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The refined theory of transversely isotropic beam is analyzed. Based on the transversely
isotropic thermoporoelastic theory, a refined theory for bending beam is derived using the
general solution and the Lur’e method without ad hoc assumptions. First, the expressions
for all of the displacements and stress components of a transversely isotropic thermoporo-
elastic beam were obtained in terms of four functions with one independent variable.
Second, using homogeneous boundary condition, the refined equation and the decomposed
form of the thermoporoelastic beam were obtained. Finally, the approximate equations
and solutions for the beam under general anti-symmetric loadings were derived from the
refined theory.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The consolidation theory of porosity media was extended from one to three dimensions by Biot [1], and the consolidation
theory was improved more perfectly. Huang [2] and others gave the analytical solution of pore water pressure, stress and
displacement of the two-dimensional consolidation problem [3–6].

Without ad hoc assumptions, Cheng [7] developed the refined theory for bending of isotropic plates directly from the
three-dimensional theory of elasticity by using the solution of the plates and Lur’e method [8]. Under homogeneous bound-
ary conditions, the refined theory of plate is exact and consists of three parts: the bi-harmonic equation, the shear equation
and the transcendental equation. A parallel development on the plate theory was constructed by Gregory. In 1992, Gregory
[9] provided a rigorous proof of the decomposed form of isotropic plates. The two-plate theory has been extended to the
study of various material boards, such as transversely isotropic [10], thermoelastic [11], magnetoelastic [12], and piezoelec-
tric plates [13]. In 2005, the connection between the refined theory and the decomposed theorem of an isotropic elastic
plate was analyzed by Zhao and Wang [14]. The equivalence of the refined theory and the decomposed theorem of an
isotropic plate were obtained. In 2007, the refined theory of thermoelastic rectangular plates [15] and thermoelastic plane
problems [16] were obtained by Gao and Zhao.

In this paper, the research into the refined theory is extended to the study of the transversely isotropic thermoporoelastic
beam. In the next section, the basic equations and notations are stated. In Section 3, the decomposed theorem under
homogeneous boundary conditions is studied. The decomposed form is consistent with the interior state, the transcendental
state, the pore pressure state and the thermal state. In Sections 4, 5, the approximate equations and the solutions for the
beam under general anti-symmetric loadings are derived directly from the refined theory.
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2. Equations and notations

A transversely isotropic thermoporoelastic beam occupies the region:

Ω = {
(x, z)

∣∣ x ∈ D, |z| � t
}

(1)

where D is the cross-section of the beam, which has thickness 2t , the z-axis being perpendicular to the isotropic plane
of the medium in a Cartesian system (x, z). The constitutive equations for the transversely isotropic body in the two-
dimensional linear elasticity are described to be:

σxx = C11
∂u

∂x
+ C13

∂ w

∂z
− α1 P − β1T , σzz = C13

∂u

∂x
+ C33

∂ w

∂z
− α3 P − β3T

σzx = C44

(
∂ w

∂x
+ ∂u

∂z

)
, P = M

(
ξ − α1

∂u

∂x
− α3

∂ w

∂z
+ βm T

)
(2)

where σxx , σzz are the normal stresses, σzx is the shear stress, and u and w are displacements in the respective Cartesian
directions, P and T are changes in the pore pressure and temperature. ξ is the variation of the fluid content. Cij , α1 (α3, M)
and β1 (β3, βm) are the elastic moduli, Biot’s effective stress coefficients and thermal constants. It is noted that Cij , αi, βi
can be expressed in terms of engineering contents such as Young’s moduli, Poisson’s ratio, etc.

The general solution of thermoporoelastic beam has the following expression [17]:

u = −
4∑

i=1

∂ψi

∂x
, w =

4∑
i=1

μi1
∂ψi

si∂z
, P = μ32

∂2ψ3

s2
3∂z2

, T = μ43
∂2ψ4

s2
4∂z2

(3)

where:

μi1 = si
a2s4

i − b2s2
i + c2

a1s4
i − b1s2

i + c1
(i = 1,2,3,4), μ12 = μ22 = μ42 = μ13 = μ23 = μ33 = 0

μ32 = (a0s4
3 − b0s2

3 + c0)(λ33s2
3 − λ11)

a1s4
3 − b1s2

3 + c1
, μ43 = (a0s4

4 − b0s2
4 + c0)(κ33s2

4 − κ11)

a1s4
4 − b1s2

4 + c1
(4)

a0 = C33C44, b0 = C11C33 − C2
13 − 2C13C44, c0 = C11C44

a1 = (C13 + C44)(κ33β3 + λ33α3) − C33(κ33β1 + λ33α1)

b1 = (C13 + C44)(κ11β3 + λ11α3) − C44(κ33β1 + λ33α1) − C33(κ11β1 + λ11α1)

c1 = −C44(κ11β1 + λ11α1), a2 = C44(κ33β3 + λ33α3)

b2 = C11(κ33β3 + λ33α3) + C44(κ11β3 + λ11α3) − (C13 + C44)(κ33β1 + λ33α1)

c2 = C11(κ11β3 + λ11α3) − (C13 + C44)(κ11β1 + λ11α1) (5)

in which κ11 (κ33) and λ11 (λ33) are the coefficients of permeability and the thermal conductivity, and where ψi (i =
1,2,3,4) are the harmonic functions that satisfy the following equation:

(
∂2

∂x2
+ ∂2

s2
i ∂z2

)
ψi = 0 (i = 1,2,3,4) (6)

where s2
3 = κ11/κ33, s2

4 = λ11/λ33, s2
1 and s2

2 are two roots of the following equation (set s2
1 �= s2

2):

a0s4 − b0s2 + c0 = 0 (7)

Lekhnitskii [18] proved that the numbers s1 and s2 for any transversely isotropic body can be real or complex (with a
real part different from zero), but cannot be purely imaginary.

Since the stresses in the bending beam are anti-symmetrical about mid-plane z = 0, this induces that u and v are the
odd function about z, and w is the even function about z. Using the Lur’e method [8], we have the following solutions
of (7):

ψi = sin(zsi∂x)

si∂x
gi(x) (i = 1,2,3,4) (8)

in which gi (i = 1,2,3,4) are unknown functions of x, yet to be determined, and ∂x = ∂/∂x, and:
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sin(zsi∂x)

si∂x
= z

(
1 − 1

3! s2
i z2∂2

x + 1

5! s4
i z4∂4

x − · · ·
)

cos(zsi∂x) = 1 − 1

2! z2s2
i ∂

2
x + 1

4! z4s4
i ∂

4
x − · · · (9)

Substituting Eq. (8) into Eqs. (3) and (2), we obtain the displacement field and the stress state:

u = −
4∑

i=1

sin(zsi∂x)

si∂x
g′

i, w =
4∑

i=1

μi1

si
cos(zsi∂x)gi (10)

P = −μ32
sin(zs3∂x)

s3∂x
g′′

3, T = −μ43
sin(zs4∂x)

s4∂x
g′′

4, σxx =
4∑

i=1

s2
i ωi

sin(zsi∂x)

si∂x
g′′

i

σzx =
4∑

i=1

ωi cos(zsi∂x)g′
i, σzz = −

4∑
i=1

ωi
sin(zsi∂x)

si∂x
g′′

i (11)

where:

ωi = −C11 − C13siμi1 + α1μi2 + β1μi3

s2
i

= C44(μi1/si − 1)

= −(−C13 − C33siμi1 + α3μi2 + β3μi3) (i = 1,2,3,4) (12)

3. The decomposed theorem under homogeneous boundary condition

Suppose that two faces, z = ±t are free of tractions. The boundary conditions on the upper and lower surfaces of the
beam are:

z = ±t, σzz = 0, σzx = 0, T = 0, P = 0 (13)

Inserting Eq. (13) into Eq. (11), we can gain:

sin(ts3∂x)

s3∂x
g′′

3 = 0,
sin(ts4∂x)

s4∂x
g′′

4 = 0,

4∑
i=1

ωi
sin(tsi∂x)

si∂x
g′′

i = 0,

4∑
i=1

ωi cos(tsi∂x)g′
i = 0 (14)

Taking the operator sin(ts3∂x)
s3

sin(ts4∂x)
s4∂x

on both sides of the fourth equation of (14), one obtains:
(

L11 L12

L21 L22

)(
g′

1
g′

2

)
=

(
0
0

)
(15)

L1i = ωi
sin(tsi∂x)

si
, L2i = ωi

sin(ts3∂x)

s3

sin(ts4∂x)

s4∂x
cos(tsi∂x) (16)

According to the Lur’e method [8], the solutions of Eq. (15) have the following form:

g′
1 = L22ξ1 − L12ξ2, g′

2 = −L21ξ1 + L11ξ2 (17)

and, ξi (i = 1,2) satisfy:

ω1ω2(s2
1 − s2

2)

2s1s2
�∂4

x ξi = 0

� = 1

∂2
x

sin(ts3∂x)

s3∂x

sin(ts4∂x)

s4∂x

{
sin[(s1 − s2)t∂x]

(s1 − s2)∂x
− sin[(s1 + s2)t∂x]

(s1 + s2)∂x

}
(18)

According to the theorem of the Appendix in Ref. [19], we can obtain ξi = ξ
(1)
i + ξ

(2)
i , and:

∂4
x ξ

(1)
i = 0 (19)

�ξ
(2)
i = 0 (20)

Under homogeneous boundary conditions, the bending general solution of the transversely isotropic thermoporoelastic
beam consists of the general solutions of four governing differential equations: the 4-order equation (19), the transcendental
equation (20), the pore pressure equation (the first equation of (14)) and the thermal equation (the second equation of (14)).

In the following four sections, we will discuss these four governing differential equations, and four stress states will be
obtained.
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3.1. 4-Order equation and the interior state

By using Eqs. (19) and (17), and letting:

η = sin(ts3∂x)

s3∂x

sin(ts4∂x)

s4∂x
ξ

(1)
1 (21)

we can get the interior state:

σ
(I)
zz = 0, σ

(I)
xx = ω1ω2

(
s2

1 − s2
2

)
z∂2

x η, σ
(I)
zx = 1

2
ω1ω2

(
s2

1 − s2
2

)(
t2 − z2)∂3

x η (22)

It is easy to know that η satisfies the 4-order equation ∂4
x η = 0.

3.2. Transcendental equation and transcendental states

By using Eqs. (20) and (17), and letting

φ

ω1ω2
= − sin(ts3∂x)

s3∂x

sin(ts4∂x)

s4∂x

[
cos(ts2∂x)

sin(zs1∂x)

s1∂x
− cos(ts1∂x)

sin(zs2∂x)

s2∂x

]
ξ

(2)
1

∂2
x

(23)

we can get the transcendental state:

σ
(TR)
xx = ∂4φ

∂x2∂z2
, σ

(TR)
zx = − ∂4φ

∂x3∂z
, σ

(TR)
zz = ∂4φ

∂x4
(24)

It is easy to know that φ satisfies:

(
∂2

∂x2
+ 1

s2
1

∂2

∂z2

)(
∂2

∂x2
+ 1

s2
2

∂2

∂z2

)
φ = 0, φ = 0, ∂φ/∂z = 0 (z = ±t) (25)

3.3. Pore pressure equation and pore pressure states

Let:

g1 = g2 = 0,
sin(ts3∂x)

s3∂x
g′′

3 = 0, ϕ3 = − sin(zs3∂x)

s3∂x
g3 (26)

It is easy to obtain the pore pressure states:

P = μ32
∂2ϕ3

∂x2
, σ

(P )
xx = ω3

∂2ϕ3

∂z2
, σ

(P )
zz = ω3

∂2ϕ3

∂x2
, σ

(P )
zx = −ω3

∂2ϕ3

∂x∂z
(27)

It is easy to know that ϕ3 satisfies:

(
∂2

∂x2
+ 1

s2
3

∂2

∂z2

)
ϕ3 = 0, ∂2ϕ3/∂x2 = 0 (z = ±t) (28)

3.4. Thermal equation and thermal states

Let:

g1 = g2 = 0,
sin(ts4∂x)

s4∂x
g′′

4 = 0, ϕ4 = − sin(zs4∂x)

s4∂x
g4 (29)

It is easy to obtain the thermal states:

T = μ43
∂2ϕ3

∂x2
, σ

(T )
xx = ω4

∂2ϕ4

∂z2
, σ

(T )
zz = ω4

∂2ϕ4

∂x2
, σ

(T )
zx = −ω4

∂2ϕ4

∂x∂z
(30)

It is easy to know that ϕ4 satisfies:

(
∂2

∂x2
+ 1

s2
4

∂2

∂z2

)
ϕ4 = 0, ∂2ϕ4/∂x2 = 0 (z = ±t) (31)
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3.5. The decomposed theorem

In a homogeneous, transversely isotropic plate occupying the volume Ω , suppose that σi j satisfy the following conditions:

(1) σi j in Ω satisfies the equilibrium equations without body force and compatibility equations;
(2) σi j are anti-symmetrical about mid-plane z = 0;
(3) σzz = 0, σzx = 0, T = 0, P = 0 on the faces z = ±t (x ∈ D).

Then there exists an interior state σ
(I)
i j , a transcendental state σ

(TR)
i j , a pore pressure state σ

(P )
i j and a thermal state σ

(T )
i j in

Ω such that σi j = σ
(I)
i j + σ

(TR)
i j + σ

(P )
i j + σ

(T )
i j .

4. Approximate equations: under temperature loading

In this section, a beam under an anti-symmetric transverse load is considered. The boundary conditions are given as:

z = ±t, σzx = 0, σzz = ±q, P = 0, T = ±θ (32)

Inserting Eq. (32) into Eq. (11), we can gain:

4∑
i=1

[
ωi cos(tsi∂x)g′

i

] = 0,

4∑
i=1

[
ωi

sin(tsi∂x)

si∂x
g′′

i

]
= −q,

sin(ts3∂x)

s3∂x
g′′

3 = 0

sin(ts4∂x)

s4∂x
g′′

4 = − θ

μ43
(33)

Taking the operator sin(ts3∂x)
s3

sin(ts4∂x)
s4∂x

on both sides of the first equation of (33), and using the third and fourth equations
of (33), one obtains:

(
L11 L12

L21 L22

)(
g′

1
g′

2

)
=

(
h1
h2

)
(34)

where:

h1 = ω4θ

μ43
− q, h2 = ω4 sin(ts3∂x)

μ43s3∂x
cos(ts4∂x)θ (35)

Taking the operator L22/∂x on both sides of the first equation of (34), and using the second equation of (34), one obtains:

(s2
1 − s2

2)ω1ω2

2s1s2
�∂4

x g1 = (L22h1 − L12h2)/∂x (36)

Taking the operator L21/∂x on both sides of the first equation of (34), and using the second equation of (34), one obtains:

(s2
1 − s2

2)ω1ω2

2s1s2
�∂4

x g2 = (−L21h1 + L11h2)/∂x (37)

These equations are of infinite order, so they are not applicable in most cases. In the following, we will make certain
simplifications to develop an approximate thermoporoelastic beam theory. Using the Taylor series of the trigonometric
functions in Eq. (8), then omitting all the terms associated with t4 and higher orders, we obtain the following results:

g′′
1 = − 3

ω1(s2
1 − s2

2)t
3∂2

x

[
1 +

(
s2

1

10
− 2s2

2

5

)
t2∂2

x

]
q − ω4(s2

2 − s2
4)

μ43ω1(s2
1 − s2

2)t

[
1 +

(
s2

1

10
+ s2

4

15

)
t2∂2

x

]
θ

g′′
2 = 3

ω2(s2
1 − s2

2)t
3∂2

x

[
1 +

(
s2

2

10
− 2s2

1

5

)
t2∂2

x

]
q + ω4(s2

1 − s2
4)

μ43ω2(s2
1 − s2

2)t

[
1 +

(
s2

2

10
+ s2

4

15

)
t2∂2

x

]
θ

g′′
4 = −

(
1 + 1

6
s2

4t2∂2
x

)
θ

μ43t
(38)

Inserting Eq. (38) into Eqs. (10) and (11), then dropping all the terms associated with t4 and higher orders, we can obtain
the displacement field and the stress states:
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u = 3z

(s2
1 − s2

2)ω1ω2t3∂3
x

[
ω2 − ω1 +

(
t2

10
− z2

6

)(
ω2s2

1 − ω1s2
2

)
∂2

x + 2

5

(
ω1s2

1 − ω2s2
2

)]
q

+ zω4

μ43(s2
1 − s2

2)ω1ω2t∂x

{[
ω2s2

2 − ω1s2
1 − s2

4(ω2 − ω1)
](

1 + 1

15
s2

4t2∂2
x

)

+ [
(ω2 − ω1)s2

1s2
2 − s2

4

(
ω2s2

1 − ω1s2
2

)]( t2

10
− z2

6

)
∂2

x

}
θ +

[
1 + 1

6

(
t2 − z2)s2

4∂
2
x

]
zθ

μ43t∂x

w = 3

At3∂4
x

[
B + C

(
t2

10
− z2

2

)
∂2

x − 2

5
Dt2∂2

x

]
q −

[
1 +

(
t2

6
− z2

2

)
s2

4∂
2
x

]
μ41θ

μ43s4t∂2
x

+ ω4

μ43 At∂2
x

[(
D − Bs2

4

)(
1 + 1

15
s2

4t2∂2
x

)
+ (

s2
1s2

2 B − s2
4C

)( t2

10
− z2

2

)
∂2

x

]
θ (39)

where:

A = s1s2
(
s2

1 − s2
2

)
ω1ω2, B = μ21ω1s1 − μ11ω2s2

C = μ21ω1s1s2
2 − μ11ω2s2s2

1, D = μ21ω1s3
1 − μ11ω2s3

2 (40)

σxx = −
[

1 +
(

t2

10
− z2

6

)(
s2

1 + s2
2

)
∂2

x

]
3zq

t3∂2
x

+ [(
s2

1 + s2
2 − 1

)
s2

4 − s2
1s2

2

]( t2

10
− z2

6

)
∂2

x
zω4θ

μ43t

σzx = 3(z2 − t2)q

2t3∂x
, σzz = (3t2 − z2)zq

2t3
(41)

5. Approximate equations: under pore pressure loading

In this section, a beam under anti-symmetric transverse load is considered. The boundary conditions are given as:

z = ±t, σzx = 0, σzz = ±q, P = ±p0, T = 0 (42)

Inserting Eq. (42) into Eq. (11), we can gain:

4∑
i=1

[
ωi cos(tsi∂x)g′

i

] = 0,

4∑
i=1

[
ωi

sin(tsi∂x)

si∂x
g′′

i

]
= −q,

sin(ts3∂x)

s3∂x
g′′

3 = − p0

μ32

sin(ts4∂x)

s4∂x
g′′

4 = 0 (43)

Taking the operator sin(ts3∂x)
s3

sin(ts4∂x)
s4∂x

on both sides of the first equation of (43), and using the third and fourth equations
of (43), one obtains:

(
L11 L12

L21 L22

)(
g′

1
g′

2

)
=

(
f1

f2

)
(44)

where:

f1 = ω3 p0

μ32
− q, f2 = ω3 sin(ts4∂x)

μ32s4∂x
cos(ts3∂x)p0 (45)

Taking the operator L22/∂x on both sides of the first equation of (44), and using the second equation of (44), one obtains:

(s2
1 − s2

2)ω1ω2

2s1s2
�∂4

x g1 = (L22 f1 − L12 f2)/∂x (46)

Taking the operator L21/∂x on both sides of the first equation of (44), and using the second equation of (44), one obtains:

(s2
1 − s2

2)ω1ω2

2s1s2
�∂4

x g2 = (−L21 f1 + L11 f2)/∂x (47)

Because these equations are of infinite order, they are not applicable in most cases. In the following, we will try to
develop an approximate thermoporoelastic beam theory. Using the Taylor series of the trigonometric functions in Eq. (8),
then dropping all the terms associated with t4 and higher orders, the results turn out to be:
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g′′
1 = − 3

ω1(s2
1 − s2

2)t
3∂2

x

[
1 +

(
s2

1

10
− 2s2

2

5

)
t2∂2

x

]
q − ω3(s2

2 − s2
3)

μ32ω1(s2
1 − s2

2)t

[
1 +

(
s2

1

10
+ s2

3

15

)
t2∂2

x

]
p0

g′′
2 = 3

ω2(s2
1 − s2

2)t
3∂2

x

[
1 +

(
s2

2

10
− 2s2

1

5

)
t2∂2

x

]
q + ω3(s2

1 − s2
3)

μ32ω2(s2
1 − s2

2)t

[
1 +

(
s2

2

10
+ s2

3

15

)
t2∂2

x

]
p0

g′′
3 = −

(
1 + 1

6
s2

3t2∂2
x

)
p0

μ32t
(48)

Inserting Eq. (48) into Eqs. (10) and (11), we can obtain the displacement field and the stress states:

u = 3z

(s2
1 − s2

2)ω1ω2t3∂3
x

[
ω2 − ω1 +

(
t2

10
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6

)(
ω2s2
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2

)
∂2

x + 2

5

(
ω1s2

1 − ω2s2
2

)]
q

+ zω3

μ32(s2
1 − s2

2)ω1ω2t∂x
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ω2s2
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15
s2

3t2∂2
x

)

+ [
(ω2 − ω1)s2

1s2
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3
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ω2s2
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2

)]( t2
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6
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x
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p0 +
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6

(
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3∂
2
x

]
zp0

μ32t∂x

w = 3
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x

[
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(
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3∂
2
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]
μ31 p0
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x

+ ω3
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3t2∂2
x

)
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s2
1s2

2 B − s2
3C

)( t2
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p0 (49)

σxx = −
[

1 +
(

t2

10
− z2

6

)(
s2

1 + s2
2

)
∂2

x

]
3zq

t3∂2
x

+ [(
s2

1 + s2
2 − 1

)
s2
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1s2

2

]( t2
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6
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∂2

x
zω3 p0
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σzx = 3(z2 − t2)q

2t3∂x
, σzz = (3t2 − z2)zq

2t3
(50)

6. Conclusion and discussion

By using the general solution of thermoporoelasticity and the Lur’e method, a refined theory of thermoporoelastic beam
is deduced systematically and directly from the linear thermoporoelastic theory without any additional assumptions. The
refined theory constructed by Cheng is improved in this paper.

Under homogeneous boundary conditions, a refined equation of the transversely isotropic thermoporoelastic beam is
obtained, which is consistent with four governing differential equations: the 4-order equation, the transcendental equation,
the pore pressure equation and the thermal equation. Moreover, the decomposed form of a transversely isotropic elasticity
beam is given. The interior state, the transcendental state, the pore pressure state, and thermal state can be derived directly
from the refined equation.

Under non-homogeneous boundary conditions, the approximate equations and solutions are accurate up to the second-
order terms with respect to plate thickness. The refined plate theory can be extended to other well-known elastic and
thermoelastic models.

Finally, we discuss the comparison of the presented results with available results of Ref. [20].
Inserting Eq. (55) of [20] into Eq. (16) of Ref. [20], we can obtain:

σz = z

2h3

(
3h2 − 4z2)q, τxz = 6

h3∂x

(
z2 − 1

4
h2

)
q

σx = − 12z

h3∂2
x

[
1 +

(
h2

40
− z2

6

)(
s2

1 + s2
2

)
∂2

x

]
q (51)

The boundary conditions (32) and (41) are transformed into:

z = ±h/2, σzx = 0, σzz = ±q/2, P = 0, T = 0 (52)

Therefore, the presented results (41) and (50) can be transformed into Eq. (51).
We will next discuss the comparison of the presented interior state (22) with the available results of Ref. [20].
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Let:

ωi = C44(1 + ki) (i = 1,2) (53)

The interior state (32) of Ref. [20] can be found to be:

σ
(1)
x = ω1ω2(s2

1 − s2
2)

C44(k1 − k2)
z
(

w(1)
)′′

, τ
(1)
xz = ω1ω2(s2

1 − s2
2)

2C44(k1 − k2)

(
h2

4
− z2

)(
w(1)

)′′′
, σ

(1)
z = 0 (54)

So they are the same in form.
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