
C. R. Mecanique 341 (2013) 538–546
Contents lists available at SciVerse ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

A simple model of thermal crack pattern formation using the coupled
criterion

Un modèle simple de faïençage thermique utilisant le critère couplé

Dominique Leguillon

Institut Jean-Le-Rond-d’Alembert, CNRS UMR 7190, université Pierre-et-Marie-Curie, 4 place Jussieu, 75252 Paris cedex 05, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 February 2013
Accepted after revision 8 April 2013
Available online 30 April 2013

Keywords:
Solid mechanics
Fracture mechanics
Thermal cracks

Mots-clés :
Mécanique des solides
Mécanique de la rupture
Fissuration thermique

Different mechanisms (cooling, drying, and ageing) lead to the formation of crack patterns
on the surface of some materials that are very difficult to describe in detail. We propose
a model based on the coupled criterion using two necessary conditions for the nucleation
of cracks: an energy condition and a stress condition. This model is applied to a simple
example: a plate fixed to a rigid substrate and cooled down on its top face. During slow
cooling, it highlights the ability of forming a first lattice of cracks and the subdivision
thereof. It also shows that, in a rapid cooling (quenching), the higher the temperature drop,
the tighter the cracks network.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Différents mécanismes (refroidissement, séchage, vieillissement) aboutissent à la formation
de réseaux de fissures, appelés faïençage, à la surface de certains matériaux, qu’il est
très difficile de décrire dans le détail. Nous proposons ici un modèle qui repose sur
l’utilisation du critère couplé faisant appel à deux conditions nécessaires pour la nucléation
de fissures : une condition en énergie et une condition en contrainte. Ce modèle est
appliqué à un exemple simple : une plaque fixée sur un support rigide et refroidie sur
sa face supérieure. Au cours d’un refroidissement lent, il met en évidence la possibilité
de formation d’un premier réseau de fissures, puis la subdivision de celui-ci. Il montre
également que, lors d’un refroidissement rapide (trempe), plus la chute en température est
forte, plus le réseau de fissures est serré.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Who has not been intrigued, during a walk, by a totally cracked surface of dry mud? Although fundamentally different,
several mechanisms give rise to the onset of crack patterns on the surface of materials: the slow or sudden (quenching)
cooling of a brittle material such as a ceramic [1], the ageing of a polymer as a result of the action of UV rays [2], the
cooling and/or drying of a material initially in a soft state like rock, mud or colloid [3], or even the drying and ageing of
pictorial layers of art paintings [4]. In all these situations, we observe extremely complex patterns formed of more or less
polygonal cells whose surfaces are not so widely scattered, but still almost impossible to predict in details.
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Fig. 1. Parallel edge cracks in a semi-infinite plane submitted to a remote uniform tension.

All these cracks have a common origin: a tensile stress caused by shrinkage due to cooling, a drying or a change in the
internal structure of the material. Several authors have tried, using arguments of fracture mechanics, to provide descriptions
of the mechanisms that govern this fracturing. Gauthier et al. [3] showed the formation of star-shaped cracks in capillary
tubes during evaporation of a solvent from a colloidal solution. Bahr et al. [5] offer a fairly comprehensive analysis of the
formation and growth of cracks appearing during a thermal shock on a brittle material, the initial crack spacing is scaled by
a coefficient inversely proportional to the square of the temperature drop during the thermal shock. In a similar heat shock
experiment, the spacing of cracks and their length correspond, following Jiang et al. [6], to an optimum in a fracture model
governed by the Griffith criterion. It is with extensive computing resources that Bourdin et al. [7,8] managed to convincingly
simulate the formation of a network of cracks on the surface of a plate subjected to sudden cooling. Their model is based
on the variational approach to fracture [9].

Most of works cited above are based on a single condition of energy type, like the Griffith criterion. If the tensile stress
that exists in the material plays a mechanical role, typically its contribution to the strain energy, it is never referred to the
tensile strength. From our point of view, the crack pattern formation is a nucleation process, and it has been shown that
such a mechanism cannot be described by a sole energetic argument; two conditions must be fulfilled simultaneously: one
based on energy and involving the material toughness and another based on stress and involving the material strength [10].
We are going to exploit this statement in a very simple framework to describe the nucleation of a crack pattern during
a cooling or a drying process in a brittle material. However, unlike the works mentioned above, we are not concerned in
the further growth of this network of cracks but only in its onset. It is shown here that if the mechanism is governed
by the stress condition, then a sufficient amount of energy can be stored to trigger the nucleation of multiple cracks and
fragmentation [11].

Section 2 is a little apart from the core of the paper. Based on known results [12], it is emphasized that the simplifying
assumptions used in the sequel make it impossible to determine both the length and spacing of cracks forming a lattice.

Section 3 addresses a first problem of crack pattern formation during the slow cooling (the temperature is assumed to be
almost constant throughout the plate thickness) of a plate clamped on its lateral faces. The thermo-elastic solution is analyt-
ically known and using the coupled criterion highlights the formation of a rectangular lattice (for simplicity), whose spacing
depends on both the toughness and tensile strength of the material. Spacing values are proposed for various materials at
the end of the section.

In order to demonstrate the possibility of subdividing the primary lattice, as illustrated in a picture of dry mud, Sec-
tion 4.1 considers more realistic boundary conditions, analyzing the slow cooling of a plate fixed on a rigid substrate instead
of being clamped. The previous solution remains valid in a large part of the plate provided it is thin compared to its length
and width. Section 4.2 is devoted to a rapid cooling in the same situation. The temperature profile through the thickness
is no longer constant and is approximated by a cosine shape. This simple model allows highlighting the dependence of the
lattice spacing on the inverse square of the temperature drop during the rapid cooling (quenching).

The conclusion proposes a discussion on the advantages provided by the use of the coupled criterion in this kind of
problem. Then it returns to the difficulty mentioned in Section 2 and emphasizes the need for more comprehensive models
and more sophisticated calculations to provide a definitive answer to the problem.

2. Parallel edge cracks in a semi-infinite plane

Before addressing our problem, let us consider a set of parallel edge cracks in a semi-infinite plane submitted to a
uniform tension σ . The crack depth and the crack spacing are respectively denoted d and 2s.

The stress intensity factor K I at the tip of the cracks depends on these two parameters and there are two limit cases:
(i) the cracks are long and close to one another s � d, (ii) the cracks are short and sparse s � d [12]

(i) K I = σ
√

sF I2(d/s) with F I2(d/s) → 1 as s/d → 0

(ii) K I = σ
√

dF I1(d/s) with F I1(d/s) → 1.122 × √
π as d/s → 0 (1)

The corresponding energy release rate is

G = K 2
I

E ′ with E ′ = E

1 − ν2
(2)

where E and ν are respectively Young’s modulus and Poisson’s ratio of the material. The relation (2) holds under the
assumption of plane strain (in plane stress E ′ = E). With ltot equal to the sum of the lengths of all cracks, the change in
potential energy δW p between an initial state without cracks and the final state illustrated in Fig. 1 writes:
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Fig. 2. A plate clamped on all its lateral sides.

δW p = ltot

d∫
0

G(λ)dλ =

∣∣∣∣∣∣∣∣
ltot σ

2

E ′ sd (i)

ltot 1.1222 × π

2

σ 2

E ′ d2 (ii)

(3)

Note that (i) is an approximation that assumes that formula (1) for long close cracks is valid along most of the integration
path.

An energy balance states that failure can occur if this quantity is greater than the energy Gcltotd required to create
cracks; here Gc is the toughness of the material (fracture energy density) and ltotd the total created crack surface. Clearly,
the first case provides a lower bound for cracks spacing s but no information on cracks depth d, whereas the second one
gives a lower bound for cracks depth d, but no information on the crack spacing.

δW p � Gcltotd ⇒

∣∣∣∣∣∣∣∣
s � E ′Gc

σ 2
(i)

d � E ′Gc

σ 2

1.1222 × π

2
(ii)

(4)

In between these two cases, the energy balance provides a relationship between the two characteristic lengths s and d. We
will find again this duality in the problem we are now interested in.

3. A plate clamped on all its lateral sides

3.1. The thermo-mechanical model

We consider a thin elastic square plate L × L × h (h � L, Fig. 2) free on the top and bottom faces x3 = h and x3 = 0 and
clamped on all its lateral faces (more precisely, U1 = U2 = 0, U3 is not constrained, U = (U1, U2, U3) is the displacement
field). It is subjected to a slow cooling such that the temperature change θ(t) < 0 is uniform throughout the plate. The
thermo-elastic solution is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ33(t) = 0; ε33(t) = 1 + ν

1 − ν
αθ(t)

σ11(t) = σ22(t) = −Ẽαθ(t)

ε11 = ε22 = 0

σ12 = σ23 = σ31 = 0

ε12 = ε23 = ε31 = 0

with Ẽ = E

1 − ν

(5)

Here α is the thermal expansion coefficient of the material, σ (with components σi j , i, j = 1,3) the stress tensor and ε (εi j ,
i, j = 1,3) the linearized strain tensor.

Following [10], the stress condition for crack nucleation is expressed in terms of the tensile strength σc (both σc and Gc
are assumed independent of the temperature as all material parameters):

Ẽα
∣∣θ(t)

∣∣ � σc ⇒ at failure
∣∣θ(t)

∣∣ = θc = σc

Ẽα
(6)

Fragmentation requires the mechanism to be stress driven [11]; the cooling temperature at failure initiation is fixed by
the stress condition. Nothing occurs until |θ(t)| reaches the critical value θc. Thus, depending on the material parameters,
a large amount of energy can be stored until the stress condition is reached.

It is reasonably assumed that, if failure occurs, cracks pass entirely through the plate (d = h) and that there is no longer
any energy stored. Then the change in potential energy δW p between the initial and final states is:
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Fig. 3. The rectangular crack pattern.

δW p(t) = 1

2

L∫
0

L∫
0

h∫
0

σ : (ε − εin)
dx1 dx2 dx3 = Ẽα2θ(t)2L2h (7)

Here εin is the inelastic (thermal) contribution to the total strain ε. According to (6), the energy balance can be written (ltot

already met in Section 2 is the total length of all cracks):

δW p(t) � Gcltoth ⇒ ltot

L
� L

lc
= N with lc = ẼGc

σ 2
c

(8)

At this step, it is almost impossible to describe the crack pattern in its randomness (see Fig. 6 for being convinced); the
cells surfaces are not so much scattered but their shape (roughly polygons, often squares or pentagons) is complex. Thus
we propose an ultra simplified rectangular array, N is the maximum number of cracks with length L, and the length s = lc
appears to be the theoretical half crack spacing (Fig. 3). In any case, the actual spacing parameter s cannot be smaller than
the characteristic length lc, which can be interpreted as an order of magnitude for spacing in lattices with more complex
geometry.

Remark 1. Of course, among other simplifications, it is assumed that the whole lattice (total length ltot) appears almost
simultaneously (as reported by authors in some cases [3]). It is important to emphasize that there is no horizontal crack
growth, cracks develop in depth.

Remark 2. A noticeable feature is that neither h nor d or α and θ0 play any longer a role in ltot and lc. If failure occurs,
i.e. if the cooling θ0 is large enough, then (8) holds true; it is a necessary condition. However, within this model, the exact
crack depth d remains unknown like under the assumption (i) in Section 2.

Remark 3. It can be pointed out that the assumption of a thin plate is not necessary in this section. Thus, it can be a model
to explain the formation of columns observed in some rock sites, in volcanic rocks such as basalt for instance, provided the
assumption that θ(t) is constant throughout the specimen remains true.

3.2. Some examples of spacing of the primary lattice in various materials

Depending on the material properties, the size of the crack patterns can vary considerably from tens of microns to a few
meters.

Ceramics are highly brittle materials subjected to significant cooling during the production process, which is sometimes
enough to reveal crack patterns [13].

• Alumina: E = 350 GPa, ν = 0.3, σc = 300 MPa, Gc = 0.04 MPa mm, α = 8 · 10−6 K−1 ⇒ lc = 0.22 mm, crack spacing
0.44 mm, θc = 75 K.
The thermal shock resistance of alumina is known to be higher (150 K), but it is determined by quenching (out of
the scope of this section) on an unconstrained specimen (out of the scope of this paper, see remark at the end of
Section 4.2).

• Polymer: E = 3.5 GPa, ν = 0.4, σc = 40 MPa, Gc = 0.35 MPa mm, α = 5 · 10−5 K−1 ⇒ lc = 1.3 mm, crack spacing
2.6 mm, θc = 137 K.
Note that if σc = 75 MPa (for a polymer like PMMA for instance), then the cracks half spacing lc evolves from 1.3 mm
to 0.34 mm.
It is possible also to apply this result to different rocks [14] (although the parameters values are widely scattered in the
literature). Unfortunately, it is not possible to find values for α and thus to compute θc in the selected examples. It is
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noteworthy that the mechanism of pattern formation in sediments like sandstone and limestone is likely due to drying
and compaction, not to cooling.

• Sandstone: E = 16 GPa, ν = 0.13, σc = 6 MPa, Gc = 0.08 MPa mm ⇒ lc = 603 mm, crack spacing 1.2 m.
• Limestone: E = 27.5 GPa, ν = 0.23, σc = 3.8 MPa, Gc = 0.02 MPa mm ⇒ lc = 1.7 m, crack spacing 3.4 m.

4. A plate on a rigid substrate

We consider the same plate (Fig. 2) free on the top face x3 = h and adhering perfectly to a rigid substrate on its bottom
face x3 = 0 (i.e. U1 = U2 = U3 = 0). It is initially at a given temperature and subjected to a cooling −θ0 on the top face
(x3 = h), no heat exchange is allowed on the bottom (x3 = 0).

For the sake of simplicity, we continue to assume that the lateral faces are clamped and do not allow heat exchange.
However, these last conditions are not very realistic; it would be better to suppose that the lateral faces are stress free
and at the cooling temperature. In this case, under the assumption of thinness, the thermo-elastic solution is almost the
same (biaxial state, see (5) and a vertical heat flux), except in a strip along the edges, whose width is of the same order of
magnitude than its thickness h. It can be neglected if h is small enough.

The temperature change through the thickness is denoted θ(x3, t) < 0 with θ(h, t) = −θ0 for any time t � 0 and
θ(x3,0) = 0 for any 0 � x3 < h and the thermo-elastic solution can still be written (5), replacing the dependence on t
only by a dependence on x3 and t .

The stress condition (6) writes:

Ẽα
∣∣θ(x3, t)

∣∣ � σc for h − d � x3 � h ⇒ ∣∣θ(h − d, t)
∣∣ = θc (9)

since |θ(x3, t)| is an increasing function of x3 for any t . Under the assumption of thinness, it is reasonable again to suppose
that d � h. If cracks are sufficiently close to one another (see assumption (i) in Section 2), due to the shielding effect, we
can assume that the strain energy in the fractured layer (of thickness d) is totally released, then the change in potential
energy derives from (7):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẽα2L2

h∫
h−d

θ2(x3, t)dx3 � Gcltot d ⇒ Ẽα2L2θ̄2(t) � Gcltot

with θ̄2(t) = 1

d

h∫
h−d

θ2(x3, t)dx3

(10)

4.1. Constant temperature through the plate thickness, subdivision of the primary lattice

If cooling is slow enough, we can suppose that the temperature is constant throughout the plate, then θ(x3, t) = −θ0
and according to (9) and (10):

θ̄2(t) = θ2
0 = θ2

c (11)

and the conclusion remains the same.
If cooling is going on, a competition between the in-depth growth of the first network and the formation of a secondary

network inside the cells of the first network intervenes now. If d is large and almost equal to h, the tips of the primary
network cracks are trapped near the interface with the rigid substrate and the growth is almost inhibited [15]. The second
network is likely to occur only if the thickness h of the plate is very small and then small with respect to the cell size 2lc
(the lateral faces of the cells are stress free). With h � 2lc, the same reasoning can be applied following a new cooling step
−θc (the total cooling is now −2θc), replacing L by 2lc in (8) leads to:

ltot
2 = 4lc (12)

Here ltot
2 is the total cracks length of the secondary network within one cell of the primary network. Fig. 4 illustrates this

result still under the assumption of a rectangular pattern.
If the process can be iterated (i.e. if h � lc), at the next step (total cooling −3θc) we get:

ltot
3 = lc (13)

leading to many different (rectangular) patterns (Fig. 5).
Fig. 6 shows a crack pattern in mud after drying with visible primary and secondary networks corresponding respectively

to wide and narrow opened cracks. The mechanism leading to this crack pattern formation is almost similar, replacing the
temperature change by the moisture content change, at least if the mud is no longer in a soft enough state to be considered
more or less as an elastic brittle material. However, it is likely that all the material properties (Young’s modulus, toughness,
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Fig. 4. The subdivision of each cell of the primary network by the secondary network.

Fig. 5. Different rectangular patterns resulting of the subdivision of each cell of the secondary network.

Fig. 6. Formation of a crack pattern in mud after drying, the primary and secondary networks are visible. Among the complex geometries, note the analogy
between the subdivision in circle A and Fig. 3 and in circle B and Fig. 4 (right).

strength and even coefficient of expansion) depend on the moisture content and that the model should be improved to be
consistent.

Subdivisions are also clearly visible in the polymer after ageing, see Fig. 3(h), p. 1583, of [2].
Of course the scenario proposed in the present work is by far simplified. Sometimes only partially connected networks

can be observed [16].
Another explanation for the wide and narrow crack openings could lie in observations of the results exhibited in [1] and

[7]. During quenching of a thick specimen, a tight network of cracks appears on the surface. First, the whole set of cracks
grows in depth, then at a time an instability occurs and some of the cracks stop while others go on growing. It is likely
that cracks belonging to the first family have a narrow opening while the others have a wider one (depending on the crack
depth).

However, it must be noted that in the present case cooling is slow and the plate assumed to be thin, while in the other
case, cooling is rapid and acting on a thick specimen. The two mechanisms are finally rather different and Fig. 5 seems
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Fig. 7. Primary and secondary networks leading to the formation of a T shaped crack in [3].

Fig. 8. Temperature change through the plate thickness for different times t1 < t2. Note that this profile is not affected by the presence or not of straight
cracks, but it plays no role in the present analysis.

more favorable to a subdivision mechanism since the supposed secondary network (narrow cracks) has often no continuity
from one cell to the neighboring one, whereas the primary one has more.

A similar subdivision was observed in [3] with the formation of T shaped cracks. As described by the authors: “the
horizontal bar [. . .] is formed first and the vertical one later.” (Fig. 7).

4.2. The transient problem, a cosine temperature profile through the plate thickness

The transient solution to the thermal conduction problem with prescribed temperature at one end and vanishing heat
flux at the other end of a finite slab is described by series [17]; however, they are not convenient to use, since a large
number of terms must be retained to correctly represent the temperature profile, especially in the first steps of cooling. We
prefer considering a simplified approximated model which is enough for our purpose. At a given time t , the temperature
change through the thickness has the following profile (Fig. 8):

⎧⎨
⎩

For 0 < p < h, p < x3 < h, θ(x3, t) = −θ0 cos

(
π

2

h − x3

h − p

)

For 0 < p < h, 0 < x3 < p, θ(x3, t) = 0
(14)

where the length p is a known function of t . In (14), h − p(t) is similar to the penetration depth of cooling (a length above
which cooling is approximately 0, Fig. 8) often approximated by h − p(t) = √

4Dt (D is the thermal diffusivity [5,17]), p = h
corresponds to the initial condition θ(x3,0) = 0, we ignore solutions such that t > h2/4D .

Together with (14), the stress condition (9) leads to a relationship between the time at failure tc, the crack depth d and
the temperature drop −θ0 on the top surface:

cos

(
π

2

d

h − p(tc)

)
= θc

θ0
� 1 ⇒ d = 2(h − p(tc))

π
cos−1

(
θc

θ0

)
(15)

Failure occurs only if θ0 > θc; if θ0 = θc then d = 0.
Using (14) it comes:

θ̄2(t) = θ2
0

2

(
1 + sin(u(t))

u(t)

)
with u(t) = πd

h − p(t)
= 2 cos−1

(
θc

θ0

)
(16)

Plugging (15) and (16) into (10) leads to:
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Table 1
The normalized half crack spacing s/lc for increasing temperature drops −θ0.

θ0/θc 1.5 2 3 4 5

u 1.68 2.09 2.46 2.64 2.74
s/lc 0.56 0.35 0.18 0.11 0.07

ltot

L
�

1 + sin(u(tc))
u(tc)

2 cos2(
u(tc)

2 )

L

lc
⇒ s =

(
θc

θ0

)2 2 cos−1( θc
θ0

)

cos−1( θc
θ0

) + θc
θ0

√
1 − ( θc

θ0
)2

lc (17)

Results are illustrated in Table 1.
The same trend (Table 1) was observed in [1] in an experiment of quenching of alumina specimens, the crack spacing

diminishes as the temperature drop increases. Moreover, a law similar to that proposed by Bahr et al. [5] can be derived
from (17): the crack spacing is scaled by a coefficient inversely proportional to the square of the temperature drop θ0 during
the thermal shock.

However, the crack spacing is different (smaller here), but the problem is different as well. In the quenching experiment,
the plate is not constrained by a rigid substrate and then can shrink in all directions. Thus the energy released by the
cracking mechanism is smaller, resulting in a smaller ltot and thus a larger spacing.

5. Conclusion

The main conclusion to draw is that, during the initial phase of formation of a crack pattern, the scaling length lc (see (8))
and thus the crack spacing depends strongly on the tensile strength of the material (like 1/σ 2

c ). This feature is not present
in the analyses cited in Section 1, although the present study tends to prove that it plays a significant role. Indeed, the
results in [7,8] are qualitatively impressive and there are few (no?) other works that can lead to such realistic and complex
fracture patterns. However, as presented, the approach can definitely not be predictive. The results show more and more
complex patterns as a function of an increasing remote load, the I shaped crack is obtained at a given load level, the Y one
at a higher level and so on. But during a natural process such as drying or cooling, the second load level cannot be reached
without going through the first one, thus the I shaped crack will appear first and then it is impossible to achieve a Y shaped
crack pattern (which, in addition, is not an extension of the I crack). One can at best expect a subdivision of the first pattern
(as suggested in Section 4.1). The authors of [8] are well aware of the problem and they oppose the static nature of their
calculations to a quasi-static evolution of the phenomena. In our opinion, this kind of contradiction exists because the stress
condition lacks. The threshold associated with this condition allows inhibition of the formation of some patterns if, for the
corresponding load level, the tension in the material is lower than the threshold given by the tensile strength.

The other noticeable point is the size effect associated with parameter L, as already noted in [11] in a different situation,
leading also to fragmentation. For a given temperature drop −θ0, the crack pattern or even its presence or absence rely on
this length; clearly, according to (8) and (17), the number of cracks depend on the size of the specimen. The experiments
of desiccation of a colloid in [3] are carried out in a capillary tube whose diameter is small (around 1 mm), so it does not
likely allow the development of a tight network of cracks, patterns are limited to I, Y and + shaped cracks for the primary
network (see the end of Section 4.1).

However, the model presented here has a drawback, i.e. the depth of cracks d at initiation remains undetermined (Sec-
tion 4) or is a priori prescribed (Section 3). This is due to the assumption that, at the onset, all the energy in the cracked
layer is released. It is almost true if cracks are long (and especially close to the plate thickness h) and close to one another,
but is clearly wrong for short and sparse cracks.

The improvement of this model and its generalization to other problems (quenching), different geometries and variable
material parameters will likely be obtained only through 3D finite element computations providing the profile of the tensile
stress and an accurate value of the energy released by fracture. But an additional difficulty rises immediately: crack spacing
and depth depend on the ability of the structure to dissipate energy by fracture and both are a priori unknown. This leads
[6–8] to treat the problem as an optimization one based on the variational approach to fracture, which consists in searching
the crack pattern that minimizes a functional equal to the sum of the strain energy and the surface energy of the created
cracks. Could this approach be extended to optimization with constraints? Namely, within the optimization procedure,
a crack should be created only if the tensile stress exceeds the tensile strength all along the presupposed new crack path.
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