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A new macroscopic approach to the modelling of membrane wrinkling is presented.
Most of the studies of the literature about membrane behaviour are macroscopic and
phenomenological, the influence of wrinkles being accounted for by nonlinear constitutive
laws without compressive stiffness. The present method is multi-scale and it permits to
predict the wavelength and the spatial distribution of wrinkling amplitude. It belongs to
the family of Landau–Ginzburg bifurcation equations and especially relies on the technique
of Fourier series with slowly varying coefficients. The result is a new family of macroscopic
membrane models that are deduced from Föppl–von Kármán plate equations. Numerical
solutions are presented, giving the size of the wrinkles as a function of the applied
compressive and tensile stresses.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Two main classes of numerical approaches are currently used to model membrane mechanical behaviour and wrinkling.
The first class of methods is based on elastic shell models; see for instance [1–4]. Nowadays, many commercial finite-
element codes allow us to carry out such nonlinear shell computations. The advantage of shell analyses is their capacity
to describe the details of the membrane response: instability threshold, size, wavelength, and orientation of the wrinkles.
As a counterpart, the numerical model is heavy and especially very difficult to control in cases with many wrinkles, what
leads generally to many equilibrium solutions. These full models will be referred to as “microscopic models” because their
finite-element discretisation provides a detailed response at the scale of the wrinkles.

With the second group of numerical methods, one does not intend to fully describe the wrinkles, but only the decrease of
stress they generate. The bending stiffness is neglected and wrinkling is accounted for indirectly by a nonlinear constitutive
law of unilateral type, where the compressive stresses are eliminated [5,6]. Two variants have to be mentioned: first, the
method of Roddeman [7], which splits the deformation gradient into consistent membrane part and wrinkling part [8–11];
second, models with an internal length, like Cosserat theory [12,13], which avoids any loss of ellipticity in the case of
compressive stresses. These models can be considered as macroscopic ones and indeed they require much less refined
meshes than the previous ones, because the size of the macroscopic finite elements is not related to size of the wrinkles.

In this paper, macroscopic models of membranes including wrinkling are deduced from the fine plate model without any
phenomenological assumptions. The bending stiffness effects are included, not only to define the wrinkling wavelength, but
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also to predict the macroscopic evolution of the wrinkling pattern. The idea is to build a theory coupling pure membrane
model with an envelope equation as in the Landau–Ginzburg approach [14,15]. Nevertheless we shall not apply the classical
Landau–Ginzburg asymptotic technique, which is valid only near the bifurcation, but a variant where the nearly periodic
fields are represented by Fourier series with slowly varying coefficients [16–19]. In other words, we use a multi-scale
method whose result is a generalised continuum including an internal length and where the macroscopic stresses are
Fourier coefficients of the microscopic stress. The resulting models are macroscopic and require only rough meshes, because
their unknowns are in-plane displacements and slowly varying envelopes of the wrinkles.

For the sake of simplicity, we limit ourselves to plane membrane, the fine model being the traditional Föppl–von Kármán
plate equations. Two examples assess the model’s ability to represent the behaviour of membranes in the presence of
wrinkling.

2. Nonlinear macroscopic models of wrinkling

2.1. The full model

The well-known Föppl–von Kármán equations for elastic isotropic plates will be considered as the reference model in
this paper:⎧⎪⎪⎨

⎪⎪⎩
D�2 w − div(N∇w) = 0
N = Lm · γ
2γ = ∇u + t∇u + ∇w ⊗ ∇w
div N = 0

(1)

where u = (u, v) ∈R
2 is the in-plane displacement, w is the deflection, N and γ are the membrane stress and strain. With

the vectorial notations (N → t(N X NY N XY ),γ → t(γX γY 2γXY )), the membrane elasticity tensor is represented by the
matrix:

Et

1 − ν2

[ 1 ν 0
ν 1 0
0 0 1−ν

2

]

The corresponding energy E can be split into a membrane part Emem and a bending part Eben, as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(u, w) = Eben(w) + Emem(u, w)

2Eben(w) = D

∫ ∫ (
(�w)2 − 2(1 − ν)

(
∂2 w

∂ X2

∂2 w

∂Y 2
−

(
∂2 w

∂ X∂Y

)2))
dω

2Emem(u, w) =
∫ ∫

γ · Lm · γ dω = Et

1 − ν2

∫ ∫ (
γ 2

X + γ 2
Y + 2(1 − ν)γ 2

XY + 2νγXγY
)

dω

(2)

2.2. A multi-scale approach using the Fourier coefficient

We adapt in this 2D framework the method of Fourier series with slowly variable coefficients [17]. For simplicity, we
suppose that the instability wavenumber Q is known and we only consider wrinkles in the OY -direction. Within this
method, the unknown field U(X, Y ) = (u(X, Y ), w(X, Y ),N(X, Y ), γ (X, Y )), whose components are in-plane displacement,
transverse displacement, membrane stress and strains, is written in the following form:

U(X, Y ) =
+∞∑

m=−∞
Um(X, Y )exp(imQ X) (3)

where the new macroscopic unknown fields Um(X, Y ) vary slowly on a single period [X, X + 2π
Q ] of the oscillation pattern.

Of course, we do not need an infinite number of Fourier coefficients and we limit ourselves to three harmonics: the mean
field U0(X, Y ) and the envelope of the oscillations U1(X, Y )eiQ X , U1(X, Y )e−iQ X . According to [17], the second harmonic
should be taken into account to recover the results of the Landau–Ginzburg bifurcation approach. Nevertheless, the rapid
one-dimensional oscillations eiQ X are inextensional, so that they do not contribute to the membrane energy. The macro-
scopic model with the second harmonic has been established, but within the approximation of [17, §4.1], we have shown
that N2 = 0, w2 = 0, so that the second harmonic does not influence the macroscopic model. The details of this calculation
are omitted.

In principle, the mean field U0(X, Y ) is real and the envelope U1(X, Y ) is complex-valued, but spatial evolutions of
the patterns can be reasonably accounted for with only two real coefficients: for practical finite-element calculations, this
simplification of two real unknowns will be done, even if a complex envelope can improve the treatment of boundary
conditions [19].



618 N. Damil et al. / C. R. Mecanique 341 (2013) 616–624
The derivation rules are straightforward [16] and, in a first time, the derivatives of the envelopes are not neglected. For
instance, the first Fourier coefficient of the gradient of the deflection is given by:

{
(∇w)1

} =
{

∂ w1
∂ X + iQ w1

∂ w1
∂Y

}
(4)

2.3. Macroscopic membrane energy

We now derive the macroscopic model and we begin with the membrane effects. We apply the principles established
in [16,17]. The derivatives are computed exactly as in Eq. (4), but some simplifications will be added to obtain the simplest
macroscopic model having the same internal length as the asymptotic Landau–Ginzburg approach. Next, one could deduce
the macroscopic model by identifying the Fourier coefficients in the differential equations (1), but a most convenient ap-
proach consists in retaining only the harmonic of level zero to approximate an energy density:∫ ∫

period

h dω ≈
∫ ∫

period

h0 dω (5)

where h0 represents the harmonic zero of the density h. The rule (5) is a consequence of the assumption of slowly varying
envelopes. For instance, the energy due to a higher harmonic vanishes if the envelope is assumed to be constant on a
period:∫ ∫

period

hm(X, Y )exp(imQ x)dω ≈ hm(X, Y )

∫ ∫
period

exp(imQ x)dω = 0 (6)

First, we compute the mean value or the harmonic zero of the Lagrange strain, by using Eq. (4) and without any approxi-
mation:

{γ0} =
⎧⎨
⎩

γX0
γY 0

2γXY 0

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

∂u0
∂ X + 1

2 (
∂ w0
∂ X )2 + | ∂ w1

∂ X + iQ w1|2
∂v0
∂Y + 1

2 (
∂ w0
∂Y )2 + | ∂ w1

∂Y |2
∂u0
∂Y + ∂v0

∂ X + ∂ w0
∂ X

∂ w0
∂Y + ( ∂ w1

∂ X + iQ w1)
∂ w1
∂Y + ( ∂ w1

∂ X − iQ w1)
∂ w1
∂Y

⎫⎪⎬
⎪⎭ (7)

Next, two additional simplifications will be introduced in the envelope model, in the same spirit as in [17]. First, the dis-
placement field is reduced to a membrane mean displacement and to a bending wrinkling, i.e. u1 = 0, w0 = 0, which means
that we only consider the influence of wrinkling on a flat membrane state. Second, the deflection envelope is assumed to
be real, which disregards the phase modulation of the wrinkling pattern: w1(X, Y ) is real. Hence the envelope of the dis-

placement is reduced to three components u0 = (u0, v0) and w1, which will be rewritten for simplicity as (u, v)
def= (u0, v0),

w
def= w1. Hence the simplified version of the mean strain field is:

{γ } def= {γ0} =

⎧⎪⎨
⎪⎩

∂u
∂ X + ( ∂ w

∂ X )2 + Q 2 w2

∂v
∂Y + ( ∂ w

∂Y )2

∂u
∂Y + ∂v

∂ X + 2 ∂ w
∂ X

∂ w
∂Y

⎫⎪⎬
⎪⎭ (8)

The membrane strain formula – Eq. (8) – is quite similar to the strain of the initial von Kármán model. It can be split, first,
in a linear part ε(u), which is the symmetric part of the displacement gradient and corresponds to the pure membrane
strain, second to a nonlinear part γ wr(w), which is more or less equivalent to the wrinkling deformation of [7] and is
given by:

{
γ wr(w)

} =

⎧⎪⎨
⎪⎩

( ∂ w
∂ X )2 + Q 2 w2

( ∂ w
∂Y )2

2 ∂ w
∂ X

∂ w
∂Y

⎫⎪⎬
⎪⎭ (9)

The main difference with the classical von Kármán strain is the extension Q 2 w2 in the direction of the wrinkles. So, if the
linear strain is compressive, wrinkling leads to a decrease of the membrane strain.

Last we apply the multiple-scale rule – Eq. (5) – to the membrane energy. This leads, for instance, to:∫ ∫
period

γ 2
X dω ≈

∫ ∫
period

(
γ 2

X0 + 2γ 2
X1

)
dω ≈

∫ ∫
period

γ 2
X0 dω (10)

where the first approximation is deduced from Eq. (5) and from Parseval’s identity, truncated at harmonic one and the
second one follows from the assumption u1 = 0, w0 = 0. According to these rules, the membrane energy becomes:
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2Emem(u, w) = Et

1 − ν2

∫ ∫ ⎧⎪⎨
⎪⎩

( ∂u
∂ X + ( ∂ w

∂ X )2 + Q 2 w2)2 + ( ∂v
∂Y + ( ∂ w

∂Y )2)2

+ 2(1 − ν)( 1
2 ( ∂u

∂ X + ∂v
∂Y ) + ∂ w

∂ X
∂ w
∂Y )2

+ 2ν( ∂u
∂ X + ( ∂ w

∂ X )2 + Q 2 w2)( ∂v
∂Y + ( ∂ w

∂Y )2)

⎫⎪⎬
⎪⎭dω (11)

2.4. Macroscopic bending energy

The bending energy is reduced to a macroscopic version in the same framework: u1 = (u1, v1) = (0,0), w0 = 0, w1 real.
The identity (5) is applied to the two terms of the bending energy:

h = (�w)2 − 2(1 − ν)

[
∂2 w

∂ X2

∂2 w

∂Y 2
−

(
∂2 w

∂ X∂Y

)2]
= hA − 2(1 − ν)hB

Hence one gets (the indices 1 and −1 refer to the number m of the harmonics):

hA
0 = 2(�w)1(�w)−1 = 2

∣∣(�w)1
∣∣2 = 2

∣∣∣∣�w1 − Q 2 w1 + 2iQ
∂ w1

∂ X

∣∣∣∣
2

Since w = w1 is real, one gets:

hA
0 = 2

(
�w − Q 2 w

)2 + 8Q 2
(

∂ w

∂ X

)2

(12)

In the same way, the second term hB
0 is given by:

hB
0 = 2

(
∂2 w

∂ X2
− Q 2 w

)
∂2 w

∂Y 2
− 2

(
∂2 w

∂ X∂Y

)2

− 2Q 2
(

∂ w

∂Y

)2

(13)

As in [17, §4.3], the derivatives of order three or four in the differential equations are neglected because the derivatives of
order two are sufficient to define a macroscopic length scale and to recover the Landau–Ginzburg asymptotic approach. This
leads to:

Eben(w) =
∫ ∫ {

Q 4 w2 − 2Q 2 w�w + 4Q 2
(

∂ w

∂ X

)2

+ 2
(
1 − ν2)Q 2

[
w

∂2 w

∂Y 2
+

(
∂ w

∂Y

)2]}
dω (14)

2.5. The full membrane-wrinkling model

The macroscopic membrane model is deduced from the total energy, which is the sum of the membrane energy –
Eq. (11), of the bending energy – Eq. (14), and of the energy of the applied loads. Let us calculate the corresponding partial
differential equations in the case where all the external loads are applied on the boundary. In this case, the sum of bending
and membrane energies is stationary:

δEben + δEmem = 0

for any virtual displacement that is zero at the boundary. This gives:

δEben +
∫ ∫
ω

N : δγ wr dω = 0 (15)

∫ ∫
ω

N : δε dω = 0 (16)

After straightforward calculations, the differential equations of the macroscopic problem are as follows:

div N = 0 (17)

N = Lm : [ε(u) + γ wr(w)
]

(18)

−6D Q 2 ∂2 w

∂ X2
− 2D Q 2 ∂2 w

∂Y 2
+ (

D Q 4 + N X Q 2)w − div(N · ∇w) = 0 (19)

where the expression of the wrinkling membrane strain γ wr(w) is given in Eq. (9).
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2.6. Comments

1. The nonlinear model – Eqs. (17)–(19) – couples nonlinear membrane equations with a bifurcation equation – Eq. (19) –
satisfied by the envelope of the wrinkling patterns. It extends the analysis of Damil and Potier-Ferry [17], who coupled
a beam membrane with a one-dimensional Landau–Ginzburg equation. Hence the bifurcation equation – Eq. (19) – is a
sort of bidimensional Landau–Ginzburg equation.

2. If the membrane stress is prescribed and uniform:

N = N X eX ⊗ eX + NY eY ⊗ eY

Eq. (19) becomes identical to a linear eigenvalue problem as in a linear buckling analysis. In the general case, the
membrane stress is unknown and Eqs. (17)–(19) describe a nonlinear coupled membrane-wrinkling model that can be
solved by standard numerical techniques. In this paper, an example of numerical solution is presented in Section 3.2.

3. The nonlinear model – Eqs. (17)–(19) – is consistent with two ideas used in other macroscopic membrane models.
First, we have obtained a splitting between a membrane strain and a wrinkling strain, as in the well-known theory by
Roddeman et al. [7]. Next, since we follow an approach consistent with Landau–Ginzburg theory, the final bifurcation
equation (19) includes an internal length. As underlined in [16], the mechanical model is a generalised continuum
and the stress is not reduced to the mean value of microscopic stress: the first terms of Eq. (19) contains the effect
of the first Fourier coefficient of the bending moment. This can be qualitatively compared with the ideas of Banerjee
et al. [12,13], who introduce an internal length via Cosserat theory.

4. The differential equations (17)–(19) seem quite different from the classical pure membrane theory, which postulates a
nonlinear relation between membrane stress and strain; see for instance [5]. Nevertheless, the pure membrane theory
can be consistent with a degenerate version of Eqs. (17)–(19). The latter can be obtained by dropping all derivatives in
Eq. (19), which leads to (N X + D Q 2)w = 0. If one transforms the latter in a perturbed bifurcation equation as:(

N X + D Q 2)w = δ (20)

one gets the deflection as a function of one component of the membrane stress. In Eq. (20), δ is a small perturbation
parameter that transforms the perfect bifurcation equation into a perturbed bifurcation one. If one simplifies the wrin-
kling strain – Eq. (9) – as γ wr(w) = Q 2 w2eX ⊗ eX and if one combines Eqs. (18) and (20), one can drop the deflection
and deduce a nonlinear relation between membrane strain ε(u) and membrane stress N:

ε(u) + Q 2δ2

(N X Q 2 + D)2
eX ⊗ eX = (

Lm)−1 : N (21)

3. Some analytical and numerical solutions

In this section, we present a few solutions of the system (17)–(19). Probably, many exact or approximated solutions
of this new system can be found. In this paper, we limit ourselves, first to an analytical solution of the linearised system
in order to establish the multiple-scale character of membrane wrinkling, second to some numerical solutions of the full
nonlinear problem (17)–(19), to show that this macroscopic model is able to describe the evolution of wrinkles even with a
coarse finite-element mesh.

3.1. An analytical solution for wrinkling initiation

Let us consider the rectangular membrane [0, L X ] × [0, LY ] pictured in Fig. 1, which is submitted to a large uniform
tensile stress NY = tσY > 0 and to a small uniform compressive stress loading N X = tσX < 0. The instability wavelength and
the critical compressive stress will be deduced from the envelope equation (19). One seeks the value of the compressive
stress at which wrinkling starts. The linearised version of the envelope equation (19) is rewritten as:

−6D Q 2 ∂2 w

∂ X2
− (

2D Q 2 + tσY
)∂2 w

∂Y 2
+ D Q 4 w = t|σX |

(
Q 2 w − ∂2 w

∂Y 2

)

If the plate is clamped, it is known [19,20] that the envelope w vanishes on the boundary, what leads to a linear mode in
the form:

w(X, Y ) = sin(π X/L X ) sin(π X/LY )

This leads to a classical relation between compressive stress and wavenumber.

t|σX |(Q ) =
6D Q 2 π2

L2
X

+ (2D Q 2 + tσY )π2

L2
Y

+ D Q 4

Q 2 + π2

2

(22)
L X
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Fig. 1. Rectangular membrane under biaxial load.

Hence our approach is able to define the stability wavenumber by minimising the stress as a function of Q . For the sake
of simplicity, we take into account the orders of magnitude 1 	 Q L X , 2D Q 2/t ≈ |σX | 	 σY to simplify Eq. (22) in the
following manner:

|σX |(Q ) = σY π2

Q 2L2
Y

+ D Q 2

t
(23)

The minimum of the latter yields values of the wavenumber and of the critical compressive stress that are consistent with
the results of the literature [21,22]:

Q wr = 4
√

12π2(1 − ν2)
1√
tLY

4

√
σY

E
∼= 3.2

1√
tLY

4

√
σY

E

lwr = 2π

Q wr
∼= 1.95

√
tLY

4

√
E

σY∣∣σ wr
X

∣∣ = π√
3(1 − ν2)

√
EσY

t

LY

This simple calculation brings out the multiple-scale character of the wrinkling phenomenon: indeed, the wrinkling thresh-
old depends on the wavelength, which is a microscopic quantity, but this wavelength depends on the width of the plate,
which is a macroscopic length. Thus a full wrinkling analysis has to associate micro- with macro-scales.

3.2. A numerical post-bifurcation analysis for wrinkling

The partial differential system (17)–(19) has been discretized by standard finite elements. The pure membrane approach
– Eqs. (17) and (21) – has also been discretized in order to evaluate the importance of the spatial derivatives of the envelope.
Eight node quadrangles Q8 have been chosen. The details of the procedure will be presented elsewhere.

A thin rectangular membrane under uniaxial load (see Fig. 2) is studied, as in [23,24]. The side lengths L X and LY are
respectively 1400 mm and 200 mm, and the thickness t is 0.05 mm. The long sides are stress-free. Along the short sides,
a uniform tensile stress is applied in the axial direction and the displacements in the X-direction are locked.

Full nonlinear analyses of this problem have been done, first by a Q8 discretisation of the new model – Eqs. (17)–(19) –,
second by a Q8 discretisation of the nonlinear pure membrane model – Eqs. (17) and (21) –, last by quadratic shell ele-
ments S825 of the Abaqus code that will be considered as the reference. The nonlinear problems associated with the first
two models have been solved by the Asymptotic Numerical Method [25]. In Fig. 3, one sees that the post-bifurcation pat-
terns obtained by the new reduced model – Eqs. (17)–(19) – are quite similar to those provided by the full shell model.
This establishes the relevance of this new reduced model to represent the wrinkling modes in a case with a nonuniform
pre-buckling stress field.

In Fig. 4, we have plotted the maximal deflection as a function of the applied tensile load for these three models. One
sees that the new reduced model – Eqs. (17)–(19) – gives about the same bifurcation point as the reference model as well as
the post-bifurcation response. As expected, the number of unknowns is much smaller with the envelope models that do not
describe explicitly the full details of the wrinkles. On the contrary, the pure membrane model underestimates the wrinkling
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Fig. 2. A rectangular membrane under uniaxial load.

Fig. 3. Post-bifurcation patterns obtained with the envelope model and a full shell model. Colour available online.

threshold and overestimates the wrinkling amplitude. This is consistent with the analytical study of Section 3.1 that has
pointed out that the bifurcation load depends strongly on a macroscopic length and that this influence of the macroscopic
structure cannot be accounted for if one neglects the spatial derivatives of the envelope w(X, Y ). Last, a wrinkling pattern
along the width is plotted in Fig. 5 for the full and the reduced model. Globally, they are quite similar, but with slight
differences for the amplitude and the wavelength. In fact, the wavelength of the reference model increases slightly near the
edges and this change of wavelength cannot be captured with a real envelope as in Eq. (19). Clearly, the present result could
be still improved by keeping a complex envelope of the deflection as in Eq. (7).

4. Last comments

A new wrinkling model has been presented in this paper. The approach is analogous to bifurcation analyses for insta-
bility patterns via Landau–Ginzburg theory. The final model – Eqs. (17)–(19) – is simple: the first equations (17) and (18)
are membrane equations including an additional wrinkling membrane strain and they are coupled with a sort of Landau–
Ginzburg envelope equation – Eq. (19). For this first paper about this new macroscopic approach of membrane wrinkling,
two solutions have been presented. First an analytic solution of a clamped rectangular membrane illustrates that membrane
wrinkling is a multi-scale problem that requires consistent multi-scale approaches. Second, a numerical solution in a case
with a nonuniform pre-buckling stress has shown the relevance of the new reduced model and the necessity of accounting
for some spatial derivatives of the envelope. This approach can likely have alternative applications, for instance for thin
films on a compliant substrate [26] or for flatness defects induced by rolling process [27], but this could require some
modifications to account for variable wrinkle orientations.
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Fig. 4. Bifurcation curves for the tensile problem of Fig. 3, with three different models. Colour available online.

Fig. 5. Post-bifurcation profile along the width. Colour available online.
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