferred from relation (9).
Because the thermodynamic force −∇hA + T ∇sA has no component along ∇T , it can be replaced by −∇T hA + T ∇T sA =
−∇T gA such as used in [17].

Given that JB = nxAxB(uB − uA), Eq. (10) is tantamount to stating that uB − uA is driven by a three-sided force:

uB − uA = μ

[
−∇hBA + T ∇sBA − h∗

(∇T

T

)]
(11)

where μ = α/nxAxB and μh∗/T = −β/nxAxB. In (11), μ is a mobility coefficient (velocity response to a negative energy
gradient) and thermodiffusion is accounted for by a “third side of the force” involving a non-thermodynamic energy h∗
(heat of transport). Just as any force, the thermodiffusive force −h∗(∇T /T ) is a time-rate of momentum transfer. That force
stems from the imbalance in molecular transfers of momentum between A and B caused by the anisotropy of the relative-
momentum distribution function [16]. The anisotropy is due to the temperature gradient. Onsager’s reciprocity theorem
shows that h∗ is related to a covariance of enthalpy and velocity [16], but that feature does not make the calculation of
h∗ significantly easier. As Wannier [19] remarked, even though a transport coefficient can be related to a time-dependent
feature of the equilibrium state (for instance, in a dilute regime, μ is related to the autocorrelation of velocity), the compu-
tation of the coefficient is not facilitated thereby as much as might have been expected.

Before dealing with the coefficients μ and h∗ in the next section, we rewrite (11) as:

0 = −
(

uB − uA

μ

)
+

[
−∇hBA + T ∇sBA − h∗

(∇T

T

)]
(12)

Eq. (12) can be envisioned as the subtraction of two force-balance equations, namely

0 = −xA

(
uB − uA

μ

)
+

[
−∇hB + T ∇sB − xAh∗

(∇T

T

)]
(13)

0 = −xB

(
uA − uB

μ

)
+

[
−∇hA + T ∇sA + xBh∗

(∇T

T

)]
(14)

Eq. (13) expresses the view that a three-sided (energetic, entropic and thermodiffusive) driving force acting on B is balanced
by a friction force linear in the relative transport velocity and in the particle fraction of the other component A. Similarly,
Eq. (14) is the force-balance equation for A which undergoes a friction force linear in xB so that the two frictions satisfy
Newton’s third law. This is the Maxwell–Stefan picture of interdiffusion where 1/μ is the so-called coefficient of resistance
(Widerstandscoefficient) and the motion is overdamped (accelerationless) [11,16,20].

At this juncture, we remember that the original description of Maxwell and Stefan (devised before Gibbs invented the
chemical potential) involved the partial pressures pA and pB such that ∇pA = nA∇gA and ∇pB = nB∇gB in an isothermal
ideal gaseous mixture [20]. Morozov’s approach to thermodiffusion [21] introduces “partial pressures” pA and pB in a binary
liquid after the theory of Bearman and Kirkwood [18]. The pA in Eq. (5.3) of [18] is defined from the isotropic part of the
partial stress tensor of component A, and likewise for B. Therefore, in [18,21], pA and pB are defined as hydrodynamic, not
thermodynamic, quantities (although the partial stress tensors do not exist in the conventional hydrodynamics of Navier and
Stokes [8]). pA and pB would be thermodynamic quantities if they were derived from the partition function (or a Legendre
transform thereof) of equilibrium statistical mechanics. But Eq. (5.3) of [18] shows that this is not so in Kirkwood’s statistical
mechanics of transport processes. The thermodynamic definition of partial pressures from the chemical potentials is given
by Eqs. (7-155)–(7-156) of Kirkwood’s textbook [22]. It is seen in [22] that pA + pB is equal to p only in an ideal mixture,
whereas pA + pB is always equal to p in [18]. Accordingly, nowhere in the paper by Bearman and Kirkwood does the
phrase “partial pressure” ever appear. Their theory is clearly hydrodynamic in essence, unlike the modern Maxwell–Stefan
approach based upon gradients of thermodynamic quantities supplemented with a non-thermodynamic thermodiffusion
term [20]. There is no simple link between Morozov’s hydrodynamic approach and the present one.

5. Obtaining the kinetic coefficients

The coefficients μ and h∗ in Eq. (12) cannot be obtained from classical or statistical thermodynamics. They have to
be calculated from kinetic theory. Consider first μ. It can be expressed in two ways, either as a bare (“Boltzmann”) or a
renormalized (“Stokes”) coefficient, according to whether uncorrelated or correlated two-body encounters (A–A, A–B or B–B)
are taken into account. Taking A and B to be similar in size and mass, rough expressions of the bare (μb) and renormalized
(μr) coefficients are:

μb ≈ [
n1n−2/3m(kT /m)1/2]−1

and μr ≈ (
4πηn−1/3)−1

(15)
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where the typical size of a molecule in the liquid state is taken as ≈ n−1/3, the momentum transfer scattering cross section
in a two-body encounter is taken as ≈ n−2/3, the typical mass is m, and η is the shear viscosity of the mixture. Taking
values relevant to a water–ethanol mixture at ωB ≈ 0.5 under standard conditions, we compute:

μb ≈ 3 × 1013 s/kg and μr ≈ 1010 s/kg (16)

Based on these estimates, the correlation of two-body scattering events renormalizes mobility by a factor of ≈ 3000. The
experimental value deduced from the mutual diffusion coefficient DAB = μxAxB(∂2 g/∂x2

B) is found to be μ ≈ 1011 s/kg [23].
As μ is closer to μr, the correlation of two-body scattering events renormalizes mobility by a factor of ∼ 300. (As far as
nomenclature is concerned, some authors [24] label μb as “kinetic” and μr as “hydrodynamic” because viscosity is involved
in μr.)

What about h∗? A theoretical expression of h∗ obtained from bare kinetic theory [16] predicts that, for structureless
A and B particles, |h∗| is roughly equal to kT, which is consistent with experimental data [25]. In case that B is a long
macromolecule in a solvent A, the dissimilarity in size and mass is reflected in a large dimensionless parameter, e.g. the
number N of rigid (Kuhn) segments of B. Assuming them to be slender (Kuhn length l � radius a), B has 2N internal
degrees of freedom besides the three external ones. The rough result |h∗| ≈ kT , pertinent to no internal degree of freedom,
is not expected to hold. In case that A is a good solvent of B, experiments performed in the dilute regime show that
(i) μ ≈ (4πηlN0.6)−1 and (ii) h∗ ≈ ±N0.6kT in the limit 2N � 1 [26,27]. (We disregard a non-dimensional system-dependent
factor of order l/a.) To interpret those experimental facts, we rewrite the force-balance equation (12) as:

0 = − 1

μ
(uB − uA) + (mB − mA)g − h∗ ∇T

T
(17)

where an external force (gravity) has been included for later comparison purposes. Neither kinetic coefficient in Eq. (17)
is equal to its bare value. Consider first the friction coefficient 1/μ. The friction force undergone by the chain moving
with respect to the solvent is not the sum of the friction forces undergone by the segments, as the latter sum is N times
≈ −4πηl(uB − uA). So the actual 1/μ is N−0.4 times the bare friction coefficient ≈ 4πηlN (“bare” is meant here with
respect to the Kuhn segment). Because the friction exerted on the chain is not the uncorrelated superposition of the frictions
exerted on the segments, the friction force (or coefficient) is renormalized by the hydrodynamic coupling between segments.
That coupling means the breakdown of the Stoßzahlansatz: the approximation of molecular chaos (statistically independent
binary encounters) is inappropriate here.

Consider now the thermodiffusive force coefficient h∗ of the chain. The actual h∗ ≈ ±N0.6kT is N−0.4 times the bare
coefficient ≈ ±NkT obtained by adding up the thermodiffusive forces ≈ ∓kT(∇T /T ) undergone by each segment. Therefore,
also the thermodiffusive force is renormalized by the correlation of two-body collisions. The assumption of molecular chaos,
predicting the mere superposition of N forces ≈ ∓kT(∇T /T ) each, is wrong. In contradistinction, in the limit N � 1, the
external force in Eq. (17) is the mere superposition of N contributions mBg/N from each Kuhn segment. The same is true
(in the dilute-chain limit NxB � 1) of the barodiffusive force −(vB − vA)∇p but not of the diffusive force −(∂2 g/∂x2

B)∇xB =
−(kT /xAxB)∇xB.

The friction and thermodiffusive forces originate in momentum transfers during molecular encounters. The statistical
correlation of the encounters causes the non-superposition of the momentum transfer rates. As experiments show that
1/μ and h∗ scale in the same way with respect to N , the mechanisms of momentum transfer underlying friction and
thermodiffusion are governed by the same correlations. The ratio h∗μ, which is T times the thermodiffusion coefficient
of the polymer/solvent mixture, is not affected by the correlations. Consequently h∗μ, which can be viewed as either
(N0.6μ)(h∗/N0.6) or (Nμ)(h∗/N), behaves as a bare coefficient. This was used in [27] to calculate h∗μ as a function of the
physical parameters of the mixture, from the bare quantities of the Kuhn segment. This amounts to effectively ignoring
the correlations (hydrodynamic coupling) between different Kuhn segments. (Note that, like Brochard [28] and unlike Yang
and Ripoll [29], I use the phrase “hydrodynamic coupling” rather than “hydrodynamic interaction”. We have to do with a
statistical correlation, not a physical interaction. Physical interactions are short-ranged whereas statistical correlations typical
of the liquid state – where the Stoßzahlansatz breaks down – can be long-ranged.)

Can one theoretically justify the property (inferred from experiment) that 1/μ and h∗ are renormalized in the same way
as N � 1? We mention the earliest and latest attempts. Brochard and de Gennes [30] invoked the reciprocity between the
transports of matter and heat to show that h∗μ is unaffected by the correlations. But they did not check that their choice
of gradients was consistent with Onsager’s theorem. Yang and Ripoll [29] state that the thermodiffusive force undergone by
a monomer (in the case l = a) is hydrodynamically renormalized by the forces undergone by the other monomers. But the
fact that the forces are generated by a temperature gradient seems to play no role in their reasoning.

The thermodiffusive behaviour of a long macromolecule in a good solvent, such as pictured here, is similar to the
behaviour of a large solid sphere suspended in a thermally inhomogeneous unary fluid, such as theoretically investigated by
Goldhirsch and Ronis [24]. They found that:

(i) diffusivity (or μ) and the thermophoretic force are renormalized by correlated collisions;
(ii) the thermophoretic velocity (proportional to the thermodiffusion coefficient in the large-sphere or long-chain limit [31])

is not renormalized, i.e. it is given by bare kinetic theory.
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The authors reached their conclusions by showing that the same diagrams (of ring and repeated-ring correlated collisions)
were dominating the field-theoretic expansions of μ and h∗ .

The foregoing view of bare and renormalized quantities is not restricted to a long macromolecule in a good solvent.
In a theta solvent, one expects μ ∼ N−0.5 and h∗ ∼ N0.5 so that μh∗ ∼ N0 is the bare quantity at the scale of the Kuhn
length. Again, the facts that 1/μ and h∗ do not scale as N are evidences of correlation. While μ ∼ N−0.5 has been predicted
and observed long ago [32,33], recent observations of Rauch and Köhler [34] show that μh∗ ∼ N0.00−0.07 as N � 1 for
polystyrene in theta solvent conditions. This supports our expectation μh∗ ∼ N0.

6. Summary

In a gaseous binary mixture, thermodiffusion had not been observed before its theoretical prediction. The prediction did
not come from thermodynamics, but from kinetic theory in a model of light spheres dilute among heavy spheres [35,36].
Subsequently, the effect could be described only by means of the complicated Chapman–Enskog machinery [3–6] because
no thermodynamic explanation is possible. In this contribution, we argued that this is not only true in the gaseous state but
in the liquid state as well. The nexus of our argument is that, when the inhomogeneity of a mixture is due to a temperature
gradient, the energetic side of the thermodynamic force (tending to decrease h) is exactly cancelled by the entropic side
of the thermodynamic force (tending to increase s). Therefore, if the interdiffusion current density is thought of as a linear
response to the difference of forces on the A and B components, with a friction coefficient, and if the force difference is
taken as a linear combination of ∇xB, ∇p and ∇T , then the coefficients of ∇xB and ∇p are thermodynamic quantities
whereas the coefficient of ∇T is not.

Once the kinetic essence of the thermodiffusive force is recognized, the next question is: can one use bare kinetic theory
involving uncorrelated binary scatterings only, or should correlation between binary scatterings be considered? The first
answer is correct in a dilute gas, i.e. the Stoßzahlansatz holds. In a liquid, it is incorrect for μ, but it seems that h∗ is
calculable within bare kinetic theory for monatomic molecules. Long macromolecules with a large number of degrees of
freedom show that the thermodiffusive force coefficient h∗ , just like the friction force coefficient 1/μ, is renormalized by
the correlation of binary collisions. Yet the ratio of the two force coefficients, and thence the thermodiffusion coefficient, is
accountable for within bare kinetic theory.
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