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This Note presents an approximation method for convex yield surfaces in the framework of
yield design theory. The proposed algorithm constructs an approximation using a convex
hull of ellipsoids such that the approximate criterion can be formulated in terms of
second-order conic constraints. The algorithm can treat bounded as well as unbounded
yield surfaces. Its efficiency is illustrated on two yield surfaces obtained using up-scaling
procedures.
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r é s u m é

Cette Note présente une méthode d’approximation pour les convexes de résistance
dans le cadre de la théorie du calcul à la rupture. L’algorithme proposé construit une
approximation utilisant une union convexe d’ellipsoides de sorte que le critère approché
puisse être formulé à l’aide de contraintes coniques du second ordre. L’algorithme est
capable de traiter le cas de surfaces bornées ou non bornées. Son efficacité est illustrée sur
deux surfaces de rupture obtenues par des procédures de type changement d’échelle.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Yield design theory has proved to be a very efficient tool for assessing the yield strength of different types of structures
without performing cumbersome elastoplastic analyses. It relies, indeed, on checking the compatibility between equilibrium
equations and satisfaction of the local strength criterion. As regards heterogeneous periodic media, yield design-based ho-
mogenization procedures have been proposed by Suquet [1] or de Buhan [2] in the context of reinforced soil mechanics. The
solution of an auxiliary yield-design problem formulated on the unit periodic cell leads to the construction of a macroscopic
strength criterion.

In the case of elastic homogenization procedures, the homogenized quantity to be determined is the macroscopic stiff-
ness tensor which can entirely be described by the value of its components. On the contrary, the homogenized quantity of
interest in yield design is a macroscopic yield surface. Such yield surfaces can be very complex (due to the heterogeneous
yield criterion, strength anisotropy, etc.) and, therefore, can no longer be easily described by analytic formulas. For this
simple reason, computation of limit loads on homogeneous equivalent structures has been limited to simple cases where
analytic formulas were available.
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Fortunately, the development of efficient algorithms for optimization problems now makes it possible to tackle problems
involving a quite large number of variables [3]. Being able to use complex macroscopic yield surfaces associated with
efficient optimization solvers would then be of paramount interest as regards engineering applications.

The aim of this Note is to propose a simple formulation and related computational tools describing such complex numer-
ically determined yield surfaces. In Section 2, the proposed formulation using a convex hull of ellipsoids is presented and
justified in the scope of mathematical programming techniques currently at hand. Section 3 is devoted to the description of
a constructive algorithm to approximate a general yield surface (determined for example by a homogenization or up-scaling
procedure) with the previous formulation. Finally, two examples illustrating the algorithm efficiency will be presented in
Section 4.

2. Yield surface approximation

The main difficulty arising in the numerical formulation of yield-design problems lies in the verification of the yield
criterion at each point of the structure. When considering the upper bound kinematic approach, it corresponds to the
implementation of the (usually non-linear) support function of the yield criterion in the global optimization problem.

As a consequence, simplified descriptions of the yield criterion (or, equivalently, approximations of the support function)
are often required to implement the problem in an appropriate numerical solver.

2.1. Numerical challenges

Piecewise linearization (PWL) of yield criteria has often been proposed in the literature to overcome this difficulty [4–6].
In this case, the support function can be expressed using Nv linear inequalities, where Nv corresponds to the number of
vertices of the approximating polytope. Replacing the original yield criterion by a piecewise linear approximation, the corre-
sponding optimization problem reduces to a linear programming (LP) problem. This formulation has been highly attractive
due to the performance of LP solvers using interior point algorithms. However, PWL approximations of yield surfaces can
require an important number of vertices to obtain a good accuracy [7]. Since the support function has to be evaluated at
each Gauss point of the structure, the total number of inequalities can become very important for complex structures.

Interior point algorithms have been extended to the case of second-order cone programming (SOCP) problems, which
include non-linear conic constraints. Remarkably, SOCP encompasses a large class of convex optimization problems (includ-
ing LP) and most usual strength criteria can be formulated using SOCP constraints [8]. Thus, yield-design problems in plane
strain, plane stress [9,10] or for plates in bending [11,12] have been successfully solved using SOCP formulations without
any linearization procedure. Therefore, two important advantages can be foreseen from approximating yield surfaces using
conic constraints: first, it is expected that conic approximation would require less constraints than linear approximation al-
lowing to tackle more complex problems; secondly, highly efficient SOCP solvers can be used to treat the global optimization
problem.

The following subsection proposes a formulation using a convex hull of ellipsoids, which can be treated using conic
constraints.

2.2. An interesting formulation using a convex hull of ellipsoids

Let E ⊂R
3 be an ellipsoid centered at point c, the principal axes of which are given by u, v and w forming an orthogonal

basis. Its support function is then given by:

πE (d) = sup
σ∈E

σ · d =
√

(u · d)2 + (v · d)2 + (w · d)2 + c · d = ‖A · d‖ + c · d

with A = T [uv w]. Moreover, if G is a convex hull of n ellipsoids Ei with matrix Ai and centers ci , then its support function
is given by:

πG(d) = max
i=1,...,n

(
πEi (d)

) = max
i=1,...,n

(‖Ai · d‖ + ci · d
)

This formulation is quite interesting in the scope of numerical yield design, since it can be expressed in terms of conic
constraints by introducing n + 1 auxiliary scalar variables (t0, t1, . . . , tn) such that:

ti + ci · d � t0

‖Ai · d‖ � ti
∀i = 1, . . . ,n

This new formulation involves n linear inequalities and n second-order cone inequalities such that, when minimizing t0
under the previous constraints, we have t0 = πG(d) at the optimum.

As a consequence, if G can be expressed as a convex hull of ellipsoids, the corresponding minimization problem of the
kinematic approach can be written as a second-order cone programming problem and efficiently solved using dedicated
solvers. This formulation deserves two comments:
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Fig. 1. Illustrative 2D example. The considered convex set G (in red) is the convex hull of two ellipses (E1 and E2) and a segment L. The supporting planes
for different directions d j are represented in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

– the cost to pay is obviously related to the number of additional optimization variables ti and to the linear or conic
inequality constraints;

– the same kind of results can be established when considering the lower bound static approach of yield design. Therefore,
with such a formulation, both approaches can be efficiently tackled using SOCP solvers.

3. An algorithm to approximate a yield surface by a convex hull of ellipsoids

This section is aimed at deriving a relatively simple algorithm which computes a series of optimal ellipsoids such that
their convex hull is an approximation of the initial yield surface. This algorithm uses the dual description of the convex
yield surface characterized by its support function π . It is therefore particularly well suited to macroscopic yield surfaces
obtained from a homogenization upper bound approach.

3.1. General assumptions and notations

The considered yield surfaces are supposed to be a convex bounded set G ⊂ R
3 containing the origin. It is to be noted

that this algorithm can be extended without difficulty to the case of unbounded convex sets, as discussed in the second
illustrative example of Section 4.2.

The intuitive algorithm constructs an approximation from the inside of the original yield surface. However, provided that
this approximation is sufficiently accurate, it is always possible to expand the inner approximation by an appropriate factor
to obtain an outer approximation. Both approximations can be valuable regarding their use in a yield-design problem at the
structure scale, considering either the lower bound static approach or the upper bound kinematic approach.

In the following, it will be assumed that M values of the support function π j at directions1 d j on the unit sphere S are
known. The directions d j are supposed to be uniformly distributed on the unit sphere. We will note D the M × 3 matrix of
the directions d j and π the M × 1 vector made by the corresponding values of the support function.

A two-dimensional example will serve to illustrate the principle of the algorithm throughout the discussion. The consid-
ered convex set G is obtained as the convex hull of two ellipses (E1 and E2) and a segment L (Fig. 1). Its support function
has the following simple analytical expression:

πG(dx,dy) = max
{
πE1(dx,dy),πE2(dx,dy),πL(dx,dy)

}
where the support functions of the ellipses and the segment are given by:

πE1(dx,dy) = 1

2

√
d2

x + 4d2
y + dxdy − 2dx − dy

πE2(dx,dy) =
√

d2
x + d2

y + dxdy

πL(dx,dy) = max

{
−2dx + 1

2
dy,

1

2
dx − dy

}

1 We will use the term directions for the values at which support functions are evaluated. These values correspond, indeed, to normal vectors of support-
ing hyperplanes.
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Fig. 2. Series of ellipsoids with prescribed curvatures at σ0.

3.2. Outline of the algorithm

At each step, the proposed iterative algorithm constructs an ellipsoid approximating G in a given region, which is then
added to the convex hull (CH) approximation of the previous step. Supposing that at step n, an approximation Pn = CH(Ei)

with ellipsoids Ei for 1 � i � n is available, the support function Πn of Pn has a simple analytical expression in function of
the geometric parameters of the different Ei . Therefore, it is possible to compute the difference between the original support
function and the current approximation π j − Πn(d j) for all j in order to find the direction d0 for which the difference is
the largest.

Given this direction d0, the decisive step of the algorithm will be to find a new ellipsoid En+1 approximating G in
a neighborhood2 of d0. Once En+1 is found, it is added to the convex hull to form the new approximation at step n + 1:
Pn+1 = CH(Pn;En+1).

3.3. Using the support function to characterize the local geometry

The key ingredient of the algorithm is based on a characterization of the local geometry of G in the neighborhood
of d0. For this purpose, the support function provides very useful information on the local geometry. All properties on the
curvature can, indeed, be obtained from the Weingarten map W (curvature tensor), the eigenvectors and eigenvalues of
which are the principal directions of curvatures and principal curvatures of G respectively. Moreover, the following relation
between the support function π(d) and the Weingarten map holds true [13,14]:

W = −(
HessS π(d) + π(d) Id

)−1

with HessS π(d) being the Hessian of π(d) with respect to the unit sphere S if π(d) is of class C2. Therefore, if λ is an
eigenvalue of HessS π(d), then its associated eigenvector is a principal direction of curvature with a radius of curvature
given by ρ = |λ + π(d)|.

Thus, provided that the Hessian can be computed, all information concerning the local curvature are available. A natural
idea is then to fit an ellipsoid with the same curvature to obtain a local approximation of G with a higher order of accuracy
than just a point.

3.4. Computation of the best ellipsoid with prescribed curvature

Let σ0 be a tangent point between G ∈R
3 and the supporting plane with normal d0. Denoting by d1 and d2 the principal

directions of curvature, we will look for an ellipsoid of principal axes {d0,d1,d2} contained in G , tangent to G at σ0 and
such that its radii of curvature at σ0 are given by ρ1 = |λ1 + π(d0)| and ρ2 = |λ2 + π(d0)|.

Besides, if the principal axes semi-lengths of the ellipsoid are denoted by a0,a1 and a2 and choosing σ0 as the point of
coordinates (a0,0,0) in the local frame of the ellipsoid with the origin at its center, the radii of curvature of the ellipsoid
at σ0 are given by the following relations:

ρ1 = a2
1

a0
and ρ2 = a2

2

a0

Therefore, ρ1 and ρ2 being kept fixed, the only remaining degree of freedom is, for example, a0 (see Fig. 2). Admissible
values of a0 are those corresponding to ellipsoids contained in G . For such values, we determine the set of directions where

2 Here again, due to the retained dual description via support functions, a neighborhood of d0 will represent supporting planes whose normal directions
are close to d0 (in the sense of the scalar product for example). Hence, a neighborhood of d0 does not necessarily correspond to a neighborhood of a given
point on G .
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Fig. 3. Logarithmic mapping on S.

the corresponding ellipsoid improves the previous approximation Pn . Then, we compute the root mean squared (RMS) error
between its support function and the original one on this given set. The best ellipsoid is the one for which the RMS error
is minimal.

3.5. Implementation details

– Initialization: Initialization can be performed using any point in G: the origin, the center of G defined as the point
minimizing the distance between all supporting planes, etc. This choice did not seem to influence the quality of the
approximation.

– Neighborhood of d0: The determination of the neighborhood of d0 is performed by sorting the scalar products d j · d0 ∀ j
by descending order and taking the first m directions except d0 itself.

– Computation of HessS π(d0): We perform a second-order Taylor expansion of π(d) for all d in the neighborhood of d0.
However, we recall that directions d are required to belong to the unit sphere so that the Taylor expansion has the
following expression [15]:

π(d) ≈ π(d0) + 〈
gradS π(d0), Logd0

(d)
〉 + 1

2

〈
Logd0

(d),HessS π(d0) Logd0
(d)

〉
where 〈·,·〉 is the scalar product on the tangent plane to S at d0, gradS π(d0) is the gradient of π(d) with respect to
S and Logd0

(d) is the logarithmic mapping (see Fig. 3) from d to the tangent plane such that ‖ Logd0
(d)‖ = distS(d,d0)

where distS(d,d0) is the geodesic distance on S. On S, this reduces to [16]:

Logd0
(d) =

(
d · e1

θ

sin θ
,d · e2

θ

sin θ

)
with distS(d,d0) = θ = arccos(d · d0) and {e1, e2} an orthonormal basis of the tangent plane.
Forming vectors y = (y1, y2) = Logd0

(d), dπ = π(d) − π(d0) and matrix B = [y1 y2 y2
1/2 y2

2/2 y1 y2], we solve the
following least-square problem:

r∗ = arg min‖Br − dπ‖
This operation can be efficiently performed in MATLAB with the backslash \ operator. The Hessian is then given by the

following matrix H =
[

r∗
3 r∗

5
r∗

5 r∗
4

]
.

– Tangent point σ0: The tangent point σ0 between G and the supporting plane with normal d0 is found by solving the
following linear programming optimization problem:

σ0 = arg max
x, Dx�π

x · d0

This operation can be easily performed with MATLAB linear programming solver linprog or other software packages
like Mosek [17] for example.

– Optimal value of a0: The retained strategy for finding the optimal value of a0 consists in estimating the maximal value
which can take a0. For example, we can choose the half of the diameter of G in the direction d0 given by:

amax = 1

2

(
π(d0) + π(−d0)

)
Then, the segment [0;amax] is discretized in Nd values. Nd different ellipsoids tangent at σ0 and with prescribed
curvature are obtained. The optimal ellipsoid is determined as discussed before. This stage is represented in Fig. 4.

– Actualization before next step: Once the optimal ellipsoid E has been determined, its geometric parameters (center c0 =
σ0 − a0d0 and principal axis) are saved and E is added to the previous approximation for the next step. Hence, the
support function of the new approximation will be:

Πn+1(d) = max
(
Πn(d),πE (d)

)



610 J. Bleyer, P. de Buhan / C. R. Mecanique 341 (2013) 605–615
Fig. 4. Different ellipses with the same curvatures as G at σ0.

where πE (d) is the support function of the optimal ellipsoid given by:

πE (d) =
√

(a0d0 · d)2 + (a1d1 · d)2 + (a2d2 · d)2 + c0 · d

The first 6 steps of the algorithm are illustrated in Fig. 5. We can observe that, starting with the center of G (represented
by a black cross), the algorithm constructs, step-by-step, optimal ellipsoids in the regions which are the farthest away from
the previous approximation.

It can clearly be seen that the local curvature is correctly computed and that in regions with corners, the determination
of the Hessian correctly accounts for the fact that the radius of curvature is zero, which results in elongated ellipsoids.

Finally, we can also mention that this algorithm is greedy since, at each stage, it performs optimal operations but can-
not find the globally optimal solution, which consists, here, in the two ellipsoids and the segment used to construct G .
Nevertheless, this example illustrates its performance, since it can approximate G with a very good accuracy in 6 steps only.

4. Illustrative examples

In this section, the efficiency of the proposed algorithm is demonstrated on two different numerically computed yield
surfaces. In the first example, a bounded yield surface is approximated whereas the second example involves an unbounded
yield surface.

4.1. Interaction surface of a reinforced concrete beam section

The first example considers the interaction surface of a beam section subject to combined bending moments M y , Mz

and axial force N . The considered section is an L-shaped concrete section reinforced by steel bars (Fig. 6).
The bending moments and axial force in equilibrium with a stress field σ , are given by:

N =
∫
S

σxx(y, z)dS

M y = −
∫
S

zσxx(y, z)dS

Mz = −
∫
S

yσxx(y, z)dS

where S is the transverse section of the beam.
Let S1 (resp. S2) denote the region occupied by the concrete (resp. steel reinforcement), σ 1

c (resp. σ 2
c ) the uniaxial

compressive strength in the x-direction and σ 1
t (resp. σ 2

t ) the uniaxial tensile strength in the x-direction of the concrete
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Fig. 5. First six steps of the algorithm on the illustrative example of Fig. 1. The black line represents the approximating convex at each step, obtained by
taking the convex hull of the computed ellipsoids. Black dots represent the computed tangent points σ0.

(resp. steel reinforcement). The interaction surface G is obtained by considering statically admissible uniaxial stress fields of
the form: σ = σ(y, z)ex ⊗ ex with:

σ(y, z) =
{

σ i
t if δ − zχy − yχz > 0 and (y, z) ∈ Si

−σ i if δ − zχy − yχz < 0 and (y, z) ∈ Si
∀i = 1,2
c
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Fig. 6. Geometry in the (y, z)-plane of the RC section: concrete in gray, steel reinforcements in red (units: meters, millimeters for reinforcement diameters).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Reconstruction of the interaction surface for the reinforced concrete L section of Fig. 6: original surface in red, approximated surface with N = 30
ellipsoids in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where χy , χz and δ are the generalized strains (curvatures and axial strain) associated with M y , Mz and N . Hence, the
support function of G is given by:

π(χy,χz, δ) =
∑

i=1,2

∫
Si

sup
{
σ i

t (δ − zχy − yχz);−σ i
c (δ − zχy − yχz)

}
dS

The corresponding interaction surface is represented in Fig. 7(a) in the (my,mz,n)-space, with my = M y/M y0, mz = Mz/Mz0
and n = N/N0 where Σ0 = (max Σ − min Σ)/2 for Σ = M y , Mz or N . Numerical values of strength were σc = 30 MPa and
σt = 1.8 MPa for concrete and σc = σt = 435 MPa for steel reinforcement.

The above-described algorithm has been tested on this surface by taking m = 10 for the number of directions in a
neighborhood and Nd = 200 for the number of discretization values for a0. The surface has been approximated using up to
50 ellipsoids. The surface obtained with N = 30 ellipsoids is represented in Fig. 7(b). One can clearly see that the quality
of the reconstruction obtained with 30 ellipsoids is very good. More precisely, the evolution of the relative error with
respect to the original support function is represented in Fig. 8(a) as a function of the number of ellipsoids. Two different
error norms were plotted: the maximal error and the root mean squared (RMS) error. It can clearly be seen that the error
is rapidly decreasing with the number of ellipsoids used in the approximation. For instance, with N = 30 ellipsoids, the
maximum relative error made on the support function is less than 4%, whereas the RMS error is around 0.5%. With N = 50
ellipsoids, the maximal error is less than 2%.

In order to compare the speed-up gained with this approximate description of the initial convex set, an artificial op-
timization problem, characteristic of those arising in numerical yield-design computations, has been imagined, involving
either the initial convex set of Fig. 7(a) consisting of approximately Np = 5100 points a j or the approximate set of N ellip-
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(a) (b)

Fig. 8. Convergence analysis of the approximation procedure on the reinforced concrete L section interaction surface. (a) Evolution of RMS and maximal
relative error with the number of ellipsoids. (b) Comparison of convergence rates between ellipsoid-based and point-based approximations.

soids. Fixing a value NS characterizing the size of the problem and a random vector F of size 3NS, the optimization problem
can be written as:

min
D∈R3NS

NS∑
i=1

π(D3i−2→3i)

s.t. F · D = 1

where π(d) represents the support function of the considered convex set. In the case of the initial convex set, the optimiza-
tion problem reads as the following linear programming problem:

min
D∈R3NS

NS∑
i=1

ti

s.t. F · D = 1
a j · D3i−2→3i � ti ∀ j = 1, . . . , Np

whereas, with the previous notations, the problem with the approximate set of N ellipsoids will read as the following SOCP
problem:

min
D∈R3NS

NS∑
i=1

t0,i

s.t. F · D = 1
‖A j · D3i−2→3i‖� t j,i

t j,i + c j · D3i−2→3i � t0,i
∀ j = 1, . . . , N

Considering different values of NS, both problems are solved with the Mosek software package, and the corresponding
interior-point computation times are reported in Table 1. It can be observed that the approximate problems with N = 30 or
N = 50 ellipsoids are solved approximately three times faster than the initial problem, without any approximation proce-
dure. Besides, it was impossible to solve the largest considered optimization problem (NS = 500) with the initial convex set,
because too much memory space was required for the problem to be formulated. Therefore, the proposed approximation
procedure is advantageous in terms of computational time saving as well as memory requirement.

Besides, the algorithm can also be degenerated to compute an approximation of the yield surface using points3 only.
A convergence analysis between ellipsoid-based and point-based approximations was performed on this example. The evo-
lution of relative error norms are plotted in Fig. 8(b) with respect to the number of primitives (ellipsoids or points). As
expected, the approximation using ellipsoids presents higher convergence rates (almost 1.5 times higher for both error
norms) than approximation using points only, thereby illustrating the efficiency of this method.

3 The points correspond to σ0 at each step.
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Table 1
Computing time (in seconds) for the interior-point solver on an Intel-P4 2.4 GHz with Mosek v6.0. The symbol *
signifies that Mosek was unable to solve the problem due to insufficient available memory.

Problem size Initial Approximate
N = 30

Approximate
N = 50

NS = 50 3.93 0.64 1.07
NS = 100 7.83 1.85 2.23
NS = 200 15.76 5.03 6.16
NS = 500 * 12.4 33.6

Fig. 9. Reconstruction of the macroscopic unbounded yield surface for a stone column reinforced soil (computed from [18]): original surface in red, approx-
imated surface with N = 30 ellipsoids in gray. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Finally, it is to be noted that, in this particular example, both primal (in generalized stress space) and dual (via support
function) descriptions of G were available. Nevertheless, in both descriptions, it was impossible to derive a simple analyt-
ical formula describing G , to be used in an optimization tool. Thus, an approximation procedure is required to use this
interaction surface, in order to compute the limit load of a structure made of such sections.

4.2. Macroscopic yield surface of a stone column reinforced soil

The second example involves an unbounded yield surface corresponding to the macroscopic strength properties of a
purely cohesive soil reinforced by a periodic distribution of stone columns made of a highly frictional granular material.
This macroscopic yield surface was determined in [18] on the basis of a yield-design homogenization approach using a
series of numerical elastoplastic simulations performed on a unit cell of the reinforced soil.

As an example, the determination of such a complex criterion is the first step to the evaluation of the bearing capacity of
stone columns reinforced foundations. However, due to the criterion complexity, an approximation procedure is necessary to
implement a numerical formulation of the corresponding yield-design problem on the equivalent homogeneous reinforced
soil.

As already mentioned, the proposed algorithm can easily be extended to the case of unbounded yield surfaces. Indeed,
instead of considering directions of the supporting plane normals describing the whole unit sphere S, one has only to
consider the subset of directions for which the yield surface is bounded. The only other modification relies on the evaluation
of amax, since the diameter in the direction d0 can be infinite for some d0. For example, in the case when the yield surface
is bounded in direction d0 but not in −d0, it was decided to replace −d0 in the definition of amax by −d̂0, which is the
closest direction to −d0 for which the yield surface is bounded.

Using the same optimization parameters as before, the algorithm was tested on the yield surface numerically determined
in [18]. The original yield surface as well as the obtained approximation using N = 30 ellipsoids were represented in the
space of “plane-strain” macroscopic stresses Σxx , Σyy and 2Σxy (Fig. 9). The evolution of the error norms was also plotted
in Fig. 10. One can observe that the maximal error is around 4% with N = 30 ellipsoids, whereas the RMS error is around 1%.

5. Conclusions and future work

An efficient algorithm has been proposed to approximate general yield surfaces using a convex hull of ellipsoids. This
algorithm uses the dual description of a convex yield surface by its support function, to compute the local curvature of the
surface and to find an optimal ellipsoid. The main characteristics of this algorithm are the following.
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Fig. 10. Evolution of RMS and maximal relative error with the number of ellipsoids for the macroscopic yield surface.

– Bounded and unbounded surfaces can be approximated by controlling the number of ellipsoids.
– The resolution of a linear programming problem is the only stage requiring a specific solver. In particular, this algorithm

does not require any non-linear solver for which convergence issues may appear.
– Approximations from the inside are obtained.
– The support function of the obtained approximation can be analytically computed from the geometrical parameters

determined by the algorithm. Moreover, it can be easily formulated in terms of second-order cone constraints, which
allows us to formulate the corresponding yield-design problems as SOCP, which have recently proved to be very efficient
to solve these problems.

It was also illustrated, on one example, that the convergence rate of the error was sensibly higher when using a convex
hull of ellipsoids rather than a convex hull of points to approximate the yield surface. This is highly valuable if such yield
surfaces are used on yield-design problems at the structure level, since such formulations will require less constraints
compared to a piecewise linearization procedure.

Concerning the presented algorithm, further work could be conducted to investigate the influence of the number of
directions in the neighborhood or to imagine more sophisticated strategies to improve its efficiency. Nevertheless, it has been
demonstrated that its performances are highly satisfactory. Moreover, since our primary interest lies in the computation of
limit loads on heterogeneous structures, our future work will therefore be aimed at using this algorithm to formulate
yield-design problems on complex structures made of heterogeneous materials using SOCP.
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