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In this paper, the discretization of the sediment settling term is investigated. Two potential
problems induced by the incorrect discretization of this term are analyzed. It shows that
even the first-order upwind algorithm, the most stable and conservative scheme, cannot
always ensure stability and mass conservation. To tackle these issues, three rules are
proposed. Based on these rules, two schemes are designed. The performances of different
schemes are tested in a study of sediment motions under a wave-breaking situation. The
results show that the unphysical problems are relieved or totally avoided by the new
schemes.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The prediction of sediment suspension, transport and interaction processes between flow, sediment, and bed are key
problems in river and coastal engineering and has been studied for decades, yet far from having been understood [1,2].
The transport of suspended sediment is governed by the convection–diffusion equation. The only difference between this
equation and the conventional convection–diffusion one is that the formal one has a sediment settling term due to the
gravitation of the particles.

In previous researches, the SS term has sometimes been neglected for simplicity [3,4]. When the SS term is taken into
account, it has either been discretized together with the vertical advection term [5–7], or separately treated as a source term
[8,9]. However, to date no attention has been paid to the discretization of this term itself. In fact, as will be shown later
in this paper, this term should be carefully treated and casual discretization will cause unphysical predictions. For example,
one may notice that the solutions of sediment concentration can fall below zero on some grid points, even if the time step
satisfies the Courant number criterion. This is observed by many researchers and usually the concentration is set to zero
when the calculated value drops to its lower limit. Suzuki et al. [10] use an alternative method to tackle this problem.
When the concentration values in the simulation fall below zero, the numerical fluxes at the control volume interfaces are
artificially adjusted so that the total sediment flowing out of the control volume equals the amount of sediment in that cell.
Though in this way the concentration is fixed to a physical lower limit, this ad-hoc method affects the correct numerical
fluxes at other control volume interfaces and thus mass conservation problem is induced.

In this paper, the potential problems related to the discretization of the SS term are discussed. The physical rules are
given to avoid these problems and, based on these rules, two new schemes are proposed. The new schemes and the
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conventional one are then tested. The results show that our new schemes are superior to the conventional one and that the
potential problems caused by the incorrect discretization of the SS term are partly or totally avoided.

2. Numerical model

2.1. Governing equations

The large-eddy simulation (abbreviated as LES hereinafter) governing equations for an air–water two-phase flow can be
expressed by:

∂u

∂t
+ ∇ · (uu) = − 1

ρ
∇Π + μ

ρ
∇ · (2D) − g j − 1

ρ
γ κδ(φ)∇φ − F (1)

∇ · u = 0 (2)

and the governing equation for sediment transport is:

∂s

∂t
+ ∂(ui − ωsδi2)s

∂xi
= ∂

∂xi

(
(ν + νSGS)

Sct

∂s

∂xi

)
(3)

where, u = (u, v, w) is the flow vector and u, v , w are the flow components in streamwise x, vertical y and spanwise z
directions, respectively; t denotes time; Π = Pd + Ph denotes total pressure and Ph and Pd are respectively hydrostatic
and dynamic pressures; Dij = (∂ui/∂x j + ∂u j/∂xi)/2 is the deformation tensor; g is the acceleration of gravity and j is the

unit vector in the vertical direction; F denotes the subgrid-scale stress terms and F i = ∂τi j
∂x j

= ∂(ui u j−ui u j)

∂x j
; δ(φ) = dH(φ;ε)

dφ
,

here H(φ;ε) is the Heaviside function; φ denotes the level-set distance function, negative in the air and positive in water;
γ is surface tension coefficient; ε is half width of the air–water interface smoothing thickness; κ = −∇ · ( ∇φ

|∇φ| ) denotes the
interface curvature; s is the sediment concentration in volume; δi j is the Kronecker operator; Sct is the Schmidt number
[6,11]. The density and the dynamic viscosity, ρ and μ, are expressed respectively as:

ρ(φ) = ρa + (ρw − ρa) · H(φ;ε) (4)
μ(φ) = μa + (μw − μa) · H(φ;ε) (5)

and in this study, a mollified Heaviside function H(φ;ε) is adopted:

H(φ;ε) =
⎧⎨
⎩

1 φ > ε
1
2

(
1 + φ

ε + 1
π sin

(
φπ
ε

)) |φ|� ε

0 φ < −ε

(6)

In Eq. (3), ωs is the sediment settling velocity and ∂ωss
∂ y is the SS term discussed in this paper. Due to the low concen-

tration in the simulation, the effect of concentration on sediment settling velocity is neglected and is calculated as [12]:

ωs =
√(

13.95
νw

d50

)
+ 1.09

ρs − ρw

ρw
gd50 − 13.95

νw

d50
(7)

where d50 is the sediment particle diameter. The subscripts “a,” “w,” and “s” denote air, water, and sediment, respectively,
i.e., νw denotes the kinematic viscosity of water.

2.2. Subgrid-scale stress

To account for the unsolved subgrid motions, the widely used RNG-LES model [13,14] is used. This model is based on the
renormalization group theory and has no tunable coefficients. Besides, this model can predict rational subgrid-scale stress
near the wall.

In the framework of RNG-LES, τi j is modeled based on the viscosity concept as:

τi j − 1

3
τkkδi j = −2νSGS Dij (8)

and νSGS is iterated obtained from:

νSGS + ν = ν

[
1 + H

(
ν2

s · (νSGS + ν)

ν3
− C

)]1/3

(9)

in which νs = CRNG�2
√

2Dij Dij . H is expressed as:

H(x) =
{

x x > 0

0 otherwise
(10)

In the above equations, C = 75 and CRNG = 0.0062 are RNG-LES constants [13].
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2.3. Discretization and solution methods

The governing equations for flow, Eqs. (1) and (2), are discretized using a finite difference scheme, and Eq. (3) is dis-
cretized using the finite volume method. All the discretization is implemented on a staggered-MAC-type grid [15]. For
Eqs. (1) and (2), the central difference scheme is used for spatial discretization. When strong free-surface motion exists
(i.e., in a wave-breaking environment), an essentially non-oscillatory scheme is applied to ensure stability. For the sediment
transport equation, the HLPA scheme [16] is used to discretize the convection term. As suggested by previous researchers
[11,6], the first-order upwind scheme is used for the bottommost five grids to ensure stability where a strong concentration
gradient exists.

For the time derivative, a second-order explicit Runge–Kutta scheme is used. The velocity field is made divergence-free
by using the projection method [17]. The code is parallelized based on the Message Passing Interface (MPI) method, and the
Bi-CGSTAB method [18] is used for the solution of Poisson equation for dynamic pressure.

2.4. Near-bed boundary conditions

As proposed by Chou and Fringer [6,19], the bottom flux of sediment is calculated based on the physical erosion flux E
and the deposition flux D , which read respectively as:

E(t) = pk(t) =
{

0.00033
(

θ(t)−θc
θc

)1.5 (ρs/ρw−1)0.6 g0.6d0.8
50

ν0.2
w

θ(t) > θc

0 else
(11)

D(t) = ωssbed (12)

where pk(t) is the sediment pick-up flux and θ(t) is the instantaneous Shields parameter calculated by:

θ(t) = u2∗
(ρs/ρw − 1)gd50

(13)

In the above equations, θc is the critical Shields parameter; u∗ is the bottom friction velocity; sbed is the instantaneous
sediment concentration at the bed obtained through interpolation from the interior points [6,19,20].

The bottom friction velocity u∗ is calculated from [10,21]:

u∗ =
√

fw

2
|ub| (14)

In the above equations, ub is the near-bed velocity parallel to the bed; κ = 0.41 is the von Karman constant and fw is
the wave friction coefficient determined by the well-known Nielsen formula [22].

Note that the shear stress calculated above will also provide a boundary condition for the closure of the flow module.

3. Analysis of potential errors in the discretization of the SS term

Seeing that the high-order schemes reduce to stable low-order schemes automatically and that a first-order upwind
scheme is suggested, especially in the near-bottom grids, by many investigators [6,11,19,23,24], we analyze the poten-
tial errors rose from the SS-term discretization based on the first-order upwind scheme. Two typical problems will be
demonstrated and it will be shown that even the most stable and conservative first-order upwind scheme (named as the
conventional upwind scheme hereafter) cannot always ensure stability or mass conservation.

3.1. Problem I: Isolated concentration point and the induced mass non-conservation problem

For simplicity, the vertical two-dimensional issue is discussed and the method described here can be directly used in the
3D analyses. Fig. 1 illustrates the typical flow field for this problem. Also shown are the staggered variables.

Let us assume that:

(i) the vertical velocity component around the control volume si, j is small (say, less than the sediment settling velocity
ωs);

(ii) initially (or at the last time step), the sediment concentration of sm, j (m = i − 1, i + 1) is small and for simplicity
assumed to be zero;

(iii) the diffusion term in Eq. (3) is omitted;

then the sediment fluxes at the interfaces of the control volume si, j can be calculated as shown in Table 1. Note that FluxL
and sL correspond to the sediment flux and concentration at the left interface of the control volume si, j and a similar
definition is used for sediment fluxes at other interfaces. The total sediment flux

∑
Fs is then obtained by summing up

the second column of Table 1. It is easy to obtain that
∑

Fs < 0. From Eq. (3), we know that the sediment concentration
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Fig. 1. Sketch of the flow field for Problem I.

Table 1
Sediment fluxes at interfaces of control volume si, j .

Interface location Numerical fluxes Comment

Left FluxL = ui, j · sL = 0 sL = 0
Right FluxR = ui+1, j · sR = 0 sR = 0
Bottom FluxB = vi, j · sB = (vi, j − ωs) · si, j−1 < 0 vi, j < ωs

Up FluxT = vi, j+1 · sT = (vi, j+1 − ωs) · si, j = 0 si, j = 0

Fig. 2. Sketch of the flow field for Problem II.

will be less than zero at the next time step. As aforementioned, to avoid this unphysical value, a threshold value is usually
prescribed and for this situation si, j = 0 is imposed. This treatment contributes to an isolated concentration point at point
si, j and will cause mass non-conservation problems, since the sediment fluxes are not conserved.

3.2. Problem II: Unphysical discontinuous field of sediment concentration

The typical flow field for this problem is shown in Fig. 2.
Similar as in the analysis in Problem I, we assume that:

(i) the vertical velocity component around the control volume sm, j (m = i − 1, i) is small (i.e., less than ωs);
(ii) initially (or at the last time step), the sediment concentration of sm,n (m = i − 2, i + 1; n = j, j + 1) is small and for

simplicity assumed to be zero; the sediment concentration is positive at the bottom cells sm, j−1 (m = i − 2, i + 1) and
has values that cannot be neglected;

(iii) the diffusion term in Eq. (3) is omitted.
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The sediment fluxes around the control volume si−1, j and si, j can now be calculated. The only fluxes that make sense
are at the bottom interfaces since other fluxes are zero. Thus, we have: for control volume si−1, j , the vertical velocity at the
bottom is negative and thus the bottom flux is calculated based on the upwind node as:

FluxB = (vi−1, j − ωs) · si−1, j

= (vi−1, j − ωs) · 0 = 0 (15)

and for control volume si, j , the vertical velocity at the bottom is positive and thus:

FluxB = (vi, j − ωs) · si, j−1

≈ −ωs · si, j−1 � 0 (16)

Here � means less than but cannot be neglected. The changes of direction in the vertical velocity then cause rather
different fluxes at neighboring points si−1, j and si, j . It is unreasonable. Since a small vertical velocity is assumed, the bottom
sediment fluxes should not be significantly different, especially when both vi−1, j and vi, j approach zero. The discontinuous
bottom fluxes will finally lead to unphysical discontinuous sediment concentration fields.

It must be stressed that: (a) Problem I can occur everywhere in a simulation domain, while Problem II usually occurs
where large sediment gradient and recirculation (direction of vertical velocity changes) exists; (b) the two problems are
related to the numerical discretization of the SS term and the problems will not vanish when the SS term is treated as a
source term [8,9]; (c) if the Courant number approaches 1, the numerical solution will not be stable for an explicit scheme
and may cause an unphysical concentration field—this is not the issue discussed in this study; (d) by using fine grids, the
adverse effect caused by the two problems might be reduced, but can hardly be avoided. Point (d) will be revisited further
in Section 5.

4. New sediment schemes for the discretization of the SS term

To address the two issues in Section 3 and to design a reasonable numerical scheme for sediment flux in the vertical
direction, the following three physical based rules should be satisfied:

(a) when the vertical velocity is negative, due to the negative settling velocity, the conventional upwind scheme should be
used to calculate interface concentration and the vertical sediment flux;

(b) when the vertical velocity is positive but has a small value, the conventional upwind scheme may induces the two
problems described above;

(c) when the vertical velocity is positive and sufficiently large, the conventional upwind method should have no problem
since at this time much information is coming from the bottom cells.

Based on the above rules, two schemes are designed for interface concentration calculations, as follows.

Scheme 1.

si, j− 1
2

=
{

si, j vi, j < 0

βsi, j−1 + (1 − β)si, j vi, j � 0
(17)

here, β = min(vi, j/ωs,1.0).

Scheme 2.

si, j− 1
2

=
{

si, j−1 vi, j � vp

si, j vi, j < vp
(18)

In Scheme 1, when vi, j is negative, the scheme is designed according to rule (a); when vi, j is positive, the interface
value is smoothly constructed by using both upper and bottom cell information; when vi, j/ωs > 1.0, where a strong vertical
velocity exists, information totally comes from the bottom cells (rule (c) satisfied).

Scheme 2 is designed to directly satisfy all the three rules. The form of Eq. (18) is just like a newly defined “upwind”
scheme. The difference with the conventional upwind scheme is that the judging condition for vertical velocity is not zero,
but vp. Obviously, the threshold value vp should be related to the sediment settling velocity ωs. In this paper, vp = αωs is
assumed.

5. Test of SS schemes in the study of sediment motions under a wave-breaking situation

In a coastal region, the sediment is suspended by the powerful breaking waves and then transported by the breaking-
wave-induced mean flow or tidal currents. In this simulation, a vertical 2D periodic wave propagating on a flat seabed
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Table 2
Parameters used in the simulation.

hw (m) ha (m) λ (m) T (s) ak ρs (kg/m3) ρw (kg/m3) d50 (m) ωs (m/s)

0.1 0.24 1.4 1.46 0.25 2650 1000 0.0001 0.006

Fig. 3. Grid layout for the simulation (400 × 180). The grid is shown every 2 × 3 grid for clear illustration. The dotted line represents the still-water level.

is studied. At the top boundary, a shear-free condition is applied. The bottom boundary for flow and sediment is treated
according to the methodology explained in Section 2.4. The bed deformation is omitted as in other works [6,25] due to the
rather small time scale.

The depth for water hw and for air ha is chosen as 0.1 m and 0.24 m, respectively. Here the large air layer depth is
adopted to reduce the lid effect on the top boundary. The wavelength λ and the wave period T are chosen as 1.4 m and
1.46 s, respectively. The initial wave slope ak is set to 0.25. The sediment density ρs and the particle diameter d50 are set
to 2650 kg/m3 and 0.0001 m according to the practical situations in an oceanic environment. The sediment settling velocity
is about 0.006 m/s. The concrete parameters used in the simulation are listed in Table 2.

For air–water interface modeling, the advanced coupled level set (LS) and volume-of-fluid (VOF) method, CLSVOF, is
adopted [26,27]. In this method, the spatial gradient in VOF solutions is calculated based on the continuous signed LS
distance functions, while the accurate mass conservation property is achieved by using the conservative VOF functions.
The initial condition for flow is obtained based on the linear wave theory. As the initial wave slope is high, the wave
will not be stable and will break. This method is widely used to generate breaking waves [14,28]. The initial sediment
concentration is set to zero. We use fine grids in the simulation (400×180), as shown in Fig. 3. The grid is evenly distributed
in the streamwise direction. To resolve the strong air–water interface motions, especially the different scales of air bubbles
generated in the wave-breaking process, the grid is refined in the interval ys − a < y < ys + 1.5a with a uniform grid width
of 0.0005 m. The grid is then stretched to the top and bottom boundary with the largest grid width of 0.0049 m in the top
air cells. The time step is 0.00008 s, under which the Courant number is far below 1.

Several instantaneous flows and sediment concentration flow fields are illustrated in Fig. 4. In the pre-breaking stages
(Fig. 4(a), (b)), the air–water interface becomes asymmetric and a jet is formed near the wave crest. During this stage, the
sediment is picked up by the high shear stress near the bottom. As the wave propagates forward, the interface overturns
and touches the downstream surface (Fig. 4(c), (d)). In these stages, the sediment is successively suspended and then
transported upward by the vertical velocity. As we focus on the SS-term schemes here, we do not go further into the details
of the physical process.

For conventional upwind scheme, Fig. 4(a) shows the unphysical sediment concentration distributions near the bottom.
Two discontinuous areas exist around x = 0.4λ and x = 0.6λ, marked as A1 and A2 in Fig. 4(a), respectively. These areas
are where the vertical velocity is small (compared to sediment settling velocity) and where changes in the direction of the
vertical velocity happen (Problem II occurs). The left discontinuous area disappear around 0.21T (Fig. 4(b)), and then, at
t = 0.43T (Fig. 4(d)), an isolated concentration area occurs around x = 0.55λ (marked as A3 in Fig. 4(d)). The detailed local
concentration flow and concentration field around area A3 is shown in Fig. 5. Also shown is the vertical velocity distribution
along the x-direction through the isolated concentration point (Fig. 5(b)). We see that the vertical velocity is slightly greater
than zero but less than the sediment settling velocity around area A3. Problem I occurs in this high-concentration-gradient
area, and thus an unphysical value is predicted.

If we compare Scheme 1 to the conventional upwind scheme, the sediment concentration in area A1 is much smoother
and the discontinuous region around area A2 is reduced. Besides, the isolated concentration point around area A3 disap-
pears. If, as we can see, Scheme 1 cannot handle all the unphysical problems, on the contrary, all the unphysical predictions
are resolved by Scheme 2, as shown in Fig. 4(i)–(l). The different results between Scheme 1 and Scheme 2 imply that it is
of great importance that all the three rules listed in Section 4 should be satisfied.
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Fig. 4. Instantaneous flow and sediment concentration field (water phase shown only) at t = 0.21T , t = 0.28T , t = 0.42T and t = 0.43T , respectively. (a)–(d)
for conventional upwind scheme; (e)–(h) for Scheme 1; (i)–(l) is the result from Scheme 2 with α = 1.0. In each subfigure, velocity is shown every 6 × 3
grid for the upper figure and an enlarged figure (velocity demonstrated every 4 × 2 grid) is given to show clearly the high-concentration area near the
bottom. The sediment concentration is shown by log10 s instead of s for clear illustration. The velocity and concentration is normalized by wave celerity c
and sav

max, respectively. Here, sav
max is the maximum value of sav

b when α equals 1.

To see if the unphysical solutions, i.e., discontinuous areas A1 and A2 in Fig. 4(a), can be avoided by using finer grids,
another simulation is carried out with grids doubled in the x-direction. The results are illustrated in Fig. 6. Since the original
400 × 180-mesh grid is sufficiently fine to resolve the flow structures, the changes in velocity field is negligible when finer
grids are used. The comparison of the sediment concentration field shows that the unphysical solutions around areas A1
and A2 are not relieved with finer grids.

The effect of α in Scheme 2 is investigated here. We define a parameter PAi to show if the unphysical solutions occur
in area Ai (i = 1,2). When PAi equals to unit, unphysical solutions exist in area Ai and the solution is reasonable when
PAi equals zero. The statistics of parameter PAi is shown in Table 3. Note that for Scheme 2, α = 0 is equivalent to the
conventional upwind scheme. One can see that when α increases, the unphysical solution is relieved. When α = 0.4, the
discontinuous area A1 does not exist anymore and the discontinuous area A2 intends to disappear totally when α equals 0.6.
Excellent solutions are obtained with α chosen between 0.8 and 1.2. Fig. 7 gives the time history of the averaged near-bed
sediment concentration (sav

b ) for different values of α. A negligible difference is observed between the results when α varies
between 0.8 and 1.2. When α is larger than 1.4, some difference in results occur, which can be clearly seen in the zoom
view of Fig. 7. Based on this simulation, optimized values of α in the [0.8–1.2] range are suggested for using in Scheme 2.
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Fig. 4. (continued)
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Fig. 4. (continued)

Fig. 5. Local flow field and concentration distribution around area A3 in Fig. 4(d). Velocity vectors are shown every 4 × 1 grid. Fig. 5(b) gives the vertical
velocity distribution along x-direction through the isolated concentration point. In Fig. 5(a), the velocity and concentration is normalized by c and sav

max,
respectively.

Table 3
Performance of Scheme 2 with different values of α.

α PA1 PA2

0.0 1 1
0.2 1 1
0.4 0 1
0.6 0 1
0.8 0 0
1.0 0 0
1.2 0 0

6. Discussion and conclusion

In this paper, a study on the discretization of the sediment settling-related term (SS term) is carried out. The two poten-
tial problems are analyzed. The first one is related to the unreasonable mathematical prediction of isolated concentration
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Fig. 6. Instantaneous flow and sediment concentration field (water phase shown only) at t = 0.21T with grid number 400 × 180 (Fig. 6(a)), and 810 × 180
(Fig. 6(b)), respectively. The results are obtained from the conventional upwind scheme. The velocity is shown every 4 × 2 grid in (a) and 8 × 2 grid in (b)
for clear illustration. The sediment concentration is shown using logarithmic scale. The velocity and concentration is normalized by c and sav

max, respectively.

Fig. 7. Time history of near-bed averaged concentration with different values of α for Scheme 2. Results are normalized by sav
max. A zoom view is given in

the bottom-right corner to show the differences in time interval between 0.4T and 0.55T .

points which causes mass non-conservation problems. The second one is the unphysical discontinuous sediment concentra-
tion field problem that occurs where large sediment gradient and recirculation exist. To satisfy the three rules listed in this
paper, two new schemes are proposed. The schemes are then tested in a study of sediment motions under a wave-breaking
environment. The two unphysical problems occur when the conventional upwind scheme is used. With Scheme 1, the prob-
lems are relieved. The problems totally disappear when Scheme 2 is used. Therefore Scheme 2 is suggested using in vertical
2D and 3D sediment simulations. A sensitivity study on coefficient α (in Scheme 2) is also implemented and a value of α
between 0.8 and 1.2 is suggested.
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