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Magnetic fluids, also called ferrofluids, are binary liquids consisting of magnetic nanopar-
ticles being dispersed in a carrier liquid. They show very strong thermodiffusive behaviour
with a Soret coefficient (ST ) of approximately 0.16 K−1 without a magnetic field. The de-
pendence of the Soret coefficient on a magnetic field can lead to even higher values, and
to a change in the coefficient’s sign. This change in the direction of movement of the
nanoparticles strongly affects the onset of thermomagnetic convection. A linear stability
analysis reveals that thermodiffusion with a positive sign of the Soret coefficient enhances
the onset of convection, whereas negative coefficients starting at about −0.001 K−1 sup-
press convection at all.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Magnetic fluids are usually composed of magnetite or cobalt nanoparticles dispersed in a carrier liquid such as kerosene,
oil or water. The particles have diameters close to 10 nm, and are coated with a surfactant layer of about 2 nm [1,2]. The
surfactant is needed to keep the particles stably dispersed, and is matched with the specific carrier fluid. In the case of a
zero magnetic field, the fluid does not behave magnetically, since the magnetic moments of the single-domain particles are
distributed stochastically. When the fluid is exposed to an external magnetic field, these magnetic moments align with the
field direction so that the fluid becomes magnetised. This behaviour is called super-paramagnetic, and is characterised by
the magnetisation curve indicating the dependence of the magnetisation on the strength of the magnetic field [1,2]. This
curve can be measured experimentally and provides characteristic values of the magnetic fluid such as the average magnetic
diameter of the particles, the saturation magnetisation, and the volume concentration derived from the latter.

Thermomagnetic convection in that context denotes a transport phenomenon driven by a spatially varying magnetisation
in a layer of a magnetic fluid. A vertical variation is caused by a temperature difference applied to the upper and lower
boundaries of the layer. The occurring gradient in the magnetisation results in a gradient in the internal magnetic field of
the fluid. A small perturbation in the fluid such as the adiabatic dislocation of a volume element then leads to a difference
in the magnetisation of the dislocated element with its surrounding. This difference interacts with the internal magnetic
field gradient and the resulting force is directed in favour of the direction of the initial perturbation [3–7]. Measurements
[6,7] have been carried out with the aim to determine the critical temperature difference needed at fixed magnetic field
strengths to start convection in a layer of ferrofluid. The onset is detected by measuring the heat flux over the layer’s upper
boundary. A change in the mechanism of heat transport from conductive to convective yields an enhanced flux [4–6]. At
field strength of 25 kA/m and a parallel orientation of the magnetic field to the temperature difference, convection sets in
at a lower critical temperature difference than in the zero field case for an oil-based ferrofluid [6]. Therefore, it is assumed
that the magnetic field enhances convection. In the same setup using a kerosene-based ferrofluid, suppression of convection
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was detected [7]. Since fluid parameters such as viscosity are not notably dependent on the magnetic field for both tested
fluids, one has to find a temperature-driven transport process opposing the convective motion in one case and enhancing it
in the other.

Such a transport process can be thermodiffusion, which is driven by a temperature gradient, causing a movement of
the particles of a binary liquid either to the warmer side of the layer, characterised by a negative Soret coefficient or to
the colder side, indicated by a positive Soret coefficient. Measurements of the separation process in ferrofluids are usually
done by thermogravitational columns [8–10] or horizontal thermodiffusion cells [11]. The concentration gradient established
due to the temperature gradient cannot be resolved in detail; the measurement principle is based on determining the
average change in concentration of a fluid volume above and below the region of separation [8–11]. While the separation
in the thermogravitational column takes place in the horizontal direction, supported by convection [8–10], the separation
direction in the thermodiffusion cell is vertical and convection is absent [11]. The detection of the concentration in the fluid
volumes is done by sensor coils. Their inductance is sensitive to the amount of magnetic material inside. A basic design
for a horizontal cell was used by [11] to perform the first magnetic-field-dependent Soret coefficient experiments. Using
a kerosene-based ferrofluid with a volume concentration of 2% of magnetite particles [11], a positive Soret coefficient was
detected for the case when the magnetic field is aligned perpendicular to the temperature gradient. The magnitude of the
coefficient was slightly above the non-magnetic value of 0.16 K−1. Orienting the magnetic field parallel to the temperature
difference, a negative Soret coefficient was measured [11]. For the strongest tested magnetic field, its absolute value of
|−0.6| K−1 was four times higher than the non-magnetic value. A shift from a positive Soret to a negative Soret coefficient
took place at field strength of about 25 kA/m [11].

The general interaction between thermodiffusion and convection in ferrofluids has already been proofed experimentally
in zero magnetic field in [12]. Therefore, further investigations on that subject including magnetic fields as described in the
following are of high interest.

2. Thermomagnetic convection

2.1. Governing equations

As setup for the investigation of thermomagnetic convection, a horizontal layer of ferrofluid with a vertical thickness h
is considered. The layer is bounded by impermeable walls at z = ±h/2, and the fluid is regarded as incompressible with ρ
being its density, and ν(η) its kinematic (dynamic) viscosity. The equations describing this system are based on the balance
equations of mass, momentum, heat, and concentration, and additionally on the Maxwell equations for the magnetic field
strength H and flux B . The dimensionless equations in the Boussinesq approximation [13,14] then read:

div(v) = 0 (1)

∂v/∂t + v grad(v) = −grad(p) + Ra Pr
(
(T − T0) − Ψ (C − C0)

) + Ram Pr grad(H B) + Pr�v (2)

∂T /∂t = �T (3)

∂C/∂t = Lem(�C + �T ) (4)

div(B) = 0 (5)

rot(H) = 0 (6)

where the temperature T is scaled by �T , the temperature difference between the two boundary layers, the concentration C
by �T kTm/T0, the velocity v by κ/h, all lengths by h, the time t by h2/κ , the pressure p by κ2ρ/h2, the magnetic field by
K�T , and the magnetic flux by μ0 K�T . K denotes the pyromagnetic coefficient, κ is the heat coefficient, Lem = Dm/κ is
the magnetic Lewis number, with Dm being the magnetic molecular diffusion coefficient, while kTm = ST T0C0(1 − C0). C0 is
the dimensionless initial mass concentration of the nanoparticles in the fluid, T0 the dimensionless initial homogeneous
temperature. The coefficient Ψ is called separation rate and is defined by S T βC /βT . The Rayleigh number Ra is defined as
(βT gh3�T )/(κν), with βT being −1/ρ0∂ρ/∂T . The Prandtl number Pr denotes ν/κ . The magnetic Rayleigh number Ram
reads (μ0 K 2�T 2h2)/(κη). The equations of state for the density ρ = ρ0(1−βT (T − T0)+βC(C −C0)), with βC = 1/ρ0∂ρ/∂C ,
and the magnetisation M = M0 + ∂M/∂T (T − T0)+ ∂M/∂C(C − C0) complement the hydrodynamic and magnetic equations.

The system of equations is finally completed by the boundary conditions. There are the no-slip condition for the velocity,
the condition of fixed temperatures at the walls and the impermeability for the mass flux:

v|z=±0.5 = 0 (7)

T |z=−0.5 = T0 + 0.5, T |z=+0.5 = T0 − 0.5 (8)

(∂zC + ∂z T )|z=±0.5 = 0 (9)

The boundary condition for the magnetic field demands equality of the tangential components on both sides of the hori-
zontal boundaries, whereas in the case of the magnetic flux, equality of the normal component is claimed. This system of
equations is used for the linear stability analysis, described in the following.
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2.2. Linear stability analysis

For carrying out a linear stability analysis of the system described above, the ground state of this system has to be
known. It is characterised by a fluid at rest, a linear temperature gradient, and usually by the conductive state of the
concentration. But since the concentration profile establishes much slower than the temperature gradient, the concentration
is regarded as constant, using the initial homogeneous concentration C0, according to [14]. Eqs. (10) to (12) represent the
ground state:

v = 0 (10)

T = T0 − z (11)

C = C0 (12)

In the next step, small deviations from the ground state are considered. They are named Θ , δc, φ, and v and w for the
temperature, the concentration, the magnetic field potential, and the velocity itself and its z-component. After linearising
with respect to these deviations, the system looks like:

div(v) = 0 (13)

∂/∂t�w = Ra Pr
(
(∂xx + ∂yy)Θ − Ψ (∂xx + ∂yy)δc

)

− Ram Pr /(1 + χ)(∂xx + ∂yy)
(
∂zφ/(1 + χ) − Θ + ∂M/∂Cδc

) + Pr ��w (14)

∂Θ/∂t − w = �Θ (15)

∂δc/∂t = Lem(�δc + �Θ) (16)

div(B) = 0 (17)

with the free boundary conditions reading:

∂zz w = w = Θ = ∂zφ = ∂zδc + ∂zΘ = 0 (18)

In order to express the onset of convection by the Rayleigh number only, it is necessary to substitute the magnetic Rayleigh
number by an expression containing the thermal Rayleigh number. Following the suggestion in [3], Ram becomes M1 Ra,
with M1 = (μ0 K 2�T /h)/[(1 +χ)gρβT ]. The deviations are assumed to be of an exponential form in x, y, and t . The ansatz
for the z-dependence is chosen in such a way that the boundary conditions are fulfilled by the perturbed state. In summary
the ansatz for the deviations explicitly reads:

w,Θ, δc ∼ exp(λt)exp(ikxx + iky y) cos(π z) (19)

φ ∼ exp(λt)exp(ikxx + iky y) sin(π z) (20)

Inserting (19) and (20) into the linearised equations and considering the case of marginal stability, i.e. λ = 0, the solu-
tion of the system of equations leads to an analytical expression for the Rayleigh number in dependence on the relevant
dimensionless system parameters Ψ, M1, M3 = (1 + M0/H0)/(1 + χ), and ∂M/∂C :

Ra = (
π2 + k2)3

/
[
k2(1 + Ψ + M1(1 + ∂M/∂C)

(
1 − π2/

(
M3k2 + π2)))] (21)

where k2 = (k2
x + k2

y) is the square of the wave number. This expression for the Rayleigh number is similar to the one by

Finlayson [3]. The explicit relation reads RaFin = (π2 + k2)3/[k2(1 + M1(1 − π2/(M3k2 + π2)))], the difference can be found
in the additional, thermodiffusion-related terms of Ψ , and ∂M/∂C , which are both proportional to the Soret coefficient, the
first one by definition, the latter due to scaling.

Eq. (21) can be plotted with respect to k2 for different Soret coefficients which are chosen on the basis of the coefficients
measured by [11] for magnetic fields up to 320 kA/m, see Fig. 1. Since coefficients M1 and M3 are functions of the magnetic
field, their dependence on the field strength is calculated and integrally averaged over the range from 0 to 320 kA/m. As
a result M1 can be approximated by 0.5, M3 by 1.1. As can be seen in Fig. 1, Soret coefficients stronger negative than
−0.001 K−1 lead to exclusively negative Rayleigh numbers, independent of the square of the wave number. Positive Soret
coefficients lead to positive Rayleigh numbers in the considered region of k2. The onset of convective motion for each Soret
coefficient is characterised by the minimum Rayleigh number, also called critical Rayleigh number. Its value for the range
of the magnetic Soret coefficient is plotted with respect to S T in Fig. 2. High positive Soret coefficients lead to low critical
Rayleigh numbers which enhance the onset of thermomagnetic convection. Excluding thermal diffusion by S T = 0 leads
to Racrit = 554. Soret coefficients close to −0.001 K−1 result in higher Rayleigh numbers up to 1587, and hence hinder
the onset of convection in comparison to the case of no thermal diffusion. Since Soret coefficients stronger negative than
−0.001 K−1 lead to negative Rayleigh numbers, convection is suppressed in this case.

The Rayleigh number shows a very distinct dependence on the Soret coefficient and especially on its sign. So that
thorough experimental investigations on thermal diffusion in magnetic fluids are inevitable.
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Fig. 1. The Rayleigh number as function of the square of the wave number for different Soret coefficients.

Fig. 2. The critical Rayleigh number versus the Soret coefficient.

3. Thermodiffusion

3.1. Experimental setup

In order to investigate the influence of thermodiffusion on the onset of thermomagnetic convection detailed material data
concerning the Soret coefficient and its dependence on magnetic field strength and direction is required. The experimental
setup has already been described roughly in the introductory part. Fig. 3 gives an overview of the setup. The fluid container,
where the actual separation takes place, is denoted by (1), the water baths (2) providing a temperature difference between
the upper and lower ends of the cylindrical fluid container. The concentration detection is carried out by the sensor coils (3),
wrapped around the fluid cell. Both coils are controlled independently. Fig. 4 shows a close-up of the fluid cell. It is 14 mm
high, and a double grid is located in its central part to reduce the effective height for the separation process to 1 mm,
which is the distance between the two grids. Additionally, thermomagnetic convection, even possible in a thermally stable
setup due to the cell’s height, can be excluded in this region [11]. Convection, appearing in the upper or lower container
part does not harm the experiment’s result, because the sensor coils only detect the average concentration in the whole
lower or upper fluid volume.

The detected average values for the magnetic material inside the coils are then used to calculate the Soret coefficient.
For that purpose a two-point calibration is always done before starting the actual separation experiment. The empty fluid
container is exposed to the temperature gradient. The inductance of the coils is determined over a few hours and then av-
eraged. The cell is then filled with the magnetic fluid and first exposed to the homogeneous initial temperature of 298.15 K.
When a stable value for the inductances of the coils is reached, the temperature gradient of 1 K/mm is applied, and reg-
istered for about 72 hours. It is assumed that the change in the inductance during the filling process is solely dependent
on the concentration of the magnetic nanoparticles in the fluid. Knowing the initial homogeneous concentration enables a
correlation between the inductance and the average concentration of the fluid volume.

Measuring the concentration when a magnetic field is applied needs a small adjustment of the measuring process. Since
the detection of the concentration of the nanoparticles is done by the magnetic fields of the sensor coils, those fields are
three to four orders of magnitude smaller than the external applied field, it is not possible to apply both fields – one for
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Fig. 3. Horizontal thermodiffusion cell, (1) fluid container, (2) tempering water baths, (3) magnetic-nanoparticle-sensitive sensor coils.

Fig. 4. Close-up of the fluid container, separated centrally by a double layer grid hindering convection to arise in the cell part where the separation takes
place.

the detection, one for the separation process – at the same time. This is why approximately every three hours the external
magnetic field is shut off in order to measure the concentration for about 10 minutes. The averaged inductance value of
these 10 minutes is used for the determination of the concentration at that point in time.

The separation is given by:

(C lo − Cup)/C0 = 4/(h − hgrid)ST D�T /ht (22)

according to [11], with Clo, and Cup denoting the lower and upper concentration in the fluid chambers, and hgrid denotes
the height of the double-layer grid (Fig. 4). The concentration difference is thereby measured, the temperature difference
as well as the geometric factor are known, and the molecular diffusion coefficient D can be calculated by the Batchelor-
corrected Einstein relation [15], see Eq. (26). This so-called separation curve (22) is based on the assumption that separation
only takes place between the two centrally placed grids. Due to the small height of 1 mm a stationary separation state is
established rather fast and a constant concentration gradient can be assumed. Solving the description of the concentration
profile in space and time for dilute binary fluids:

∂C/∂t = D div
(
grad(C) + ST C grad(T )

)
(23)

and additionally assuming that �C is much smaller than grad(C) and neglecting it for that reason leads to two different
expressions for the concentration at the grid boundaries, namely C lo = Clo(t) and Cup = Cup(t). The subtraction of these two
functions results in Eq. (22), then being used to determine the Soret coefficient from measured separation curves.
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Fig. 5. Magnetisation curves of the kerosene-based EMG, and the oil-based APG fluid.

3.2. Fluid characterisation

Two different industrial magnetic fluids have been used for experiments, namely an EMG and an APG fluid (Ferrotec).
The first one is a kerosene-based fluid, the second is oil-based, and both contain magnetite particles. The surfactant guaran-
teeing stability is unknown for both fluids. For the separation experiments as well as for the linear stability analysis of the
thermomagnetic convection several parameters of these fluids are needed, such as volume concentration, particle diameter,
viscosity, and density. Most of these parameters are provided by the magnetisation curves of the fluids, only viscosity is
measured separately with an Anton Paar rheometer.

Fig. 5 shows the two magnetisation curves, determined with a LakeShore vibrating sample magnetometer (VSM) equip-
ment. The saturation magnetisation Ms [1]

Ms = φc Md (24)

gives information about the particle volume concentration φc of the measured sample by knowing the saturation magneti-
sation of the bulk magnetite Md [1]. The inclination of the initial linear part of the magnetisation curve, also called initial
susceptibility,

χi = π/18φcμ0M2
dd3/(kBT ) (25)

provides the mean particle diameter d of the fluid [1], with kB being the Boltzmann constant. The EMG fluid is thereby
characterised by 8.67 vol% of magnetic particles of 11.6 nm in diameter referring to the magnetic core. The density is given
by 1.51 g/cm3. The APG fluid is less concentrated, with 6.63 vol% magnetite particles, with a similar diameter of 11.4 nm
as the particles in the EMG fluid. The density of the APG fluid can be determined to 1.44 g/cm3. Unfortunately, the mean
diameter derived from the magnetisation curve does not consider the polydispersity of the particle size. Therefore a size
distribution for the particles’ diameter is calculated according to [16] and [17] and an average diameter, taking into account
the volumetric distribution of the particles, is calculated to 10.4 nm in the case of EMG. The carrier liquid’s viscosity ηCL
necessary to calculate the diffusion coefficient by means of the Batchelor-corrected Einstein relation was calculated from
the ferrofluids viscosity (η = ηCL(1 + 2.5φc + 6.2φ2

c ) [18]), which was measured for zero magnetic field with a shear-rate
controlled Anton Paar rheometer. The relation reads:

D = (kBT0)/
(
6π(r + s)ηCL

)
(1 + 1.45φc) (26)

r + s denotes the sum of the particle radius and the surfactant layer thickness of 2 nm. The viscosity of the fluids for three
different temperatures is shown in Fig. 6. The APG fluid with 0.173 Pa s is about one order of magnitude more viscous
than the EMG fluid with 0.011 Pa s at T0 = 298.15 K. This directly affects the diffusion coefficient. For the same average
temperature in the separation experiments and similar particle diameters, the coefficient of the APG fluid (2.6×10−13 m2/s)
is about one order smaller than the one of the EMG fluid (3.9×10−13 m2/s), i.e. the APG fluid is expected to show a weaker
separation signal in the separation experiments. Since the magnetic-field dependence of the diffusion coefficient cannot be
determined experimentally so far, and since theoretical assumption by [11] and [19] lead to unreasonable results for the
given fluid parameters, the coefficient will be held constant even under the application of a magnetic field.

3.3. Separation experiments

First, the experimental setup has been tested for fluid sensitivity and temperature stability. For that purpose, three
different, non-magnetic, measurements have been carried out. The EMG’s carrier liquid, kerosene, has been measured, to
determine the temperature sensitivity of the sensor coils. In addition to that, a separation experiment has been done with
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Fig. 6. Viscosity of the EMG and the APG fluid at 291.15 K, 298.15 K, and 305.15 K.

Fig. 7. Change in the difference of the relative inductance of the lower and upper sensor coil over time for kerosene, without magnetic particles, for the
APG fluid with about 6.6 vol%, and the EMG fluid with about 8.7 vol% of magnetic material.

the APG and EMG fluids. All the measurements were carried out with an applied temperature gradient of 1 K/mm. In Fig. 7,
the relative inductance difference of the three measurements is plotted over the separation time. For each coil the induc-
tance is calculated normalised by the initial inductance at the beginning of the separation experiment. Then the difference
of the relative inductance of the upper coil is subtracted from the one of the lower coil, which gives � inductancerel.

The curve for pure kerosene shows that the coils are not affected by a noticeable temperature-dependent behaviour, so
that a change in the inductance is solely expected to appear due to the movement of magnetic material. The difference
between the inclination of the two separation curves for the EMG and APG fluid strikes most. The signal of the EMG fluid is
of one order of magnitude higher than of the APG fluid. This can be mainly explained by the different diffusion coefficients
caused by a lower viscosity, resulting in a higher diffusivity of the EMG fluid. To facilitate the measurement and reduce a
possible influence of the temperature, the following separation experiments for non-zero magnetic field are only carried out
with the kerosene-based magnetic fluid.

The separation curves in Figs. 8 and 9 show the concentration difference of the lower and the upper fluid container
normalised by the initial homogeneous concentration of the fluid over time. Applying the theoretical separation curve from
Section 3.1 to the data shown, an effective Soret coefficient can be calculated using the geometry data of the measurement
cell as well as the fluid parameters presented in 3.2. Fig. 10 compares the current data for the magnetic Soret coefficient
with data obtained in [11]. Particularly interesting in the measurements in [11] is that a change in the sign of the Soret
coefficient with increasing magnetic field strength can only be observed for parallel orientation of the magnetic field and
the temperature gradient. In case of the perpendicular orientation, thermodiffusion is slightly enhanced by the magnetic
field, but the particles always move to the colder side of the fluid layer, i.e. the Soret coefficient is always positive. For the
fluid tested here, a change in the direction of the movement of the particles appears for both field orientations, namely
between 50 kA/m and 100 kA/m, i.e. the Soret coefficient changes its sign. The separation in the perpendicular case is
thereby significantly stronger, and the absolute value of the Soret coefficient is four times larger than in the parallel case.
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Fig. 8. For the magnetic field aligned parallel to the temperature gradient, the difference in the concentration between the lower and upper fluid volume
normalised by the initial homogeneous concentration is plotted. The fluid EMG is used and grad(T ) = 1 K/mm.

Fig. 9. For the magnetic field aligned perpendicular to the temperature gradient, the difference in the concentration between the lower and upper fluid
volume normalised by the initial homogeneous concentration is plotted. The fluid EMG is used and grad(T ) = 1 K/mm.

Fig. 10. Soret coefficient in the EMG fluid for field strengths of 0 kA/m, 40 kA/m, 100 kA/m, and 320 kA/m in both field orientations (parallel and per-
pendicular to the temperature gradient): full symbols; Soret coefficient for a different kerosene-based magnetic fluid for both field orientations: empty
symbols [11].
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4. Conclusion

By means of a linear stability analysis, the behaviour of the Rayleigh number as function of the Soret coefficient could
be determined. Applying free boundary conditions leads to a critical Rayleigh number of 554, neglecting thermodiffusion
(ST = 0 K−1) and using averaged data of the magnetisation curves for the determination of the dimensionless parameters
in (21). A Soret coefficient between −0.001 K−1 and 0 K−1, hinders the onset of convection and leads to a maximum of
Rac = 1587. For any positive value of ST , the convection in the layer of fluid is enhanced. Contrary a Soret coefficient being
more negative than −0.001 K−1 suppresses convection at all and leads to negative Rayleigh numbers.

To obtain a realistic magnitude of the Soret coefficient, magnetic-field-dependent separation experiments have been
carried out with a horizontal thermodiffusion cell. The magnetic field was either applied parallel or perpendicular to the
vertically oriented temperature gradient. The separation experiments in both alignments showed a diminishing Soret coeffi-
cient up to a magnetic field strength of 75 kA/m, then a change in the sign of the coefficient was detected and the value of
the coefficient grew stronger negative with a further increase of the magnetic field, reaching finally −0.66 K−1 at 320 kA/m
in the perpendicular setup and −0.152 K−1 in the parallel one.

The detection of the negative Soret coefficient combined with the analytically determined influence of the coefficient
on the onset of thermomagnetic convection supports the experimentally observed dependence of the convection on the
magnetic field, though comparison of the current separation data with older experiments reveals a mismatch which could
be explained by the different fluids measured. Nevertheless, more and detailed investigations are necessary to solve this
mismatch and to improve the understanding of thermodiffusion in magnetic fluids.

Acknowledgements

The authors thank Prof. Blums for very helpful discussions. Financial support by Deutsche Forschungsgemeinschaft in
project LA 1182/3 is gratefully acknowledged.

References

[1] R.E. Rosensweig, Ferrohydrodynamics, Dover Publications, Inc., Mineola, New York, 1985.
[2] E. Blums, et al., Magnetic Fluids, Walter de Gruyter, Berlin, New York, 1997.
[3] B.A. Finlayson, Convective Instability of ferromagnetic fluids, J. Fluid Mech. 40 (1970) 753–767.
[4] L. Schwab, et al., Magnetic Bénard convection, J. Magn. Magn. Mater. 39 (1983) 113–114.
[5] L. Schwab, et al., Thermal convection in ferrofluids under a free surface, J. Magn. Magn. Mater. 85 (1990) 199–202.
[6] H. Engler, S. Odenbach, Parametric modulation of thermomagnetic convection in magnetic fluids, J. Phys.: Condens. Matter 20 (2008) 204135.
[7] H. Engler, Parametric modulation of thermomagnetic convection in magnetic fluids, Thesis, 2010 (in German).
[8] E. Blums, et al., The characteristics of mass transfer processes in magnetic fluids, J. Magn. Magn. Mater. 39 (1983) 142–146.
[9] E. Blums, et al., Soret coefficient of nanoparticles in ferrofluids in the presence of a magnetic field, Phys. Fluids 10 (1998) 2155–2163.

[10] T. Völker, S. Odenbach, The influence of a uniform magnetic field on the Soret coefficient of magnetic nanoparticles, Phys. Fluids 15 (2003) 2198–2207.
[11] T. Völker, S. Odenbach, Thermodiffusion in ferrofluids in the presence of a magnetic field, Phys. Fluids 17 (2005) 037104.
[12] S. Odenbach, T. Völker, Thermal convection in a ferrofluid supported by thermodiffusion, J. Magn. Magn. Mater. 289 (2005) 122–125.
[13] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961.
[14] A. Ryskin, et al., Thermal convection in binary fluid mixtures with a weak concentration diffusivity, but strong solutal buoyancy forces, Phys. Rev. E 67

(2003) 46302.
[15] G.K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction, J. Fluid Mech. 74 (1976) 1–29.
[16] R.W. Chantrell, et al., Measurements of particle size distribution parameters in ferrofluids, IEEE Trans. Magn. 14 (1978) 975–977.
[17] T. Weser, K. Stierstadt, Discrete particle size distribution in ferrofluids, Z. Phys. B, Condens. Matter 59 (1985) 253–256.
[18] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83 (1977) 97–117.
[19] K.I. Morozov, The translational and rotational diffusion of colloidal ferroparticles, J. Magn. Magn. Mater. 122 (2003) 98–101.


	Thermodiffusion in ferroﬂuids regarding thermomagnetic convection
	1 Introduction
	2 Thermomagnetic convection
	2.1 Governing equations
	2.2 Linear stability analysis

	3 Thermodiffusion
	3.1 Experimental setup
	3.2 Fluid characterisation
	3.3 Separation experiments

	4 Conclusion
	Acknowledgements
	References


