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In this Note, a heat flow through a rough thin domain filled with fluid (lubricant)
is studied. The domain’s thickness is considered as the small parameter ε, while the
roughness is defined by a periodical function with a period of order ε2. We assume that
the lubricant is cooled by the exterior medium and we describe the heat exchange on the
rough part of the boundary by Newton’s cooling law. Depending on the magnitude of the
heat transfer coefficient with respect to ε, we obtain three different macroscopic models
via formal asymptotic analysis. We identify the critical case explicitly acknowledging both
roughness-induced effects and the effects of the surrounding medium on heat transfer at
main order. We illustrate the obtained results by some numerical simulations.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on étudie un flux de chaleur dans un domaine rugueux de faible
épaisseur rempli de liquide (lubrifiant). On considère l’épaisseur du domaine comme le
petit paramètre ε, tandis que la rugosité est définie par une fonction périodique de période
d’ordre ε2. On suppose que le lubrifiant est refroidi par le milieu extérieur et que l’échange
de chaleur est décrit sur la partie rugueuse de la frontière par la loi de refroidissement de
Newton. En fonction de la valeur du coefficient de transfert de chaleur par rapport à ε,
on obtient trois différents modèles macroscopiques via une analyse asymptotique formelle.
On identifie le cas critique, reconnaissant explicitement les effets induits par la rugosité et
les effets du milieu environnant sur le transfert de chaleur à l’ordre principal. Les résultats
obtenus sont illustrés à l’aide de simulations numériques.
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* Corresponding author.
E-mail addresses: pazanin@math.hr (I. Pažanin), fjsgrau@us.es (F.J. Suárez-Grau).
1631-0721/$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crme.2013.05.001

http://dx.doi.org/10.1016/j.crme.2013.05.001
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:pazanin@math.hr
mailto:fjsgrau@us.es
http://dx.doi.org/10.1016/j.crme.2013.05.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.crme.2013.05.001&domain=pdf


I. Pažanin, F.J. Suárez-Grau / C. R. Mecanique 341 (2013) 646–652 647
1. Introduction

Lubrication is mostly concerned with the behavior of a lubricant flowing through a narrow gap. It appears naturally
in many engineering applications consisting of moving machine parts, e.g. in journal bearings or computer disk drives.
Assuming that the height of the gap is given by:

hε(x) = εh(x) (1)

and using ε > 0 as a small parameter, a simple asymptotic approximation can be easily derived providing a well-known
Reynolds equation for the pressure of the fluid. Its derivation goes back to 1886 and the pioneering work of O. Reynolds [1].
The formal relationship between the Navier–Stokes equations and the Reynolds equation in a thin domain was given in the
1950s by Wannier [2] and Elrod [3]. A rigorous mathematical justification of the Reynolds equation for a Newtonian flow
between two plain surfaces can be found in [4]. Some more recent results on that subject can be found in [5–7].

Numerous works combine the lubrication phenomena with the analysis of the roughness effects. Formulating the bound-
ary roughness using a periodic function, the isothermal thin-film flow has been extensively studied for different rugosity
profiles. Throughout the literature (see, e.g., [8–10]), the most usual assumption is that the size of the roughness is at least
of the same order as the film thickness, namely:

hε(x) = εh

(
x,

x

εβ

)
, β � 1 (2)

For such β , the effective model (at main order) turns out to be the classical Reynolds equation. That motivated Bresch and
co-authors [11] to recently consider a rather specific (but physically relevant, see e.g. [12]) case:

hε(x) = εh

(
x,

x

ε2

)
(3)

leading to the explicit correction of the Reynolds equation by the roughness-induced term. Interesting generalizations of
such framework can be found in [13,14] and they merit careful reading (see also [15]).

In the present paper, we consider a non-isothermal fluid flow in a rough thin domain:

Ωε = {
(x, z) ∈R

2 ×R: x ∈ ω, 0 < z < hε(x)
}

(4)

where the height hε has the form (3). The lubricant is assumed to be a heat-conducting incompressible viscous fluid and
the flow is governed by the stationary Navier–Stokes equations coupled with the temperature equation. In order to con-
sider the situation appearing naturally in industrial applications, we suppose that the lubricant is cooled by some exterior
medium with temperature Th. In view of that, the heat exchange (occurring on the rough part of the boundary z = hε(x)) is
described by the Robin boundary condition resulting from Newton’s cooling law. The bottom part of the boundary (z = 0)

is maintained on the constant temperature Tb described by the standard Dirichlet condition. We study the thermodynamic
part of the system (assuming that the hydrodynamic part is known) and our goal is to derive an effective model describing
the heat transfer. So far, the authors have studied the similar problem only in the classical case hε(x) = εh(x, x

ε ), when the
ratio between the size of the rugosities and the mean height of the domain is of order one (see, e.g., [16–18]). We believe
that the case (3) is the more demanding one from the point of view of asymptotic analysis due to technical difficulties
caused by the specific height profile.

In order to construct the asymptotic approximation for the temperature, we introduce a suitable change of variables (tak-
ing into account the rough oscillations) and employ a multiscale expansion technique. As a result, we obtain three possible
macroscopic models (in a form of the explicit formulae), depending on the magnitude of the heat transfer coefficient α
from the Newton cooling condition. More precisely:

– if α � O( 1
ε ), the effects of cooling are negligible. Consequently, the temperature Tb of the bottom part completely

dominates the process and no effects of the roughness are observed;
– if α � O( 1

ε ), we obtain some roughness-induced effects, but the process is essentially dominated by the exterior tem-
perature Th;

– critical case α =O( 1
ε ) when the influences of cooling and specific rugosity profile are of the same order and they both

remain in the asymptotic solution.

To our knowledge, such result cannot be found in the context of tribology and we believe that it could be instrumental
for improving the known engineering practice. In order to illustrate the obtained results, we also provide some numerical
simulations comparing, in the critical case, the effective temperature for different rugosity profiles.

2. Description of the problem

We consider the following rough domain (see Fig. 1):

Ωε = {
(x, z) ∈R

2 ×R: x ∈ ω, 0 < z < hε(x)
}

(5)
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Fig. 1. The domain.

where ω ⊂ R
2 and

hε(x) = εh1(x) + ε2h2

(
x

ε2

)
(6)

The positive function h1 is the main-order part of the roughness, while periodic function h2 describes the oscillating
part.

We denote by Γε the rough top of the domain, that is:

Γε = {
(x, z) ∈R

2 ×R: x ∈ ω, z = hε(x)
}

We also define Ω = ω × (0,1) ⊂R
2 ×R, and denote by T

2 the torus of dimension 2.
In this paper, we focus on the heat conduction equation describing the thermal effects on the fluid motion in Ωε .

Neglecting the buoyancy forces resulting from the thermic expansion of the fluid (see [19]), we can assume that the hy-
drodynamic part is known and given by the asymptotic approximation u0

ε rigorously derived in [11]. Thus, we consider the
following problem for the unknown fluid temperature θε:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−κ
θε + ρ0C p(u0
ε∇)θε = 0 in Ωε

κ ∂θε
∂νε

= α(Th − θε) on Γε

θε = Tb on ω × {0}
θε = 0 on ∂ω

(7)

All physical properties of the fluid are assumed to be constant, namely: viscosity μ, heat conductivity κ , and specific heat
capacity C p . We denote by ρ0 the referent density of the fluid and put ρ0 = 1, C p = 1, for the sake of notational simplicity.
The lubricant inside Ωε is cooled by the exterior medium (with prescribed temperature Th) and that process is described
by Newton’s cooling condition (7)2 at the top. We denote by νε the exterior unit normal on Γε , while α > 0 corresponds
to the heat transfer coefficient. The bottom part of the boundary is maintained on the constant temperature Tb, Tb > Th.
The existence and uniqueness issues concerning the equations of heat-conducting incompressible viscous fluids have been
successfully resolved (see, e.g., [20]), and thus are not addressed in this paper. Our goal is to find the macroscopic law
describing the heat transfer governed by (7), using asymptotic analysis with respect to the small parameter ε.

3. Asymptotic analysis

We first introduce a fast variable X = x
ε2 capturing the oscillating phenomena of the thin domain. In view of that, hε can

be written as:

h(x, X) = εh1(x) + ε2h2(X)

Next we introduce a new vertical variable Z = z
h(x,X)

and, correspondingly, the new unknown function θε(x, z) = θ(x, X, Z).

For the known velocity profile, according to [11], we must take u0
ε(x, z) = (u0(x, Z),0), where u0(x, Z) is an explicit function

of the modified Reynolds pressure (see (16)–(17) in [11]). Taking into account the above change of variables, we can rewrite
the temperature equation (7)1 in the ε-independent domain Ω × R2 as:

−κh2
xθ − 2κ

ε2
h2∇x · ∇Xθ − κ

ε4
h2
Xθ + 2κ

ε2
h∇h · Z∇X∂Z u + κh
h Z∂Z θ − κ |∇h|2 Z∂Z θ

+ 2κh∇h · Z∇x∂Z θ − κ |∇h|2 Z 2∂2
Z θ − κ∂2

Z θ + h2u0 · ∇xθ + 1

ε2
h2u0 · ∇Xθ − h∇h · u0 Z∂Z θ = 0 (8)

where



I. Pažanin, F.J. Suárez-Grau / C. R. Mecanique 341 (2013) 646–652 649
∇h(x, X) = ε∇xh1(x) + ∇X h2(X), 
h(x, X) = ε
xh1(x) + 1

ε2

X h2(X)

Finally, the boundary condition (7)2 at the top reads:

∂Z θ = αh(Th − θ) for Z = 1 (9)

Now we formally expand the unknown temperature:

θ(x, X, Z) = θ0(x, X, Z) + εθ1(x, X, Z) + ε2θ2(x, X, Z) + · · · (10)

and plug it into (8)–(9). The leading-order term from Eq. (8) gives:

1

ε2
: −κh2

1
Xθ0 = 0 (11)

Taking into account the boundary conditions with respect to X , we deduce ∇Xθ0 = 0, i.e. θ0 = θ0(x, Z). In view of that, the
next two terms yield:

1

ε
: κh2

1
Xθ1 = κh1
X h2 Z∂Z θ0 (12)

1: −κh2
1
Xθ2 − 2κh1h2
Xθ1 + 2κh1∇X h2 · Z∇X∂Z θ1 + κh1
X h2 Z∂Z θ1

+ κh2
X h2 Z∂Z θ0 − κ |∇X h2|2 Z∂Z θ0 − κ |∇X h2|2 Z 2∂2
Z θ0 − κ∂2

Z θ0 = 0 (13)

To obtain the effective equation satisfied by θ0, we take the mean value (with respect to X) of each term appearing in (13).
Since h1 does not depend on X , it can be easily verified that:

−
∫

T2

κh2
1
Xθ2 dX = 0 (14)

Using (12), integration by parts and the fact that h2 is X-periodic gives

−
∫

T2

2κh1h2
Xθ1 dX = −
∫

T2

2κh2
X h2 Z∂Z θ0 dX =
∫

T2

2κ |∇X h2|2 Z∂Z θ0 dX = 2κM Z∂Z θ0 (15)

Here and in the sequel we introduce:

M =
∫

T2

|∇X h2|2 dX

as a new coefficient depending exclusively on the considered rugosity profile. We proceed in the similar manner as above
to obtain:∫

T2

2κh1∇X h2 · Z∇X∂Z θ1 dX = 2κM Z∂Z θ0 + 2κM Z 2∂2
Z θ0 (16)

∫

T2

κh1
X h2 Z∂Z θ1 dX = −
∫

T2

κh1∇X h2 · Z∇X∂Z θ1 dX = −κM Z∂Z θ0 − κM Z 2∂2
Z θ0 (17)

∫

T2

κh2
X h2 Z∂Z θ0 dX = −
∫

T2

κ |∇X h2|2 Z∂Z θ0 dX = −κM Z∂Z θ0 (18)

−
∫

T2

κ |∇X h2|2 Z∂Z θ0 dX −
∫

T2

κ |∇X h2|2 Z 2∂2
Z θ0 dX = −κM Z∂Z θ0 − κM Z 2∂2

Z θ0 (19)

Applying (14)–(19) into (13) yields the equation for θ0(x, Z):

−∂2
Z θ0 + M Z∂Z θ0 = 0 in Ω (20)

For each (fixed) x ∈ ω, the above equations can be explicitly solved as a simple second-order linear ODE with respect to Z .
Since θ0(x,0) = Tb (see (7)3), we obtain:

θ0(x, Z) = C(x)

Z∫
e

Mξ2

2 dξ + Tb, C(x) ∈ R, (x, Z) ∈ Ω (21)
0
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In order to uniquely determine θ0, we need to take into account Robin’s boundary condition (9). Following the idea from
[21,22], we compare the heat transfer coefficient α with the small parameter ε, leading to three characteristic situations:

Case 1. α �O( 1
ε ).

The main-order term from the boundary condition (9) gives ∂Z θ0(x,1) = 0, meaning that the effects of cooling are
negligible. Consequently, we get:

θ0(x, Z) = Tb

and no effects of the roughness are observed in this case. The process is, in fact, dominated by the prescribed temperature
of the bottom part.

Case 2. α �O( 1
ε ).

The main-order term from (9) yields θ0(x,1) = Th, implying:

θ0(x, Z) = Th − Tb∫ 1
0 e

Mξ2
2 dξ

Z∫
0

e
Mξ2

2 dξ + Tb

Though we obtained some roughness-induced effects (no effects of the main order h1), the process is essentially dominated
by the exterior temperature Th.

Critical case. α =O( 1
ε ).

Introducing γ = εα =O(1), the main-order term from (9) provides:

∂Z θ0(x,1) = γ

κ
h1(x)

(
Th − θ0(x,1)

)
Using this condition in (21), we get:

θ0(x, Z) = γ h1(x)(Th − Tb)

κ e
M
2 + γ h1(x)

∫ 1
0 e

Mξ2
2 dξ

Z∫
0

e
Mξ2

2 dξ + Tb, (x, Z) ∈ Ω (22)

This is, obviously, the most interesting case. The effects of cooling and the specific rugosity profile are of the same order
and can be clearly seen in the asymptotic solution governing the macroscopic process.

Remark 3.1. If we consider a smooth domain without the rugosities, i.e. hε(x) = εh1(x), we obtain a simple linear function
as the asymptotic solution in the critical case. It can be easily recovered from (22) by putting M = 0. Moreover, using similar
arguments as above, we can show that in the case where the narrow gap is smaller than the roughness, namely:

hε(x) = εh1(x) + ε2h2

(
x

εβ

)
, β < 1

no roughness-induced effects can be found at the main-order approximation. In fact, we obtain the same asymptotic behav-
ior as in the case without roughness.

4. Numerical illustrations

In this section we present some numerical results. We focus on the critical case and compare the asymptotic solution θ0,
given by (22), for different rugosity profiles obeying (6). Analogously to the case in [11], it is not hard to verify that the
system:⎧⎨

⎩
−∂2

Z θ0 + M Z∂Z θ0 = 0, in Ω

∂Z θ0(x,1) = γ

κ
h1(x)

(
Th − θ0(x,1)

)
, θ0(x,0) = 0, x ∈ ω

(23)

is energetically consistent for M < 2. Now, defining h1(x) = 1.3x3 − 2x2 + 1, we present (see Fig. 2) three examples of
rugosity profiles yielding different values of M . The left-hand figure provides M = 0.1922, the middle one gives M = 1.2337
while the right-hand figure, with a more oscillating boundary, yields M = 1.7783.
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Fig. 2. (Left) h(x) = h1(x) + 0.01 cos(2000πx), (middle) h(x) = h1(x) + 0.01 cos(5000πx), (right) h(x) = h1(x) + 0.01 cos(6000πx).

Fig. 3. The effective temperature for different rugosity profiles.

Finally, we illustrate in Fig. 3 the behavior of the asymptotic solution θ0 for a fixed x ∈ ω, comparing it for three rugosity
profiles given above. For this, we use the following data: Th = 10, Tb = 25, γ = 1, κ = 1. Note that the simple linear function
corresponding to θ0 for M = 0 (case without rugosity) has also been plotted. We clearly observe the effects of rugosities
on the asymptotic behavior of the fluid temperature: as the coefficient M increases (meaning that we have more oscillating
boundary), the effective temperature becomes more different from a standard linear approximation corresponding to the
case without rugosity.

5. Concluding remarks

In this Note, an effective model describing the heat transfer through a rough thin domain has been proposed. The
domain’s thickness is considered as the small parameter ε, while the roughness is defined by a periodical function with
a period of order ε2. Starting from the mixed boundary-value problem for the fluid temperature and assuming that the
velocity distribution is known, we derive three possible asymptotic models in a form of the explicit formulae. We establish
the strong connection between the magnitude of the heat transfer coefficient and the asymptotic behavior of the heat flow.
Though the derivation was just formal, it provides a very good platform for understanding the direct influence of the rough
boundary on the thermodynamic part of the lubrication process. Of course, from the strictly mathematical point of view,
a formally derived model should be rigorously justified by proving some kind of convergence of the original solution towards
the asymptotic one. A possible way to proceed is to use a variant of the usual two-scale convergence (see, e.g., [23]) and
adapt it to our situation, similarly to the case in [11]. The other approach can be to compute the correctors θ1 and θ2 in the
asymptotic expansion (10) and try to derive satisfactory L2 or H1 error estimates. The latter is the subject of our current
investigation.
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