
C. R. Mecanique 341 (2013) 567–580
Contents lists available at SciVerse ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

A compressibility correction of the pressure strain correlation model in
turbulent flow

Hechmi Klifi ∗, Taieb Lili

Département de physique, faculté des sciences de Tunis, campus universitaire, 1060, Tunis, Tunisia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2012
Accepted after revision 8 April 2013
Available online 2 May 2013

Keywords:
Turbulence
Compressible
Pressure strain
Homogeneous
Mixing layers

This paper is devoted to the second-order closure for compressible turbulent flows
with special attention paid to modeling the pressure–strain correlation appearing in
the Reynolds stress equation. This term appears as the main one responsible for the
changes of the turbulence structures that arise from structural compressibility effects.
From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects
on the homogeneous turbulence shear flow are parameterized by the gradient Mach
number. Several experiment and DNS results suggest that the convective Mach number
is appropriate to study the compressibility effects on the mixing layers. The extension of
the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure–strain
correlation gives results that are in disagreement with the DNS results of Sarkar for
high-speed shear flows. This extension is revised to derive a turbulence model for the
pressure–strain correlation in which the compressibility is included in the turbulent Mach
number, the gradient Mach number and then the convective Mach number. The behavior
of the proposed model is compared to the compressible model of Adumitroiae et al. for the
pressure–strain correlation in two turbulent compressible flows: homogeneous shear flow
and mixing layers. In compressible homogeneous shear flows, the predicted results are
compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility,
the two compressible models are similar, but they become substantially different at high
compressibilities. The proposed model shows good agreement with all cases of DNS results.
Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the
gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate
compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al.
and with the experimental results of Goebel et al. shows good qualitative agreement.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Compressibility effects on turbulence are a challenging problem for environmental and aeronautical applications. Under-
standing better compressibility effects on high-speed mixing layers is highly relevant in terms of engineering importance. It
is well know that the growth rate of turbulence mixing layers thickness is substantially reduced with increasing the convec-
tive Mach number. The compressibility phenomena have been studied extensively and numerical simulation of compressible
turbulent flows using compressible turbulence models have been performed by many authors. Previous studies carried out
in the last 20 years conjectured that compressibility effect was linked with dilatational dissipation and pressure–dilatation
correlation, as it is represented by the models of Zeman [1], Sarkar [2] and others. According to the DNS results of Simone
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et al. [3] and Sarkar [4], the dilatational terms have a negligible contribution to the changes of the compressible turbulence
structure. Hamba [5] have performed DNS measurements of compressible homogeneous shear flows and reached similar
conclusions about the roles of dilatational terms. These conclusions are confirmed by Vreman et al. [6] and Pantano and
Sarkar [7] in their DNS results, which show that the dilatational terms do not affect the compressible mixing layers. On
the other hand, all of these findings indicate that compressibility effects on pressure play a principal role. It is concluded
that reduced pressure fluctuations and then reduction of pressure–strain correlation are the main ones responsible for the
dramatic changes in the magnitude of Reynolds stress anisotropies. It was observed from the DNS results of Simone et al. [3]
and of Sarkar [4] regarding compressible homogeneous shear flows that there are some important physical discrepancies:
a dramatic increase in normal Reynolds stress anisotropies, a significant decrease in the Reynolds shear stress anisotropy and
a decrease in the growth rate of the turbulent kinetic energy with increasing the gradient Mach number, which is defined
by Mg = Sl/a, where a is the mean speed of sound and l is the length scale of energetic turbulence motions; this number is
also interpreted as the ratio between the acoustic time scale Ta = l/a and the mean distortion time scale Td = 1/S , where

S =
√

Ũ i, j Ũ j,i and Mg = Ta/Td . Also, in the DNS of Simone et al. [3], it can be seen that there is an amplification of the

turbulent kinetic energy with increasing the gradient Mach number at low St (St < 5), for St > 5, whereas trend change
and compressibility tend to stabilize turbulent shear flows. These discrepancies from which the compressibility appear to
be related to the gradient Mach number are found in DNS results [4,3], in which one can see that after an initial slight
increase with St (St < 5), Mg shows a trend towards becoming asymptotically constant, contrary to the turbulent Mach

number Mt (Mt = √
2K/ā, where K = ˜u′′

i u′′
i /2 is the turbulent kinetic energy and a is the mean speed of sound), which

grows constantly with St . Obviously, the structure of Mg is similar to that of turbulence. As a consequence of this, Mg seems
to be an appropriate parameter to study structural compressibility effects, and it may be useful to establish compressible
turbulence models that are indispensable for a precise simulation of high shear flows. More recently, a Mt-corrected form of
the Launder, Reece and Rodi model for the pressure–strain correlation has been proposed by Marzougui, Khlifi and Lili [8].
Applications of this model on compressible homogeneous shear flows have shown a qualitative agreement with the DNS
results of Sarkar [4] for cases A1, A2, and A3, which correspond to moderate mean shear. Conversely, in case A4, the pre-
dictions model [8] is in disagreement with DNS results [4]. In this study, we revised the extension of the LRR model [9]
proposed by Marzougui, Khlifi and Lili [8] to derive a model for the pressure–strain correlation in which the gradient Mach
number and the convective Mach number are used with the turbulent Mach number to express compressibility effects. It is
observed from several experiment and DNS results of compressible mixing layers that the Reynolds stresses decrease with

the increased convective Mach number Mc; this number is defined by Mc = U 1−U 2
a1+a2

, subscript 1 denotes the value of the
upper stream, while subscript 2 denotes the value of the lower stream. These results suggest that some of the physical
properties of the compressible mixing layers are clearly visible if compressibility effects are related to the convective Mach
number. In accordance with the concept allowing for the compressible mixing layer which is well related to the homoge-
neous shear flow, Mc is connected to Mg (see Sarkar [4]). Thus, the convective Mach number is involved in the proposed
model for the pressure–strain correlation. The ability of the proposed model to predict the fully developed turbulent com-
pressible homogeneous shear flow and mixing layers is examined in different cases from DNS data [4,3] and experiments
by Goebel and Dutton [10]. Our predictions are compared to those obtained by the compressible model of Adumitroiae et
al. [11].

2. Governing equations

The general equations governing the motion of a compressible fluid are the Navier–Stokes equations. They can be written
as follows for mass, momentum and energy conservation:

∂

∂t
ρ + ∂

∂xi
ρui = 0 (1)

∂

∂t
ρui + ∂

∂x j
ρuiu j = ∂

∂x j
σi j (2)

∂

∂t
ρe + ∂

∂x j
ρeu j = ∂

∂x j
σi jui − ∂

∂x j
(κT j) (3)

Here ρ is the density, u is the velocity, p is the pressure, e is the internal energy, T is the temperature, μ is the viscosity,
κ is the thermal conductivity and cv is specific heat at constant volume.

e = cv T , σi j = −pδi j + τi j, τi j = 2μSij, Sij = (ui, j + u j,i)/2

For an ideal gas, the relation between pressure, density and temperature can be written as follows:

p = ρRT (4)
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2.1. Basic equations of the Favre second-order closure in compressible flows

The Favre equations for conservation of mass, momentum and energy are:

∂

∂t
ρ̄ + ∂

∂xi
(ρ̄Ũ i) = 0 (5)

∂

∂t
(ρ̄Ũ i) + ∂

∂x j
(ρ̄Ũ i Ũ j) + ∂

∂x j

(
ρu′′

i u′′
j

) = ∂

∂x j

[
τ̃i j + τ ′′

i j − p̄δi j
]

(6)

∂

∂t
(ρ̄ C̄ v T̃ ) + ∂

∂xi
(ρ̄ C̄ v T̃ Ũ i) = −p̄

∂

∂xi
Ũ i − p̄

∂

∂xi
u′′

i − p′ ∂

∂xi
u′′

i + Φ̄ + ∂

∂xi

(
κ

∂

∂xi
T

)
− ∂

∂xi

(
ρ̄Cv

˜u′′
i T ′′) (7)

where

τ̃i j = 2μ̄ S̃ i j − 2

3
μ̄Ũk,kδi j

S̃ i j = (Ũ i, j + Ũ j,i)/2

τ ′′
i j = 2μ̄s′′

i, j − 2

3
μ̄u′′

k,kδi j

φ̄ = τi jui j

The Reynolds stress are solutions of the transport equation, namely:

∂

∂t

(
ρ̄˜u′′

i u′′
j

) + ∂

∂xm

(
ρ̄˜u′′

i u′′
j Ũm

) = Pij + Dijm,m + φi j + εi j + V ij (8)

where the terms Pij, Dijm, φi j, εi j and V ij are:

Pij = −(
ρ̄ ˜u′′

i u′′
mŨ j,m + ρ̄ ˜u′′

j u′′
mŨi,m

)
Dijm = −(

ρ̄ ˜u′′
i u′′

j u′′
m + p′u′′

j δim + p′u′′
i δ jm − τ ′′

imu′′
j − τ ′′

jmu′′
i

)
φi j = 2p′(u′′

i, j + u′′
j,i

)
εi j = −τ ′′

imu′′
j,m − τ ′′

jmu′′
i,m

V ij = −p̄, ju′′
i − p̄,iu′′

j + τ̃im,mu′′
j + τ̃ jm,mu′′

i

Classically, the second-order closure suggests to determine the dissipation term εi j by using the isotropic dissipation model:

εi j = 2

3
εδi j (9)

A concept of the dilatational dissipation was proposed by Zeman [1] and Sarkar [2] as:

ε = εs + εc (10)

where εs = νω′
iω

′
j , ωi is the fluctuating vorticity and εc = 4

3 νu′2
i,i denote the solenoidal and dilatational parts of the turbu-

lent dissipation respectively. The authors argued that the solenoidal part of the dissipation can be modeled by using the
traditional incompressible equation model and εc is determined by the commonly used model [1,2] as:

εc = gcεs (11)

gc is a function of the turbulent Mach number, according to [2], gc = 0.5M2
t . From above, the total turbulent dissipation

rate is written as:

ε = (
1 + 0.5M2

t

)
εs (12)
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3. The compressible turbulence models

Many DNS and experimental studies have been carried out on compressible turbulent flows, most of which show sig-
nificant compressibility effects on the pressure–strain correlation via pressure fields. Such effects induce reduction in the
magnitude of the anisotropy of the Reynolds shear stress and increase in the magnitude of the normal stress anisotropy.
Consequently, the pressure–strain correlation requires a careful modeling in the Reynolds stress turbulence model. With
respect to the incompressible case, many compressible models have been developed for the pressure–strain correlation.
Hereafter, most of all these models are generated from a simple extension of its incompressible counterpart; they perform
well in the simulation of important turbulent flows evolving with moderate compressibility. Adumitroiae et al. [11] as-
sumed that an incompressible modeling approach of the pressure strain can be used to develop turbulent models taking
into account compressibility effects. Considering a non-zero divergence for the velocity fluctuations called the compressibil-
ity continuity constraint and using different models for the pressure dilatation, which is proportional to the trace of the
pressure strain, their model for the pressure strain is written as:

Φ∗
i j = −C1ρ̄εsbij +

(
4

5
+ 2

5
d1

)
ρ̄K

(
S̃ i j − 1

3
S̃llδi j

)
+ 2ρ̄k(1 − C3 + 2d2)

[
bik S̃ jk + b jk S̃ ik − 2

3
bml S̃mlδi j

]

− ρ̄k(1 − C4 − 2d2)

[
bikΩ̃ jk + b jkΩ̃ik − 4

3
d2bij S̃kk

]
(13)

where S̃ i, j = 0.5(Ũ i, j + Ũ j,i), Ω̃i, j = 0.5(Ũ i, j − Ũ j,i) and bij = ˜u′′
i u′′

j − 2/3Kδi j .
The compressibility coefficients d1 and d2 are determined from some compressible closures for the pressure–dilatation

correlation.
Regarding the influence of the pressure strain on the behaviors of the Reynolds stress, different analysis have also been

carried out for this term. Fujihiro et al. [5] discuss this question within the context of a compressible homogeneous shear
flow. To show how the pressure–strain correlation reduces the growth rate of the turbulent kinetic energy, they focused
their analysis on the pressure–strain component Π22 and they deduced that this term appears as the first cause in the
dramatic changes of the turbulence, which are due to structural compressibility effects. In fact, when Π22 is reduced, this
causes a reduction in R22, which in turn affects Π12. Indeed, Π12 causes a reduction in the magnitude of R12, Π11 and the
growth rate of the turbulent kinetic energy. As a consequence, the authors suggest that the modifications of C3 and C4 that
affect directly Π22 appear as sufficient to capture the coherent structural compressibility effects. In this context, the results
of C.H. Park and S.O. Park [12] show that in addition to the modifications of C3 and C4, coefficient C2 should be modified.
In fact, this coefficient affects the shear pressure–strain component (Π12), which has an evident importance in the transport
equation for the shear Reynolds stress. This is the preferred focal point of our modeling strategy for the pressure–strain
correlation and from which we revise the proposed extension of LRR model [8].

Φ∗
i j = −C1ρ̄εsbij + C2ρ̄k

(
S̃ i j − 1

3
S̃llδi j

)
+ C3ρ̄k

(
bik S̃ jk + a jk S̃ ik − 2

3
bml S̃mlδi j

)
+ C4ρ̄k(bikΩ̃ jk + b jkΩ̃ik) (14)

where

C1 = C I
1

(1 + 0.5M2
t )

(
1 − 0.44M2

t

)2

C2 = C I
2 = 0.8

C3 = C I
3

(
1 − 1.5M2

t

)
C4 = C I

4(1 − 0.5Mt)

The coefficients C I
i are those of the LRR model [9]: C I

1 = 3, C I
2 = 0.8, C I

3 = 1.75, C I
4 = 1.31.

3.1. A modification of the C2-coefficient in Marzougui, Khlifi and Lili’s model [8]

In Marzougui, Khlifi and Lili’s model [8], one can see that coefficient C2 is taken as in the incompressible model. To
modify this coefficient appearing in the shear pressure–strain component Π12, we consider the equation for the fluctuating
dilatation d′ = u′

i,i as in [13], namely:

d

dt
d′ = −2

∂u′
j

∂xi

∂Ui

∂x j
− ∂u′

i

∂x j

∂u′
j

∂xi
+ ρ ′

ρ̄2

∂2 p̄

∂xi
2

+ 1
2

∂ρ ′ ∂ p̄ + 1
2

∂ p′ ∂ρ̄ − 2
ρ ′

2

∂ρ̄ ∂ p̄ − 1 ∂2 p′
2

+ 4
ν

∂2d′
2

(15)

ρ̄ ∂xi ∂xi ρ̄ ∂xi ∂xi ρ̄ ∂xi ∂xi ρ̄ ∂xi 3 ∂xi
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Multiplying both sides by p′ and taking the ensemble averaging, we therefore write this equation as follow:

p′ d

dt
d′ = −2p′ ∂u′

j

∂xi

∂U i

∂x j
+ · · · (16)

Generally, the mean shear effects arising essentially from the mean velocity gradient are important in compressible shear
flow, the other terms in Eq. (16) are considered as negligible, so we can write:

p′d′
τ

= −2p′ ∂u′
j

∂xi

∂ Ū i

∂x j
(17)

where τ is the characteristic time scale of the dilatation fluctuations [1], τ = αM2
t K/ε. Also, this equation can be written

as:

p′d′
τ

= −2

(
p′ ∂u′

j

∂xi

)∗
∂ Ū i

∂x j
− 2

3
p′d′ ∂ Ūl

∂xl
(18)

where (p′ ∂u′
j

∂xi
)∗ = p′ ∂u′

j
∂xi

− 1
3 p′d′δi j is the deviatoric part of the pressure–strain correlation.

According to the isotropization of the production, only the mean velocity gradient term in the linear pressure–strain part
is considered here, and we can write:(

p′u′
i, j

)∗ = −C1ρ̄εsbij + C2ρ̄K S̃∗
i j (19)

where S̃∗
i j = S̃ i j − 1

3 S̃llδi j .
It is well known that there are some compressible models for the pressure–strain correlation. In this study, we choose

the Marzougui, Khlifi and Lili’s model [8] to deduce an expression for (p′u′
i, j)

∗ as:(
p′u′

i, j

)∗ = f (Mt)ρ̄εsbij + C2ρ̄K S∗
i j (20)

where f (Mt) is a function of the turbulent Mach number:

f (Mt) = −C I
1

1 + β1M4
t − β2M2

t

1 + 0.5M2
t

(21)

The model coefficients β1 and β2 are positive. The coefficient C I
1 is constant (C I

1 = 3 in the LRR model [9]), thus, function
f (Mt) preserves in the limit case (Mt = 0) the universality of the standard model. Thus, Eq. (18) takes the form:

p′d′ = −2ρ̄
αM2

t

1 + 0.5M2
t

[
f (Mt)Kbij + C2

K 2

εs
S∗

i j

]
Ū i, j − 2

3

K

εs
p′d′δi j (22)

According to the Sarkar et al.’s model [2], p′d′ can be written as:

p′d′ = fcρ̄Kbij Ū i, j + · · · (23)

The compressible function is proportional to the turbulent Mach number:

fc = β3M2
t (24)

Substituting p′d′ by its expression in Eq. (23) and using identification between terms that affect the mean gradient velocity,

one can find easily that the turbulent production P = −˜u′′
i u′′

j Ū i, j verifies the following relation:

P = −2

3
K Ūl,l + C2

f (Mt) + fc

2αM2
t
(1 + 0.5M2

t )

K 2

εs
S∗

i j Ū i, j (25)

In the framework of the (K − ε) model, the turbulent viscosity model is used to write the production as follow:

P = −2

3
K Ūl,l + νt S∗

i j Ū i, j (26)

where the turbulent viscosity νt is defined by:

νt = Cμ
K 2

εs(1 + 0.5M2
t )

(27)

coefficient Cμ is a model constant; for an incompressible flow, Cμ = 0.09.
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The use of Eqs. (25), (26), (27) lead to the following expression for C2:

C2 = Cμ

(1 + 0.5M2
t )

(
f (Mt) + fc

2αM2
t

(
1 + 0.5M2

t

))
(28)

According to the models of Marzougui, Khlifi and Lili [8] and of Sarkar et al. [2] of f (Mt) and fc, respectively, we obtain:

C2 = Cμg(Mt) (29)

where g(Mt) is a polynomial compressibility function of the turbulent Mach number, namely:

g(Mt) � −(1 + β1M4
t − β2M2

t ) + β3
2α (1 + 0.5M2

t )2

(1 + 0.5M2
t )2

(30)

and then

g(Mt) � −
[(

1 + β1M4
t − β2M2

t

) + β3

2α

(
1 + 0.5M2

t

)2
](

1 − M2
t

)
(31)

Regarding the structural compressibility effects on the compressible homogeneous shear flow, Heinz [14] proposed a model
for Cμ in the following form:

Cμ = Cμ0e(−βMg) (32)

One can remark that Cμ decreases when Mg increases and that, in the case of an incompressible flow, Cμ = Cμ0 � 0.09.
Examination of the DNS results of Sarkar [4] shows that the shear stress anisotropy is unaffected by compressibility

effects for low turbulent Mach numbers. For moderate and high turbulent Mach number, compressibility increases strongly
with increasing Mt. Following that, one can deduce that for low Mts, coefficient C2 is the same as in the LRR model [9], so
the effect of the g(Mt)-compressibility function is negligible. For moderate and high Mts, the g(Mt)-compressibility function
should change quickly to cause the dramatic changes of the pressure–strain correlation with increasing the turbulent Mach
number; so we propose for the compressibility function the simplest model, which reads:

g(Mt) ∝ (
1 + λM4

t

)
(33)

where λ is a constant model.
One can see that the term M4

t can ensure the structural changes on the pressure strain between the low-Mt and the
high-Mt compressible regimes.

From the above equations, we have for C2 the following model:

C2 ∝ (
1 + λM4

t

)
cμ0 exp(−βMg) (34)

It is clear that for incompressible flow Mt and Mg are equal to zero and the coefficient C2 coincides with its incompressible
homolog C I

2 involved in LRR model [9], this allows to write:

C2 = C I
2

(
1 + λM4

t

)
e(−βMg) (35)

The calibration of β and λ based on direct numerical simulations of Sarkar [4,3] for compressible homogeneous shear
flow gives:

β = 0.025, λ = 1.2

The present modification of the LRR model is also applied to the simulation of compressible mixing layers.
The homogeneous shear flow is closely related to the mixing layer [4]. Fig. 1 shows the variation of the gradient Mach

number with the convective Mach number. This allows Mg to be connected to Mc as in Pantano and Sarkar [7], and the
modified coefficient C2 model becomes:

C2 = C I
2

(
1 + λM4

t

)
e(−β1 Mc) (36)

The calibration of the coefficient λ1 and β1 based on the experiments of Goebel and Dutton [10] gives:

λ = 1.2, β1 = 0.055 (37)

Turbulence models for the dilatational part of the turbulent dissipation and the correlation pressure–dilatation are needed.
For these terms, we chose the models proposed by Sarkar et al. [2,15], namely:

εc = 0.5M2
t εs (38)

p′d′ = α1Mtρ̄

(
Rij − 2

3
Kδi j

)
Ũ i, j + α2ρ̄M2

t εs + α3M2
t ρ̄kŨ i,i (39)

The model constants, α1, α2 and α3, take the values: α1 = 0.15, α2 = 0.2, and α3 = 0.
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Fig. 1. Variation of the gradient Mach number with the convective Mach number.

Fig. 2. Time evolution of the streamwise Reynolds stress anisotropy: b11 in cases (a) B1 and (b) B3.

4. Applications of the proposed model

4.1. Simulation of compressible homogeneous shear flows

For compressible homogeneous shear flows, the mean velocity gradient is given by:

Ũ i, j = Sδi1δ j2 (40)

where S is the constant mean shear rate. Thus, the mean dilatation is:

Ũ i,i = 0 (41)

ρ̄ = cte (42)

The Favre averaged Reynolds stress should be a solution to the transport equation:

ρ̄
d

dt

(
˜u′′

i u′′
j

) = −(
ρ̄ ˜u

′′
i u′′

mŨ j,m + ρ̄ ˜u′′
j u′′

mŨi,m
) + Φ∗

i j − 2

3
ρ̄εδi j + 2

3
p′u′

i,iδi j (43)

The turbulent kinetic energy and its dissipation rate are obtained by solving the following transport equations:

ρ̄
dk

dt
= −ρ̄˜u′′

i u′′
j Ũ i, j + p′u′

i,i − ρ̄ε (44)

ρ̄
dεs

dt
= −Cε1ρ̄

εs

k
˜u′′

i u′′
j Ũ i, j − Cε2ρ̄

ε2
s

k
(45)

where Cε1 and Cε2 are respectively the model constants, Cε1 = 1.4 and Cε2 = 1.9.
The turbulent Mach number is described in [16] by the transport equation as follows:

DMt

Dt
= Mt

2 k
P + Mt

2ρk

(
1 + 1

2
γ (γ − 1)Mt

2
)(

p′d′ − ρε
)

(46)

The ability of the proposed model for the pressure–strain correlation to predict characteristic properties of the com-
pressible homogeneous turbulent shear flow will now be considered. The above averaged transport equations (43)–(46) are
solved numerically for compressible homogeneous turbulence using a fourth-order Runge–Kutta numerical scheme. Figs. 2
to 9 show the proposed model predictions compared with those obtained with Adumitroiae et al.’s model [11] and with
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Fig. 3. Time evolution of the transverse Reynolds stress anisotropy: b22 in cases (a) B1 and (b) B3.

Fig. 4. Time evolution of the Reynolds shear-stress anisotropy: b12 in cases (a) B1 and (b) B3.

Fig. 5. Time evolution of the pressure strain: P11 in cases (a) B1 and (b) B3.

Fig. 6. Time evolution of the pressure strain: P22 in cases (a) B1 and (b) B3.

the DNS results of Simone et al. [3] for cases B1 and B3. Also, both models have been evaluated by using the DNS results
of Sarkar [4]. In all these cases, DNS results correspond to the different initial conditions listed in Tables 1 and 2.

Figs. 2, 3 and 4 show the non-dimensional time (St) variation of the Reynolds stress anisotropies b11, b22, and b12. From
these figures, it is clear that the proposed model appears to be able to predict correctly the significant decrease in the
normalized turbulent production term −2b12 and the increase in the streamwise term b11, as well as the transverse b22
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Fig. 7. Time evolution of the pressure strain: P12 in cases (a) B1 and (b) B3.

Fig. 8. Time evolution of the turbulent Mach number: Mt in cases (a) B1 and (b) B3.

Fig. 9. Time evolution of the growth rate of the turbulent kinetic energy: tau = Λ in cases B1 and B3. The arrows show the trend with increasing Mg

values.

Table 1
Initial conditions for DNS [4] of homogeneous turbulent shear flow.

Case Mg0 Mt0 (Sk/ε)0 b11 b22 b12

A1 0.22 0.4 1.8 0 0 0
A2 0.44 0.4 3.6 0 0 0
A3 0.66 0.4 5.4 0 0 0
A4 1.32 0.4 10.8 0 0 0

Table 2
Initial conditions for DNS [3] of homogeneous turbulent shear flow.

Case Mg0 Mt0 (Sk/ε)0 b11 b22 b12

B1 0.6 0.25 8 0 0 0
B3 1.9 0.25 24 0 0 0
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Fig. 10. Time evolution of the turbulent dissipation rate: esk = εs/S K in cases A1, A2, A3, and A4. The arrow shows the trend with increasing M values.

Table 3
Comparison of the present model predictions for the long-time values of the anisotropy tensor for cases A1 to A4 and with the DNS results of Sarkar [4].

Cases Adumitroiae et al.’s model [11] Proposed model DNS results of Sarkar

b11 b22 b12 b11 b22 b12 b11 b22 b12

A1 0.184 −0.145 −0.165 0.338 −0.169 −0.141 0.32 −0.2 −0.145
A2 0.189 −0.147 −0.155 0.425 −0.182 −0.1025 0.44 −0.24 −0.12
A3 0.197 −0.152 −0.148 0.49 −0.19 −0.09 0.51 −0.275 −0.092
A4 0.214 −0.168 −0.142 0.62 −0.236 −0.058 0.6 −0.31 −0.06

Reynolds stresses anisotropies with increasing the gradient Mach number. Results obtained with Adumitroiae et al.’s model
[11] disagree with DNS data, especially at high-Mg values; in case B3, this model is still unable to predict the changes in
the magnitude of the Reynolds stress anisotropy when the compressibility is higher. Figs. 5, 6 and 7 present the behavior of
the pressure–strain correlation Πi j = ϕ∗

i j/2S K . As can be seen in these figures, the proposed model yields acceptable results
that are in good qualitative agreement with the DNS data, especially at high gradient Mach number. The predicted results
of the turbulent Mach number are plotted in Fig. 8. It can clearly be seen that both models appear to be able to predict
the correct trend of the Mt – increase with increasing the initial values of Mg. The predicted results for the growth rate
of the turbulent kinetic energy (Λ = (dK/dt)/S K ) are shown in Fig. 9. It can clearly be seen that both models are able to
predict accurately the trend towards a reduced growth rate with increasing the initial values of the gradient Mach number.
This phenomenon has often been observed in DNS results of compressible homogeneous shear flows. For the initial time,
Λ show a systematic increase from cases B1 to B3. To find the cause of this discrepancy, an equation for Λ is written as
follows [4,3]:

Λ = −2b12(1 − χ)

where χ = εs+εc−p′d′
S K , includes dilatational effects.

For initial times, St � 5, −2b12 shows little difference between the different cases, as it is shown in Fig. 4. According
to DNS results [4,3], it is easy to see that the difference between the values of −2b12 is much smaller than that between

χ values for initial times for cases B1 to B3. We notice that χd = εc−p′d′
S K is much larger in case B3 compared to that in

case B1. This implies that the important increase in magnitude of χ is the principal cause for the increase in the initial-
time values of Λ. On the contrary, for St � 12, χd becomes much smaller and the reduction of −2b12 is responsible for the
lowered growth rate of the turbulent kinetic energy.

Fig. 10 present the behavior of the normalized dissipation (εs/S K ) for cases A1, A2, A3 and A4 from DNS inferred from
DNS results [4]. It can be seen that there is a decrease in εs/S K when Mg0 increases, since the compressibility effects cause
significant reduction in the production from numerical simulation cases A1 to A4. All models are in acceptable accordance
with the DNS results of Sarkar [4]. From the above figures, one can remark that, particularly at high compressibility values
(case B3), there are substantial differences between the two models in their predictions. This can be found in the different
ways on which these models are developed. The model of Adumitroiae et al. [11] is based on a modeling approach similar
to that used for the incompressible flows. Probably, this can explain the observed deficiency of this model in the prediction
of the high-speed shear flow.

It is relevant to note that for St = 20 the turbulence seems to evolve towards equilibrium states. This can be seen more
clearly in Table 3 that shows a systematic comparison between the models predictions for the long-time values of bij and
the DNS results of Sarkar [4].

From Table 3, one can see that for high compressibilities, the proposed model is much better to predict accurately the
equilibrium values of bij for compressible shear flows than Adumitroiae et al.’s one.
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Fig. 11. The compressible mixing layers.

Table 4
Initial conditions for experiments results [10] of mixing layers.

Mc r = U2
U1

s = ρ2
ρ1

0.2 0.78 0.76
0.46 0.57 1.55
0.69 0.18 0.57
0.86 0.16 0.6
1.0 0.16 1.14

4.2. Simulation of the compressible mixing layer

Now we choose to examine the performance of the proposed model for the pressure–strain correlations (see Section 3)
in simulating fully developed stationary compressible mixing layers. The flow is governed by the averaged Navier–Stokes
equations associated with those describing energy, Reynolds stress, and turbulent dissipation. The simplest of the resulting
continuity, momentum and energy equations for stationary mixing layers can be written as:

∂

∂xi
(ρ̄Ũ i) = 0 (47)

∂

∂x j
(ρ̄Ũ i Ũ j) = − ∂

∂x j

(
ρu′′

i u′′
j

)
(48)

∂

∂xi
(ρ̄ C̄ v T̃ Ũ i) = −p′ ∂

∂xi
u′′

i + εc + εs − ∂

∂xi
ρ̄Cv

˜u′′
i T ′′ (49)

The Reynolds stress equation is written

∂

∂xm

(
ρ̄˜u′′

i u′′
j Ũm

) = −(
ρ̄ ˜u′′

i u′′
mŨ j,m + ρ̄ ˜u′′

j u′′
mŨi,m

) − (
ρ̄ ˜u′′

i u′′
j u′′

m
)
,m + φ∗

i j + 2

3
p′d′δi j − 2

3
εδi j (50)

The solenoidal dissipation rate shall be calculated using the classical model equation:

∂

∂xk
(ρ̄Ũkεs) = εs

K

(
Cε1 ρ̄

˜u′′
k u′′

m
∂

∂xm
Ũk − ρ̄Cε2εs

)
+ ∂

∂xk

(
−Cε3 ρ̄

K

ε
˜u′′

k u′′
m

∂

∂xm
εs

)
(51)

In the above-mentioned transport equations, several terms should be modeled. The gradient diffusion hypothesis is used
to model:

– the turbulent heat flux [17]

˜u′′
i T ′′ = −Ct

K

ε
˜u′′

i u′′
m

∂

∂xm
T̃ (52)

– the diffusion term [17]

ũiu jum = −Cs
K

ε
˜u′′

k u′′
m

∂

∂xm

˜u′′
k u′′

m (53)

The basic equations (47) to (51) on which the second-order closure for the stationary compressible mixing layers is
based are solved using a finite-difference scheme. We have calculated two free streams (see Fig. 11), characterized
typically by Mc and respectively by the ratios of the density s = ρ2

ρ1
and the velocity r = U2

U1
.

The inlet free stream conditions are those corresponding to the experiments of Goebel and Dutton [10] as mentioned in
Table 4.

The values of the constants used in the following simulation are:

Cε1 = 1.4, Cε2 = 1.8, Cμ = 0.09, Cεs = 0.18, Cs = 0.26, Ct = 0.25



578 H. Klifi, T. Lili / C. R. Mecanique 341 (2013) 567–580
Fig. 12. Normalized growth rate G versus convective Mach number Mc .

Fig. 13. Similarity profiles of the mean velocity in two-stream mixing layers: (a) Mc = 0.46, (b) Mc = 0.69, (c) Mc = 0.86.

The proposed model’s predictions will be compared with those obtained by Adumitroiae et al.’s model [11], and the exper-
imental results of Goebel and Dutton [10] for different values of the convective Mach number. The fundamental parameter
characterizing the effects of compressibility on the compressible mixing layers is the growth rate ( dδ

dx ), where δ denotes
the momentum thickness of the mixing layer. The width of δ is defined by the transverse distance between the two po-
sitions where the non-dimensional velocity U ∗ = U−U2

U1−U2
equals 0.1 and 0.9. Fig. 12 shows the comparison between the

computed normalized growth rate by its value in the incompressible case, G = ( dδ
dx )/( dδ

dx )Mc=0 with different experimental
results available in the literature and with those obtained by the empirical formula of Dimotakis [18]:

G = 0.8e(−M2
c ) + 0.2 (54)

The growth rate G predicted by the proposed model decreases with increasing the convective Mach number, in agreement
with experimental results. This phenomenon that is observed in experimental studies of compressible mixing layers is over-
predicted by the model of Adumitroiae et al. [11], the reduction of G with Mc is slightly smaller than in the experimental
results [10]. The normalized stream mean velocity U∗ is represented in relation to the similarity variable y+ = (y − yc)/δ in
Fig. 13, where y is the local cross-stream coordinate and yc is the cross-stream coordinate corresponding to U∗ = 0.5. The
velocity profiles calculated through the two models are in reasonable agreement with the experimental results [10]. The
effects of the two Mach numbers Mt and Mc on the changes in the pressure–strain correlation are clearly seen in Figs. 14,
15 and 16, which respectively compare the similarity profiles of the streamwise R11 = ũ′′ 2/(U1 − U2)

2, the transverse
R22 = ṽ ′′ 2/(U1 − U2)

2 and the shear stress R12 = ˜u′′v ′′/(U1 − U2)
2 turbulence intensities of the Reynolds stress obtained by

the proposed model and Adumitroiae et al.’s one [11] with the experimental results [10] for three values of the convective
Mach number. Examination of these figures indicates that the proposed model’s predictions of these turbulent quantities
are in good agreement with the experimental results [10]. One can see that the peak values predicted by the proposed
model are closer to the experimental peaks [10] than those predicted by Adumitroiae et al.’s model, this latter model un-

derestimating (R11)max and overpredicts (R22)max and ((−R12)
1
2 )max. However, all these turbulence quantities appear to be

accurately captured by the proposed model.
The current study shows that the changes in the structural compressibility effects of the pressure–strain correlation are

key to explain the observed behaviors. The convective Mach number seems to be an adequate parameter for characterizing
such effects on mixing layers.

5. Conclusion

In this study, the widely known second-order closure has been used for the prediction of compressible turbulent shear
flows. The standard Reynolds stress turbulence closure with the addition of the pressure–dilatation and compressible dis-
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Fig. 14. Similarity profiles of longitudinal turbulence intensity: (a) Mc = 0.46, (b) Mc = 0.69, (c) Mc = 0.86.

Fig. 15. Similarity profiles of transverse turbulence intensity: (a) Mc = 0.46, (b) Mc = 0.69, (c) Mc = 0.86.

Fig. 16. Similarity profiles of shear turbulence intensity: (a) Mc = 0.46, (b) Mc = 0.69, (c) Mc = 0.86.

sipation models yields very poor predictions of the changes in the Reynolds-stress anisotropy magnitude. The deficiency of
this closure is due to the use of the incompressible models of the pressure–strain correlation. A new version of the extended
LRR model [8] involving the gradient Mach numbers Mg and Mc with the commonly used the turbulent Mach number Mt
has been proposed to reflect compressibility effects. A comparison has been made between the behaviors of the proposed
model and the compressible model of Adumitroiae et al. [11] for the pressure–strain correlation in two different applica-
tions: the compressible homogeneous shear flow and the mixing layers. The proposed model shows satisfactory agreement
with available DNS [4,3] and experimental results [10]. This model appears to be able to predict accurately the structural
compressibility effects: the significant decrease in the magnitude of the Reynolds shear stress, the increase in magnitude
of the diagonal components of the Reynolds stress anisotropies with increasing initial values of the gradient Mach num-
ber. Also, the asymptotic states of the flow are well predicted by the proposed model, and the equilibrium values of the
Reynolds stress anisotropies are in accordance with the DNS data. In compressible mixing layer flows, the proposed model
successfully predict the reduced growth rate and the decrease in the Reynolds stress peaks with increasing the convective
Mach number. Also, the similarity velocity is well predicted by the proposed model. The model of Adumitroiae et al. [11]
predicts satisfactorily the behaviors of the compressible homogeneous shear flow and the mixing layers at low compressibil-
ity values, but fails to predict high structural compressibility effects on these flows. Therefore, the gradient Mach numbers
Mg and Mc are found out to be important parameters in addition to Mt in the modeling of the pressure–strain correlation
with respect to turbulent compressible homogeneous shear flows and mixing layers.
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