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A novel analytical model is presented for analyzing the steady-state creep in short-fiber
composites under axial load utilizing the previous shear-lag theory, the imaginary fiber
technique and also new approaches of Hermite polynomials, hyperbolic trigonometric
functions and power series. The steady-state creep behavior of the matrix is described
by an exponential law, while the fibers behave elastically. In this model, in spite of the
previous researches, some unknowns such as shear stress, displacement rates, and creep
strain rates are correctly determined in all regions of the unit cell without using any
further assumptions. In comparison with previous analytical approaches, the results of the
present work are closer to the FEM simulations. This strong method can be used in various
problems in applied physics and mechanics such as elastic and plastic analysis of nano-
composites.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The development of advanced aerospace materials depends on their ability to retain stiffness and strength at high
temperatures. Metal matrix composites (MMCs) have several advantages such as high strength, high modulus and good
conductivities due to the combination of metallic properties such as ductility, toughness, and environmental resistance with
ceramic properties such as high strength and modulus. In recent years, the high-temperature creep behavior of SiC whiskers
reinforced aluminum alloys has been the subject of studies that aimed at assessing the potential of these composites to
be used as materials for high-temperature applications. Short-fiber metal matrix composites are particularly interesting and
significant among other composites, due to their comparatively low cost and ease of machining into complex shapes.

Since the creep tests are usually expensive and very time consuming and also suffer some difficulties and limitations,
analytical and numerical investigations are carried out to replace experimental tests by analytical or numerical simulations.
The related previous studies can be classified into three categories (analytical, experimental, and numerical). Various con-
sequential analytical [1–16], experimental [17–23] as well as numerical [24–29] investigations have been conducted in the
field of composites’ creep and its applications.

The previous analytical researches are usually based on the shear-lag models [1–6]. A one-dimensional shear-lag model
was originally presented by Cox [1]; this was a comprehensive and powerful method for stress transfer analyses of unidirec-
tional fibrous composites. In this way, some researchers have used an imaginary fiber technique for analyzing stress transfer
in the fiber and in the matrix [3,5–8]. In most of the previous researches, the fiber and the matrix behave elastically during
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stress analysis. Recently, Mondali et al. [6] presented an analytical model for obtaining a steady-state creep deformation and
stress analysis of composites with elastic short fibers using the shear-lag theory and the imaginary fiber technique, where
the creep behavior of matrix was also considered to follow an exponential law. Also, the high-temperature creep behavior
of short-fiber-reinforced ceramic-matrix composites has been studied based on the advanced shear-lag theory, considering
a power-law creep for both matrix and fiber under uniaxial loading [7]. In this research, a parametric study was under-
taken to define the effects of the fiber volume fraction and the fiber/matrix interface sliding factor on the composite’s
creep rate. Jiang et al. [8] presented an analytical model for three-dimensional elastic stress field distribution in short-fiber
composites under axial loading and thermal residual stresses using the imaginary fiber technique, equilibrium and com-
patibility conditions. Moreover, other analytical methods have been presented based on analogies to perfect plasticity [9],
phenomenological analysis [10], viscoelastic creep [11], continuum model [12], potential function [13], variational proce-
dure [14], complex variable method [15], and, recently, dimensionless parameter and mapping function techniques [16]. For
instance, a general formulation based on analogies to perfect plasticity has been analytically presented for the constitutive
equations in the steady-state creep of an element with anisotropic material under multi-axial stress states by Berman and
Pai [9]. Also, phenomenological analysis has been used by De Silva [10] to investigate the creep mechanism in a fiber com-
posite using virtual displacements. Also, primary creep deformation of a unidirectional metal matrix composite based on the
continuum model has been studied analytically by Min and Crossman [12]. Besides, a variational procedure has been pro-
posed for estimating the effective constitutive behavior of polycrystalline materials undergoing high-temperature creep [14].

Experimental investigations are usually necessary for obtaining the creep and elastic properties of the short-fiber
composites. Creep behavior of Kevlar 49/ERLA 4617 epoxy composites at room temperature has been studied experimen-
tally [18]. Assessment of the creep rate in lead specimens containing aligned rods of phosphor bronze has been done by
A. Kelly and K.N. Street [17]. Moreover, some authors have studied the steady-state creep behavior of short-fiber metal
matrix composites [19–22]. Morimoto et al. [20] have analyzed the steady-state creep behavior of the Al6061/SiC composite
at 573 K. Aluminum matrix composites with planar-random graphite fibers and SiC whiskers have been evaluated for their
high-temperature performances [21]. The effect of the occurrence of the creep phenomenon during aging has been analyzed
in polyurethane thermoplastic during aging at 70 ◦C and at 90 ◦C [23].

Numerical analyses and tests have also been performed in metal matrix composites [24,26,28,29]. For example, Park and
Holmes [25] developed two- and three-dimensional FEM models to analyze the tensile creep and creep-recovery behavior
of unidirectional fiber-reinforced ceramic composites. The fiber–matrix interlayer creep characteristics in indentation creep
tests were numerically investigated using a creep finite element analysis by Yue and Lu [27]. Also, Ghavami et al. [29]
presented a numerical finite difference approach to obtain the steady-state creep stress and displacement rate fields of the
Al6061/15%SiC composite under both the perfect bond and the interfacial debonding assumptions. Moreover, essential and
valuable formulations and theorems in plasticity and creep have been analyzed and reviewed in some references and books
[30,31].

In experimental studies, some defects or failure arising from manufacturing processes establish the causes for incon-
sistency in predicted mechanical properties compared with numerical and analytical simulations. Note that simulating all
defects such as the fiber misorientation, voids, cracks and other similar defects in numerical and analytical models is proba-
bly impossible. In most of the previous analytical researches, a number of assumptions and simplifications have been made,
such as ignoring some equilibrium and constitutive equations and also assuming a linear behavior for the interfacial shear
stress [6].

In the present work, a perfect fiber/matrix interface is assumed and the steady-state creep behavior of the matrix is
described by an exponential law. Also, the incompressibility condition, the constitutive and equilibrium equations, and the
boundary conditions are completely satisfied here. The new analytical model is proposed based on the shear-lag theory,
the imaginary fiber technique, Hermite polynomials, hyperbolic trigonometric functions and power series. Note that the
displacement rates on the top of the fiber (region II) are analytically obtained without considering any non-analytical as-
sumption, unlike the prior studies [1–8]. The obtained analytical results are then validated by finite element modeling and
the other available analytical approaches. For this purpose, the Al6061/15%SiC composite has been selected as a case study.

Finally, the presented method can be used for analyzing creep in nano-composites, visco-elasto-plastic problems and
mechanical design under high temperature and stress because of its high performance in determination of all unknown
parameters.

2. Material and method

2.1. Composite model

The unit cell model shown in Fig. 1 has been used by many investigators to model a short-fiber composite as represen-
tative of a composite reinforced with whiskers [3,5,6,8,20].

The volume fraction and aspect ratio of the fiber are f = a2l/b2l′ and s = l/a, respectively. Also, in this work, k = l′a/lb
is assumed as a parameter related to the unit cell geometry. The cylindrical polar coordinate system (r, θ, z) is employed
for creep analysis. Also, elastic deformations are very small and are neglected compared with creep deformations. Fibers
behave elastically during the analysis unlike the matrix, which follows a steady-state creep behavior. The second-stage
creep behavior of the matrix is described by an exponential law (Eq. (1)):
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Fig. 1. Unit cell model.

ε̇eq = A exp

(
σeq

B

)
(1)

Parameters ε̇eq and σeq are the equivalent strain rate and the equivalent stress, respectively. Also, A and B are material
constants ruling steady-state creep. The mentioned parameters will be introduced in the following sections.

2.2. Formulations

The generalized constitutive equations for the creep small deformation of the matrix material are as the following
[30,31]:

ε̇r = ψ
[
σr − ν(σθ + σz)

]
(2a)

ε̇θ = ψ
[
σθ − ν(σr + σz)

]
(2b)

ε̇z = ψ
[
σz − ν(σr + σθ )

]
(2c)

γ̇rz = 3ψτrz (2d)

in which ψ = ε̇e
σe

and ν = 1
2 . Solving Eqs. (2a)–(2d) gives:

σr + X = t (3a)

σz + Π = t (3b)

σθ + Γ = t (3c)

X = 4τrz(ε̇r + 2ε̇θ + 1.5ε̇z)γ̇
−1

rz (3d)

Π = 2τrz(ε̇r + 2ε̇θ )γ̇
−1

rz (3e)

Γ = 0 (3f)

where t is a constant and γ̇rz is the shear strain rate. Also, the incompressibility condition should be satisfied, that is:

∂ u̇

∂r
+ u̇

r
+ ∂ ẇ

∂z
= 0 (4)

Parameters u̇ and ẇ are the radial and axial displacement rates, respectively. Also, the equivalent stress σeq and the equiv-
alent strain rate ε̇eq are given by:

σeq =
√

2

2

[
2

3

(
σeqγ̇rz

ε̇eq

)2

+ (σr − σθ )
2 + (σr − σz)

2 + (σz − σθ )
2
] 1

2

(5)

ε̇eq =
√

2 [
6ε̇2

rz + (ε̇r − ε̇θ )
2 + (ε̇r − ε̇z)

2 + (ε̇z − ε̇θ )
2] 1

2 (6)

3
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The equilibrium equations for the axisymmetric problem considering the cylindrical coordinates (r, θ, z) are:

∂σz

∂z
+ ∂τrz

∂r
+ τrz

r
= 0 (7a)

∂σr

∂r
+ ∂τrz

∂z
+ σr − σθ

r
= 0 (7b)

where ε̇r , ε̇θ , ε̇z , and ε̇rz are the strain rate components in the directions indicated by subscripts. Also, σr , σθ σz and τrz
are the radial, circumferential, axial and shear stress components, respectively.

2.3. Boundary conditions

In order to determine and analyze the creep behavior, the following boundary conditions (BCs) are as follows.
(i) For the region I in the creeping matrix (a < r < b, 0 < z < l):

u̇(a, z)|0�z�l = ẇ(a, z)|0�z�l = ẇ(r,0)|a�r�b = 0 (8a)

ẇ(r, l)|a<r�b = 2lu̇b

b
, ẇ(b, l) = 2lu̇b

b
, u̇(b, z)|0�z�l = u̇b (8b)

τrz(r,0)|a�r�b = τrz(b, z)|0�z�l = 0 (8c)

γ̇rz(r,0)|a�r�b = γ̇rz(b, z)|0�z�l = 0 (8d)

τm
rz (a, z)|0�z�l = τ

f
rz(a, z)|0�z�l = τi (8e)

σm
r (a, z)|0�z�l = σ

f
r (a, z)|0�z�l = σm

θ (a, z)|0�z�l = σm
z (a, z)|0�z�l (8f)

(ii) For the region II in the creeping matrix (0 < r < b, l < z < l′):

u̇′(0, z)|l�z�l′ = 0, ẇ ′(r, l′
)∣∣

0�r�b = 2l′u̇b

b
, u̇′(b, z)|l�z�l′ = u̇b (8g)

τrz(0, z)|l�z�l′ = τrz
(
r, l′

)∣∣
0�r�b = τrz(b, z)|l�z�l′ = 0 (8h)

γ̇rz(0, z)|l�z�l′ = γ̇rz
(
r, l′

)∣∣
0�r�b = γ̇rz(b, z)|l�z�l′ = 0 (8i)

u̇′(r, l)|a<r�b = u̇(r, l)|a<r�b, ẇ ′(r, l)|a<r�b = ẇ(r, l)|a<r�b = 2lu̇b

b
(8j)

u̇′(r, l)|0�r�a = u̇(r, l)|0�r�a = ẇ ′(r, l)|0�r�a = ẇ(r, l)|0�r�a = 0 (8k)

σr(0, z)|l�z�l′ = σθ (0, z)|l�z�l′ , σz
(
r, l′

)∣∣
0�r�b = σ0 (8m)

For example, the boundary condition ẇ ′(r, l′)|0�r�b = 2l′u̇b/b is obtained by the incompressibility condition. Primed
and unprimed signs denote respectively the regions II and I in the mentioned unit cell. Axial force equilibrium conditions
between the matrix and the fiber at any z location in the direction of the model length are introduced by:

b2σ0 = a2σ̄
f

z + (
b2 − a2)σ̄m

z (9)

where the superscripts m and f denote the matrix and fiber and the bar sign on the stress symbol (σ̄m
z ) denotes the average

value over the cross-sections of the matrix and of the fiber (for simplicity in relations and formulations, some of them have
not the superscript m, but the existence of the superscript f is necessary). It should be mentioned that all obtained results
are related to the matrix in the steady-state creep of the short-fiber composites. The absence and presence of the superscript
m indicate that the mentioned parameter is related to the matrix, but the presence of the superscript f is necessary for
indicating the fiber. For instance, σ̄m

z
∼= σ̄z , u̇(r, z) ∼= u̇m(r, z). Deformed and undeformed edges of the unit cell are shown in

Fig. 2 for the case of steady-state creep under tensile axial stress.

2.4. Problem solution steps

First, the radial and axial displacement rates u̇ and ẇ are obtained utilizing the incompressibility and appropriate bound-
ary conditions. The radial displacement rate u̇ is a combination of the orthogonal, hyperbolic trigonometric, well-behaved
functions and power series (see Eqs. (10a) and (11a), (11b)). This combination results in an excellent and accurate prediction
for the second-stage creep behavior. After obtaining the displacement rates, all strain rate components and shear stresses
are determined considering one unknown u̇b simply (see Section 3).

Therefore, the radial displacement rate in the outer surface u̇b should be determined (see Section 4). This parameter is
obtained using the shear lag and the imaginary fiber technique, considering new displacement rates in region II (see Eqs.
(17)–(24) and (8g)–(8m)). Finally, stress fields will be determined using constitutive and equilibrium equations, considering
incompressibility and boundary conditions and geometric relations (Eqs. (1)–(9) and (12)–(16)). These steps are completely
presented in the detailed explanations of the following sections.
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Fig. 2. Undeformed and crept edges.

Fig. 3. Presentation of important regions in the unit cell for solving the creep problem.

3. Theory and calculations

Combination of the Hermite polynomials as a special function, hyperbolic trigonometric functions and power series
is a powerful tool for predicting behavior of the unknowns. This can be another novelty of the present research, which
provides exact results compared with FEM results. Hermite polynomials are called the classical orthogonal polynomials.
These functions and polynomials behave well because of smooth changes in small intervals and smooth gradients. Radial and
axial displacement rates u̇(r, z) and ẇ(r, z) should satisfy the boundary and incompressibility conditions. Here, the radial
displacement rate u̇(r, z) is obtained by mathematical combination of the Hermite polynomials, of hyperbolic trigonometric
functions and of power series. Then, the coupled displacement rate ẇ(r, z) is determined by the incompressibility condition
in the creeping matrix in region I (see Fig. 3).

Hermite polynomials Hn(r) and hyperbolic trigonometric function HTFn(r) considering power series PSn(r) for obtaining
the steady-state creep behavior of the creeping matrix are given below:

u̇(r, z) = k1 Hn(r) + k2HTFn(r) + PSn(r) (10a)

in which the hyperbolic trigonometric function HTFn(r) and HTF∞(r) are given as:

HTFn(r) =
n∑

k=0

r2k+1

(2k + 1)! = r
n∏

k=1

(
1 + r2

k2π2

)
(10b)

HTF∞(r) =
∞∑

k=0

r2k+1

(2k + 1)! = r
∞∏

k=1

(
1 + r2

k2π2

)
= sinh(r) (10c)

Also, Hermite polynomials Hn(r) are in the form:

Hn(r) = (−1)
n
2 n!

n
2∑

(−1)k (2r)2k

(2k)!(n
2 − k)! , if n even (10d)
k=0
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Hn(r) = (−1)
n−1

2 n!
n−1

2∑
k=0

(−1)k (2r)2k+1

(2k + 1)!(n−1
2 − k)! , if n odd (10e)

Power series PSn(r) is given as:

PSn(r) =
n∑

k=0

akrk (10f)

Hn(r) is the Hermite polynomial of degree n. The axial displacement rate ẇ(r, z) is obtained by the incompressibility
condition and writes:

ẇ(r, z) = −
[
(−1)

n
2 n!k1

n
2∑

k=0

(−1)k (2k + 1)r2k−122k

(2k)!(n
2 − k)! + k2

n∑
k=0

(k + 1)2r2k

(2k + 1)! +
n∑

k=0

akrk−1(k + 1)

]
z, if n even

(11a)

ẇ(r, z) = −
[
(−1)

n−1
2 n!k1

n−1
2∑

k=0

(−1)k (2k + 3)22kr2k

(2k + 1)!(n−1
2 − k)! + k2

n∑
k=0

(k + 1)2r2k

(2k + 1)! +
n∑

k=0

akrk−1(k + 1)

]
z, if n odd

(11b)

Here, the unknown coefficients of ki ’s and ak ’s are also determined by the extended boundary conditions (BCs) presented
in Eqs. (8a)–(8f). For example, these boundary conditions ẇ(a,0) = ẇ(a,0.1l) = ẇ(a,0.2l) = ẇ(a,0.3l) = · · · = ẇ(a, l) = 0
are the extended boundary conditions for the boundary condition ẇ(a, z)|0�z�l = 0 in the creeping matrix in region I. In
addition, the creep strain rate components ε̇r , ε̇θ and ε̇z (Eqs. (12)–(15)) may be given by:

ε̇r = ∂ u̇

∂r
= (−1)

n
2 n!k1

n
2∑

k=0

(−1)k 4k(2r)2k−1

(2k)!(n
2 − k)! + k2

n∑
k=0

(2k + 1)r2k

(2k + 1)! +
n∑

k=0

kakrk−1, if n even (12a)

ε̇r = ∂ u̇

∂r
= (−1)

n−1
2 n!k1

n−1
2∑

k=0

(−1)k (2k + 1)(2r)2k

(2k + 1)!(n−1
2 − k)! + k2

n∑
k=0

(2k + 1)r2k

(2k + 1)! +
n∑

k=0

kakrk−1, if n odd (12b)

The above equations (Eqs. (12a), (12b)) predict the radial strain rate behavior in the creeping matrix. Moreover, Eqs. (13a),
(13b) define the circumferential strain rate in the creeping matrix as the following:

ε̇θ = u̇

r
= (−1)

n
2 n!k1

n
2∑

k=0

(−1)k 22kr2k−1

(2k)!(n
2 − k)! + k2

n∑
k=0

r2k

(2k + 1)! +
n∑

k=0

akrk−1, if n even (13a)

ε̇θ = u̇

r
= (−1)

n−1
2 n!k1

n−1
2∑

k=0

(−1)k 22k+1r2k

(2k + 1)!(n−1
2 − k)! + k2

n∑
k=0

r2k

(2k + 1)! +
n∑

k=0

akrk−1, if n odd (13b)

Here, axial strain rates (Eqs. (14a), (14b)) write:

ε̇z = ∂ ẇ

∂z
= −

[
(−1)

n
2 n!k1

n
2∑

k=0

(−1)k (2k + 1)r2k−122k

(2k)!(n
2 − k)! + k2

n∑
k=0

(k + 1)2r2k

(2k + 1)! +
n∑

k=0

akrk−1(k + 1)

]
, if n even

(14a)

ε̇z = ∂ ẇ

∂z
= −

[
(−1)

n−1
2 n!k1

n−1
2∑

k=0

(−1)k (2k + 3)22kr2k

(2k + 1)!(n−1
2 − k)! + k2

n∑
k=0

(k + 1)2r2k

(2k + 1)! +
n∑

k=0

akrk−1(k + 1)

]
, if n odd

(14b)

In the above relations, ε̇r , ε̇θ and ε̇z are the radial, circumferential and axial strain rates, respectively, only in the creeping
matrix in the second-stage creep. In what follows, shear strain rates are given by:

γ̇rz = ∂ u̇

∂z
+ ∂ ẇ

∂r
= −

[
(−1)

n
2 n!k1

n
2∑

(−1)k (4k2 − 1)r2k−222k

(2k)!(n
2 − k)! + k2

n∑ 4k(k + 1)r2k−1

(2k + 1)!

k=0 k=0
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+
n∑

k=0

(
k2 − 1

)
akrk−2

]
z, if n even (15a)

γ̇rz = ∂ u̇

∂z
+ ∂ ẇ

∂r
= −

[
(−1)

n−1
2 n!k1

n−1
2∑

k=0

(−1)k k(2k + 3)22k+1r2k−1

(2k + 1)!(n−1
2 − k)! + k2

n∑
k=0

4k(k + 1)r2k−1

(2k + 1)!

+
n∑

k=0

(
k2 − 1

)
akrk−2

]
z, if n odd (15b)

where γ̇rz = 2ε̇rz . Parameter γ̇rz has been assumed in previous researches [6], without any analytical reason, whereas this
parameter is obtained analytically in this research (see Eqs. (15a), (15b)). The shear stress in the creeping matrix is obtained
by Eqs. (1), (2a)–(2d), i.e.:

τm
rz = B ln(

ε̇eq
A )γ̇rz

3ε̇eq
(16)

The present method is only an approach based on the Hermite polynomials, hyperbolic trigonometric functions and
power series (HHP). For the sake of creep analysis, the unit cell is divided into two separate regions I and II, shown in Fig. 3
(σapp = σ0).

It should be mentioned that accuracy and correctness of the results strongly depend on the boundary conditions and the
displacement rate fields. Therefore, these boundary conditions and fields should be presented exactly.

4. Determination of σ̄ f
z , u̇b and other unknowns

In this section, the radial displacement rate in the outer surface u̇b is obtained. Here, the rule of mixture, shear-lag
theory, imaginary fiber technique and new displacement rates in region II u̇′(r, z) and ẇ ′(r, z) are used to determine this
parameter. The following shear-lag theory has been introduced by Cox [1]:

σ̄
f

z

∣∣z
l = −2

a

z∫
l

τi(z)dz, τi(z) = τm
rz

∣∣
r=a,0<z<l (17)

The determination of the shear stress in region II is similar to the method used analytically for region I with different
displacement rates u̇′(r, z) and ẇ ′(r, z). The radial displacement rate in region II is given by:

u̇′(r, z) =
β∑

i=α

cir
iγ +

θ∑
j=β+1

c j(rz) jη +
Ψ∑

k=θ+1

ckzkλ + ekΩz ln(kϕr), Ψ − α � 75 (18)

The axial displacement rate in the region II ẇ ′(r, z) is analytically determined using incompressibility conditions with
consideration of Eqs. (4), (18); it yields:

ẇ ′(r, z) = −z
β∑

i=α

cir
iγ −1(iγ + 1) −

θ∑
j=β+1

c j(1 + η j)r jη−1z jη+1

jη + 1
−

Ψ∑
k=θ+1

ckzkλ+1

r(kλ + 1)
+ ekΩz(1 + ln(kϕr))

rkΩ
(19)

The coefficients of ci ’s, c j ’s and ck ’s are obtained by suitable and extended boundary conditions (BCs) presented in
Eqs. (8g)–(8m). According to Eq. (16), the shear stress in region II is obtained as:

τ ′
i (z) = B ln(ε̇′

eq/A)γ̇ ′
rz

3ε̇′
eq

, τ ′
i (z) = τm

rz

∣∣
r=a,l<z<l′ (20)

It should be mentioned that the shear stress τ ′
i (z) has been assumed to be linear in region II, without analytical reason,

in some references such as [6]. However, the shear stress τ ′
i (z) is non-linear in region II. Introduction of Eqs. (18)–(20)

is another novelty of this work on the steady-state creep of short-fiber composites. All primed parameters should be cal-
culated again based on new displacement rates u̇′(r, z) and ẇ ′(r, z), considering the boundary conditions presented in
Eqs. (8g)–(8m) analytically. The following equation is also obtained using the shear-lag equation, imaginary the fiber tech-
nique and new displacement rates u̇′(r, z) and ẇ ′(r, z) for region II:

σ̄
′ f
z

∣∣l′
l = −2B

3a

l′∫ ln(ε̇′
eq/A)γ̇ ′

rz

ε̇′
eq

dz (21)
l
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After substituting equivalent and shear strain rates into Eq. (21) and integrating, the average axial stress in the fiber can
be obtained using the shear lag, the imaginary fiber technique and new displacement rates u̇′(r, z) and ẇ ′(r, z), considering
σ̄

′ f
z |z=l′ = σ0 = σapp and σ̄

′ f
z |z=l = σ̄

f
z |z=l in region II,

σ̄
f

z = −blz

2a

(
ln

(
1 +

√
6u̇b z

A

)
− 1

)
+ Bl(l + l′)√

3a
− 8

√
3l′

3a
+ σapp (22)

The only unknown parameter here is the radial displacement rate in the outer surface u̇b which is calculated employing
the rule of the mixture equation and the average value of stresses in r and z directions:

(1 − ν)

l

l∫
0

σ̄
f

z dz + νB ln

(
−2u̇b

Ab

)
= σ0, ν = 1 − f (23)

Now, u̇b is determined by Eq. (23), that is

u̇b = −A exp

(
l′bσ0ν + f l − √

3aB(b − a)

l′Bb2(b − a)3

)
(24)

Stresses in the matrix, σm
z , σm

r and σm
θ are determined by solving equilibrium and constitutive equations, considering ge-

ometry relations. In accordance with this research and the obtained results, the following relations and boundary conditions
can be used to obtain shear stresses in regions I and II:

l′∫
l

τ ′
i (z)dz <

1

2
τl

(
l − l′

)
(25)

τll >

l∫
0

τi(z)dz >
1

2
τll (26)

∂τ ′
i

∂z

∣∣∣∣
z=l′

= 0,
∂τ ′

i

∂z

∣∣∣∣
z=l

= ∞ (27)

Also, τi |z=l = τ ′
i |z=l = τl = τ ′

l and τ ′
i |z=l′ = τi |z=0 = 0 are boundary conditions related to steady-state creep in the creeping

unit cell.

∂τi

∂z

∣∣∣∣
z=0

= ∞,
∂τi

∂z

∣∣∣∣
z=l

= 0,
∂2τi

∂z2

∣∣∣∣
0<z<l

< 0,
∂2τ ′

i

∂z2

∣∣∣∣
l<z<l′

> 0 (28)

Moreover, the following relations can be employed for analyzing steady-state creep in the creeping short-fiber composite.
As mentioned before, τi(z) and τ ′

i (z) are shear stresses (at r = a) in regions I and II in the unit cell, respectively. The
mentioned boundary conditions indicate that the gradients of shear stress curves in the fiber’s end and in the middle of
the fiber are respectively zero and infinity, due to the tensile steady-state creep of the short-fiber composite. Therefore, the
smooth and mellow behavior of the steady-state creep is one of the important characteristics of the second-stage creep in
the same regions of the unit cell:

l∫
0

τi(z)dz ∼= 0.85τll (29)

l′∫
l

τ ′
i (z)dz ∼= 1

3
τl

(
l − l′

)
(30)

1

2
τll

′ ∼=
l∫

0

τi(z)dz +
l′∫

l

τ ′
i (z)dz (31)

After determining the unknowns, results and discussions are presented in the following sections.
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Fig. 4. Average shear stresses in the matrix at (a) r = a, 0 � z � l′ , (b) r = (a + b)/2, 0 � z � l.

5. Results and discussions

To examine the validation of the present analytical model, the SiC/Al6061 composite is chosen as a test case. Afterward,
the results obtained from the model are compared with the FEM results and also the previous analytical results by Mondali
et al. [6]. FEM calculations will be carried out using the FE commercial code of ANSYS. The model geometry is chosen as
shown in Fig. 1 and the surface conditions are applied as presented in Eqs. (8a)–(8m) (also see Figs. 2 and 3). Also, the
axisymmetric non-linear quadratic element of PLANE 183 is used for FEM analysis. Results obtained from this study are
shown in Figs. 4 and 5 and Tables 1–7 which are compared with the FEM, analytical, and available experimental results.
For the composite used here (SiC/Al6061), the volume fraction of fibers is 15% and the fibers have an aspect ratio of 7.4
(s = 7.4) and k = 0.76, which is in accordance with the suggestions made by Morimoto et al. [20]. Also, the steady-state
creep constants of the matrix material, A and B , in Eq. (1) are considered as A = exp(−24.7) and B = 6.47, values that had
been given by Morimoto et al. [20]. The applied load and the temperature are considered to be σ0 = σapp = 80 MPa and
T = 300 ◦C, respectively.

According to Tables 1–6, good agreement is found among the stress components obtained by the mentioned methods. In
comparison with the FEM, the results of the present model are more accurate than the other previously published results.
Based on the obtained results, very high gradients are seen for the interfacial shear and equivalent stress behaviors at
the middle regions of the fiber. However, very low gradients are observed for the interfacial shear and equivalent stress
behaviors at the end of the fiber.

The logarithmic functions can interpret and explain the mentioned behaviors for the creeping matrix. Low and high
gradients at the interface are arising from changes of the geometric factors, material properties, and applied loading.
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Fig. 5. Stresses relations for the creeping matrix in the region I at (a) r = a, (b) r = b.

However, linear behaviors are seen in the axial, radial and circumferential stress components at the interface and outer
surface. Furthermore, gradient changes in the axial, radial and circumferential stresses are smooth and uniform. In accor-
dance with the obtained results, interfacial shear and equivalent stresses have logarithmic and non-linear behaviors, whereas
the axial, radial and circumferential stress behaviors are linear at the interface.

Figs. 4(a), 4(b) show the matrix shear stress predicted by the FEM and analytical methods at r = a, 0 � z � l′ and
r = (a + b)/2, 0 � z � l. According to Fig. 4(a), the matrix shear stress is suddenly dropped near the end-region of the fiber
(at region II: l � z � l′ , r = a) due to a lack of the fiber and the proximity to the applied axial stress σ0.

Smooth changes in gradient are observed in the shear stress curves in region I (0 � z � l, r = a, (a + b)/2) due to the
existence of the fiber, away from the applied stress σ0 in the mentioned region. In addition to the mentioned reasons,
the matrix properties and geometric factors are also important and effective in the steady-state creep of the short-fiber
composites.

The stress values are very high on the top of the fiber (z = l, r = a) due to a stress concentration effect, unlike the
displacement rates. Also, high compressive stresses are seen in the middle of the unit cell at z = 0, due to tensile steady-state
creep. Compressive radial stresses are establishing from the tensile creep of the matrix. Also, tensile creep of the matrix
exerts very large compressive stresses to the fiber in the radial direction of the unit cell.

Figs. 5(a), 5(b) show the axial, radial and circumferential stress relations of the matrix in 3D space.
Table 7 presents the strain rate components normalized by the radial displacement rate at the outer surface of the unit

cell.
Interestingly, good similarities and agreements are observed among our analytical and numerical results and the pre-

viously published analytical ones. In comparison with the other previous methods, that reported in the present work has
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Table 1
Comparison of the analytical and FEM results for obtaining the shear and equivalent stresses in the matrix at r = a.

Methods Stresses in the matrix (MPa) Normalized axial position, 0 < z/l < 1, r = a

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Present work Shear stress 0 18.4 22.6 25.1 26.9 28.3 29.4 30.7
Equivalent stress 0 31.9 39.3 43.6 46.6 49.1 50.9 52.8

FEM Shear stress 0 19.5 23.6 25.1 26.9 27.9 28.7 30.2
Equivalent stress 0 33.27 40.3 44.7 46.9 49.3 50 51.9

Analytical, [6] Shear stress 0 20.3 22.9 24.4 25.5 26.3 27 27.8
Equivalent stress 0 35.2 39.7 42.3 44.2 45.6 46.8 48.2

Table 2
Comparison of the analytical and FEM results for obtaining the shear and equivalent stresses in the matrix at r = b.

Methods Stresses in matrix (MPa) Normalized axial position, 0 < z/l < 1, r = b

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Present work Shear stress 0 0 0 0 0 0 0 0
Equivalent stress 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4

FEM Shear stress 0 0 0 0 0 0 0 0
Equivalent stress 28.9 28.5 28.7 28.7 28.6 28.6 28.5 24

Analytical, [6] Shear stress 0 0 0 0 0 0 0 0
Equivalent stress 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3

Table 3
Comparison of the analytical and FEM results for obtaining the normal stresses in the matrix at r = a.

Stresses in matrix (MPa) Normalized axial position, 0 < z/l < 1, r = a

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Axial, circumferential and radial stresses (present work) −88.5 −82.09 −70.3 −54.8 −36.7 −17.4 1.6 25.5
Axial, circumferential and radial stresses (FEM) −85.1 −83.2 −68.8 −54.2 −34.9 −16.3 −0.8 −383
Axial, circumferential and radial stresses (analytical, [6]) 201.5 −78.6 −60.9 −43.5 −26.2 −8.7 8.7 33.5

Table 4
Comparison of the analytical and FEM results for obtaining the axial stress in the matrix at r = b.

Stresses in matrix (MPa) Normalized axial position, 0 < z/l < 1, r = b

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Axial stress (analytical, present work) −59.1 −50.1 −36.3 −19.4 −1.06 17.2 33.7 51.01
Axial stress (FEM) −58.2 −52.6 −35.1 −19.7 −0.6 15.1 33 48.2
Axial stress (analytical, [6]) −84.4 −45.2 −28.3 −14.7 4.43 21.5 39.5 60.2

Table 5
Comparison of the analytical and FEM results for obtaining the radial stress in the matrix at r = b.

Stresses in matrix (MPa) Normalized axial position, 0 < z/l < 1, r = b

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Radial stress (analytical, present work) −94.8 −82.01 −67.3 −49.9 −31.9 −15.03 2.36 45.5
Radial stress (FEM) −93.5 −82.6 −66.03 −50.4 −32.9 −14.2 3.07 46.9
Radial stress (analytical, [6]) −190.7 −75.9 −58.4 −41.3 −24.2 −7.03 10.3 34.9

Table 6
Comparison of the analytical and FEM results for obtaining the circumferential stress in the matrix at r = b.

Stresses in matrix (MPa) Normalized axial position, 0 < z/l < 1, r = b

0 0.13 0.27 0.4 0.54 0.67 0.81 1

Circumferential stress (analytical, present work) −84.3 −75.25 −61.6 −45.04 −26.8 −8.6 8.2 26.5
Circumferential stress (FEM) −82.9 −76.2 −60.8 −44.5 −27.5 −9.1 8.8 25.7
Circumferential stress (analytical, [6]) −182.6 −67.8 −50.3 −33.2 −16.1 1.08 18.4 43.03
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Table 7
The strain rate values in the matrix normalized by u̇b at the region I.

Normalized strain
rates by u̇b

r

a 1.5a b

ε̇r/u̇b 0 1 1.2
ε̇θ /u̇b 0 0.2 0.5
ε̇z/u̇b 0 −1.3 −1.7
ε̇rz/zu̇b −1.9 −0.7 0

high accuracy and simplicity, and also allows us to determine analytically the aforementioned unknowns, without any non-
analytical assumption.

6. Conclusions

In the present research, a novel analytical model is presented based on Hermite polynomials, hyperbolic trigonometric
functions and power series for analyzing the steady-state creep in the short-fiber composites under tensile axial load. An
exponential creep law is considered to describe the steady-state creep behavior of the matrix in the unit cell; also, the
fibers behave elastically. The analytical model is developed using the shear-lag theory, the imaginary fiber technique and
also new proposed Hermite polynomials, hyperbolic trigonometric functions and power series, with considering the perfect
bond condition at the interface. In summary,

• Combination of Hermite polynomials, hyperbolic trigonometric functions and power series is a suitable technique for
creep analyzing. The results of the present analytical work are in good agreement with the FEM results compared to
the other available previous results.

• The shear stress, displacement, and shear strain rates were determined in region II of the unit cell, without applying
further assumptions. Considerable gradient changes are seen in the shear and equivalent stress behaviors, which are
arising from nature of these parameters. Although the interfacial shear and equivalent stress behaviors are logarithmic,
a linear behavior is observed in the axial, radial and circumferential stresses at the interface and the outer surface of
the unit cell. The constant and smooth gradients are observed in the axial, radial and circumferential stress behaviors.

• The main advantage of the present method is its capability in predicting the stress fields, displacement and strain rate
components in all regions of the composite. The method is also comprehensive and simple because it proposes the
correct displacement rate fields.

• In comparison with previous analytical approaches, the results of the present work are closer to the FEM simulations.
In addition, unlike in previous researches, all unknowns are determined without any non-analytical assumption in both
regions I and II.

• Finally, this strong and comprehensive method can be used in various problems in applied physics and mechanics such
as elastic and plastic analysis of nano-composites.

References

[1] H.L. Cox, The elasticity and strength of paper and other fibrous materials, Brit. J. Appl. Phys. 3 (1952) 72–79.
[2] A. Kelly, K.N. Street, Creep of discontinuous fibre composites. II. Theory for the steady-state, Proc. R. Soc. A 328 (1573) (1972) 283–293.
[3] C.H. Hsueh, R.J. Young, X. Yang, P.F. Becher, Stress transfer in a model composite containing a single embedded fiber, Acta Mater. 45 (4) (1997)

1469–1476.
[4] X.L. Gao, K. Li, A shear-lag for carbon nanotube-reinforced polymer composites, Int. J. Solids Struct. 42 (2005) 1649–1667.
[5] A. Abedian, M. Mondali, M. Pahlavanpour, Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded

fiber end, Comput. Mater. Sci. 40 (2007) 421–433.
[6] M. Mondali, A. Abedian, A. Ghavami, A new analytical shear-lag based model for prediction of the steady-state creep deformations of some short-fiber

composites, Mater. Design 30 (2009) 1075–1084.
[7] Y.R. Wang, T.W. Chou, Analytical modeling of creep behavior of short fiber reinforced ceramic matrix composites, J. Compos. Mater. 26 (9) (1992)

1269–1286.
[8] Z. Jiang, X. Liu, G. Li, J. Lian, A new analytical model for three-dimensional elastic stress field distribution in short fibre composite, Mater. Sci. Eng. A 366

(2004) 381–396.
[9] I. Berman, D.H. Pai, A theory of anisotropic steady-state creep, Int. J. Mech. Sci. 8 (5) (1966) 341–352.

[10] A.R.T. De Silva, A theoretical analysis of creep in fiber reinforced composites, J. Mech. Phys. Solids 16 (3) (1968) 169–186.
[11] N. Laws, R. McLaughlin, Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. A 359 (1697) (1978)

251–273.
[12] B.K. Min, F.W. Crossman, Analysis of creep for metal matrix composites, J. Compos. Mater. 16 (3) (1982) 188–203.
[13] I. Chung, C.T. Sun, I.Y. Chang, Modeling creep in thermoplastic composites, J. Compos. Mater. 27 (10) (1993) 1009–1029.
[14] G. DeBotton, P. Ponte Castaneda, Variational estimates for the creep behaviour of polycrystals, Proc. R. Soc. A 448 (1932) (1995) 121–142.
[15] V. Monfared, M. Mondali, A. Abedian, Steady-state creep analysis of polymer matrix composites using complex variable method, J. Mech. Eng. Sci.

(2013), http://dx.doi.org/10.1177/0954406212473391, in press.
[16] V. Monfared, M. Mondali, A. Abedian, Steady-state creep behavior of short-fiber composites by mapping, logarithmic functions (MF) and dimensionless

parameter (DP) techniques, Arch. Civ. Mech. Eng. 12 (4) (2012) 455–463.
[17] A. Kelly, K.N. Street, Creep of discontinuous fibre composites. I. Experimental behaviour of lead-phosphor bronze, Proc. R. Soc. A 328 (1573) (1972)

267–282.

http://refhub.elsevier.com/S1631-0721(13)00081-8/bib31s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib32s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib33s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib33s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib34s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib35s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib35s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib36s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib36s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib37s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib37s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib38s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib38s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib39s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3130s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3131s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3131s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3132s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3133s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3134s1
http://dx.doi.org/10.1177/0954406212473391
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3136s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3136s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3137s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3137s1


604 M. Mondali et al. / C. R. Mecanique 341 (2013) 592–604
[18] R.H. Ericksen, Room temperature creep of Kevlar 49/epoxy composites, Composites 7 (3) (1976) 189–194.
[19] T.G. Nieh, Creep rupture of a silicon-carbide reinforced aluminum composite, Metall. Trans. A 15 (1984) 139–146.
[20] T. Morimoto, T. Yamaoka, H. Lilholt, M. Taya, Second stage creep of silicon carbide whisker/6061 aluminum composite at 573 K, J. Eng. Mater. Tech-

nol. 110 (1988) 70–76.
[21] R.B. Bhagat, M.F. Amateau, M.B. House, K.C. Meinert, P. Nisson, Elevated temperature strength, aging response and creep of aluminum matrix compos-

ites, J. Compos. Mater. 26 (11) (1992) 1578–1593.
[22] R. Fernandez, G. Gonzalez-Doncel, Threshold stress and load partitioning during creep of metal matrix composites, Acta Mater. 56 (2008) 2549–2562.
[23] A. Boubakri, N. Haddar, K. Elleuch, Y. Bienvenu, Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane, C. R.

Mecanique 339 (10) (2011) 666–673.
[24] T.L. Dragon, W.D. Nix, Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced

metals, Acta Metall. Mater. 38 (10) (1990) 1941–1953.
[25] Y.H. Park, J.W. Holmes, Finite element modeling of creep deformation in fibre-reinforced ceramic composites, J. Mater. Sci. 27 (23) (1992) 6341–6351.
[26] Y. Zhu-feng, Statistic modeling of the creep behavior of metal matrix composites based on finite element analysis, Appl. Math. Mech. 23 (4) (2002)

421–434.
[27] Z.F. Yue, Z.Z. Lu, A numerical determination of the fiber/matrix interlayer creep properties from the indentation creep testing in fiber reinforced

composites, Mater. Sci. Eng. A 352 (1–2) (2003) 266–272.
[28] M. Mondali, A. Abedian, S. Adibnazari, FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite, Comput. Mater. Sci. 34

(2005) 140–150.
[29] A. Ghavami, A. Abedian, M. Mondali, Finite difference solution of steady-state creep deformations in a short fiber composite in presence of fiber/matrix

debonding, Mater. Design 31 (2010) 2616–2624.
[30] J.T. Boyle, J. Spence, Stress Analysis for Creep, Butterworth–Heinemann, Butterworth, Southampton, UK, 1983.
[31] J. Lubliner, Plasticity Theory, Dover Publications, United States, 2008.

http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3138s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3139s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3230s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3230s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3231s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3231s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3232s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3233s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3233s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3234s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3234s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3235s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3236s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3236s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3237s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3237s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3238s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3238s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3239s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3239s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3330s1
http://refhub.elsevier.com/S1631-0721(13)00081-8/bib3331s1

	Non-linear creep modeling of short-ﬁber composites using Hermite polynomials, hyperbolic trigonometric functions and power series
	1 Introduction
	2 Material and method
	2.1 Composite model
	2.2 Formulations
	2.3 Boundary conditions
	2.4 Problem solution steps

	3 Theory and calculations
	4 Determination of σ̄ zf, u̇b and other unknowns
	5 Results and discussions
	6 Conclusions
	References


