
C. R. Mecanique 341 (2013) 715–725
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

2D axisymmetric X-FEM modeling of the Hertzian cone crack
system

David Y. Tumbajoy-Spinel a, Éric Feulvarch b, Jean-Michel Bergheau b,
Guillaume Kermouche a,∗
a École nationale supérieure des mines de Saint-Étienne, centre SMS, LGF UMR CNRS 5307, 158 cours Fauriel, 42023 Saint-Étienne cedex 2,
France
b Université de Lyon, ENISE, LTDS, UMR5513 CNRS, 58 rue Jean Parot, 42023 Saint-Etienne cedex 2, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 July 2013
Accepted after revision 12 September 2013
Available online 22 October 2013

Keywords:
Cone crack
Indentation
Brittle materials
X-FEM
Silicate glasses
Contact

Mots-clés :
Fissuration en cône
Indentation
Matériaux fragiles
X-FEM
Verres silicatés
Contact mécanique

Hertzian cone cracks are nowadays a scholarly case making it possible to understand
fracture of materials. However, the simulation of this physical phenomenon is not trivial
and most theoretical models lead to the prediction of cone crack angles different from
those observed experimentally. In the past, finite-element models have been developed
based on a re-meshing procedure to explain this difference successfully, but with some
limitations due the algorithms used. In this paper, we propose to use the X-FEM method
to model Hertzian cone crack propagation with a 2D axisymmetric approach. The effect
of various numerical parameters, such as mesh size or time step, is investigated and it
is shown that they do not have a great impact on the crack angle result. The analysis of
the stress field induced leads us to understand the difference in terms of cone crack angle
based on the pre-existing stress field and those experimentally observed. As a conclusion,
X-FEM is very efficient to reproduce faithfully several characteristics of the Hertzian cone
crack phenomenon in a very simple manner.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La génération de fissures hertziennes de forme conique par des contacts mécaniques
apparaît souvent comme un cas d’école pour étudier la rupture des matériaux fragiles.
Cependant, la simulation de ce phénomène physique n’est pas triviale, car la plupart
des modèles analytiques prédisent des angles de fissuration différents de ceux observés
expérimentalement. Cette différence a pu être expliquée par des modélisations éléments
finis reposant sur des algorithmes de remaillage très spécifiques, engendrant malheureuse-
ment un certain nombre de limitations pratiques. Dans cet article, nous proposons
d’utiliser la méthode des éléments finis étendus pour représenter ce phénomène. L’angle
de propagation obtenu est en très bon accord avec les résultats de la littérature, et la
différence observée avec les modèles analytiques peut s’expliquer par une modification du
champ de contraintes au cours de la propagation. Nous montrons aussi que les résultats
obtenus sont robustes, c’est-à-dire qu’ils ne dépendent pas ou très peu de paramètres
numériques tels que la taille des éléments ou la longueur d’extension de fissure. En
conclusion, la technique X-FEM apparaît comme très efficace et suffisamment précise pour
modéliser la rupture en cône de Hertz.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Steps and parameters observed on the Hertzian cone crack development. Color online.

1. Introduction

Since the beginning of the 20th century, fracture mechanics has become an essential discipline to predict the behavior
of several components in different industry domains. Then, the analysis of some general properties and the validation of
certain methods used to estimate the fracture phenomenon were first studied from particular cases of crack propagation,
such as the Hertzian cone system (Fig. 1).

Many researchers were interested to develop a number of experimental and analytical descriptions of the Hertzian cone,
because this indentation system offers several advantages: firstly, the experimental test is reproducible, secondly, the crack
path seems to be well defined and predictable, and finally the influence of several parameters on crack generation is almost
known [1–15]. As a consequence, the Hertzian cone indentation is considered as a scholarly case to illustrate the generalities
and characteristics of the crack growth phenomenon.

Nevertheless this apparent simplicity is misleading. Thanks to a finite-element analysis based on a specific re-meshing
procedure, Kocer et al. [4] have particularly shown that the crack path predicted by the Hertzian analytical stress field is
erroneous. This result is of primary importance concerning the analysis of this scholar case, but it seems to have been ig-
nored during the past fifteen years. In our opinion, the main reason lies in the difficulty to establish a re-meshing procedure
making it possible to predict with enough accuracy the stress field around a moving crack. The purpose of this paper is
to show that the use of the Extended Finite-Element Method [16] is a good alternative to re-meshing-based methods to
predict Hertzian cone cracks.

Firstly, the experimental and analytical considerations of the Hertzian cone system and a brief specification of the nu-
merical simulation approach used by Kocer et al. [4,9] are detailed. Secondly, a general description of the X-FEM technique
and its application to the particular case of the Hertzian cone system is presented with a 2D axisymmetric approach. Finally,
the effect of various numerical parameters, such as mesh size or time step, is investigated. The results of the simulations
performed with this technique – cone crack angle, stress field and energy release rate – are discussed in the last part of
this paper.

2. About Hertzian cone cracks

The studies produced by Hertz in the 19th century proved that indentation tests performed with a spherical or flat
punch on the surface of a fragile material lead to the development of an axisymmetric cone crack around the contact area.
Fig. 1 shows a representation of the Hertzian cone, where the three general steps observed in the formation of the cone are
illustrated.

Firstly, the superficial flaws placed around the indenter start growing under the influence of the flat punch pressure
(step 1). When the stress field is high enough, the initial flaws get together to become an annulus crack. This crack starts
growing orthogonally to the material surface in a concentric position with respect to the indenter axis (step 2) [10]. Finally,
when the annulus is well formed, the crack starts growing as an axisymmetric cone with a constant angle usually defined as
ϑ = 22◦ , when ν = 0.21 (step 3). According to several studies [2,6], a well-formed cone is obtained in a stable equilibrium,
and its base radius depends on the load applied on the indenter (s ∝ P 2/3). In Fig. 1, a is the indenter radius, c is the crack
length and ro is the annulus crack radius [5,11].

It should be remarked that brittle materials as Soda – lime glass or borosilicate glass – are characterized by a Young
modulus E = 70 000 MPa and ν = 0.21. The indenter is a hardened steel flat punch with E = 210 000 MPa, ν = 0.33, and
diameters ranging from 0.4 mm to 6.35 mm [6].

The analytical description of the Hertzian cone crack is always based on fracture mechanics general principles. The first
important consideration in this domain is the representation of the crack in order to develop a reliable and simple model.
Basically, in this case, the crack geometry is determined as the union of two independent crack surfaces named Γ + and
Γ − respectively, where its intersection is known as the crack tip. The crack geometry is represented in Fig. 2.

In linear elastic fracture mechanics, the stress field is described by the Irwin relation, defined as a linear combination of
the solutions associated with the three possible load configurations that can generate crack propagation. Mode I is a load
applied in a normal direction to the crack plane, while modes II and III are forces applied in a tangential direction to the
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Fig. 2. Crack geometry and the coordinate system at the crack tip. Color online.

Fig. 3. Propagation of the Hertzian cone crack following the pre-existing trajectory of the principal stress σ3. Color online.

crack plane. Moreover, each load mode is associated with a stress intensity factor (K1, K2, and K3), which is considered as
a parameter that reflects the influence of each load configuration on the development of the stress field around the crack
tip [12].

Furthermore, fracture mechanics proposes a crack propagation criterion based on the strain energy release rate G . This
factor corresponds to the relation between the energy variations in the material when a new free surface is generated by
propagation. In general terms, when G becomes higher than a critical value Gc, crack propagation starts. Likewise, the crack
growth direction is defined by the angle ϑ that maximizes the G(θ) value around the crack tip [13,14].

Following those general principles, several authors analytically defined the Hertzian cone and proposed several hypothe-
ses and conclusions. One of the most remarkable assumptions made in the past is that the crack path is always defined by
the pre-existing principal stress field, which means that the Hertzian cone crack coincides with the trajectory of the mini-
mal principal stress σ3 (Fig. 3). Knowing that the principal stresses are orthogonal, this supposition entails that σ1 produces
crack propagation under the effect of the mode I, considering this load as the only one that can produce crack growth. It
must be mentioned that σ2 is oriented perpendicularly to the figure plane [2,5,7].

This theory is based essentially on two arguments: (1) the analytical definition of the stress field shows that the geometry
of the σ3 trajectories is very similar to that found experimentally in the Hertzian cone crack system; (2) the estimation of
the principal stress isovalues reveals that σ1 is the only tensile stress near to the surface region where the crack is generated
and propagates. As a result, the other principal stresses do not contribute to the crack extension [2,5,7].

This characterization of the Hertzian cone was strongly supported by several researches in the past; however more
recent works, such as those presented by Kocer [1,4,9,15], expose several inconsistencies between the experimental results,
the description presented by the analytical methods, and the solutions that he obtains using the numerical simulation of the
crack propagation. In his work, Kocer estimates the angle of the cone crack path and compares it with the distribution of the
pre-existing principal stress σ3. Then he observes that the angles are very different for the same Poisson ratio (ν = 0.21):
22◦ is obtained from the finite-element analysis, whereas 33◦ was predicted by the Hertzian analytical solution.

Therefore, the results found by Kocer point out two main contradictions between the numerical and the analytical
methods in the description of the Hertzian cone. The first remark is that the cone angle value obtained analytically (22◦ for
ν = 0.33) differs considerably from that found with the numerical simulation; incidentally, the numerical solution presents
very accurate results in accordance with the experimental tests [7,9]. The second contradiction is related to the divergence
observed between the angles determined for the crack and the pre-existing stresses. Kocer’s work reveals that the cone crack
does not follow the pre-existing stress trajectories because their orientations are different, contrary to the hypothesis initially
proposed by several authors in the past. Furthermore, he proposed that the pre-existing principal stresses trajectories evolve
gradually from 33◦ to 22◦ , because of the continuous cone crack growth [4,9].

Consequently, in order to prove the performance of the X-FEM method in the computation of the Hertzian crack growth
phenomenon, the works of Kocer et al. [4,9] could be taken as a pattern to develop a similar approach using another
computation method. The finite-element model used by Kocer et al. is based on the re-meshing procedure of a cylindrical
axisymmetric model for each iteration step. A constant meshing patch ahead of the crack tip is used in order to avoid a
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random mesh structure in this zone, thus leading to minimize numerical uncertainties [4]. The stress intensity factors (SIFs)
and the strain energy release rate G are employed in the crack propagation criterion and the crack growth direction ϑ

of the next iteration is determined. Finally, the current position of the crack tip is updated. The main drawbacks of this
re-meshing-based method are the high computational-time cost induced and the difficulty related to the mesh calibration
at each iteration step. This is the reason why the X-FEM method, which does not require re-meshing algorithms [16], could
be an interesting and efficient alternative to model Hertzian cone crack propagation.

3. General description of the X-FEM

One strong advantage of the X-FEM technique over the re-meshing-based procedure is that it is simpler to implement.
Indeed, the crack is implicitly considered in the approximation of displacements and deformations. Some terms are added
to the classical FEM approximation of displacements, without modifying the topology of the mesh. These enrichment terms
depend on the geometry of the crack, which is modeled within a level set framework. The X-FEM approximation of the
displacements can be written as follows [16]:

U ≈
N∑

i=1

Niui +
∑
j∈M

N j Ha j +
∑
k∈T

Nk

(
4∑

l=1

flbkl

)

In these expressions, N denotes the number of nodes and Ni the shape function associated with node i. H and fl are
the enrichment functions. ui , a j and bkl denote the vectorial unknowns at each node. M is the subset of nodes whose
support is cut by the crack. There are several ways to build the subset T corresponding to enrichment near the crack tip.
For geometrical enrichment, T is composed of the subset of nodes whose distance is less than a length L characterizing the
size of the area of K -dominance. The enrichment technique used in this work is topological. T is defined with the set of
nodes whose support contains the crack tip [17].

The enrichment functions are not developed in this work because these are functions that are commonly used in classical
cases of 3D studies with a plane strain assumption near the crack tip for the determination of SIFs. Moreover, the simulations
correspond to a 3D modeling even if computations are 2D axisymmetric. This approach has been checked in the recent work
of Tran and Geniaut [18].

At each time step, the stress and strain distributions are computed with the X-FEM approximation. The stress intensity
factors, K1 and K2, are then computed via interaction integrals [19]. The misorientation angle of the crack is obtained from
the criterion of maximum normal stress1 and the feed pitch of the crack is defined a priori. At each step of the propagation,
the level sets are updated following the procedure proposed by Stolarska et al. [20,21]. Thereby, the flow diagram in Fig. 4
illustrates an overall representation of the algorithm used in this work.

4. Simulation of the Hertzian cone using the X-FEM

In the flow diagram in Fig. 4, one may observe several characteristics of the algorithm, which differ from the computation
method used by Kocer. Firstly, as was already mentioned, we note that the same mesh is used during the crack propagation;
it is not here necessary to re-mesh the model at each advance of the crack tip [22]. The second important observation
concerns the post-processing of the stress field found by the finite-element computation around the crack tip. It must be
mentioned that with the proposed approach, the assessment of the SIFs and G is made by the interaction integrals, which
is rather different from the extrapolation method employed by Kocer in his work.

Thus, in the development of the Hertzian cone model, two main hypotheses are to be considered. The first one con-
cerns the linear elastic behavior assumed for the indented material of the model, which means that plastic deformation
is not considered while crack propagation is analyzed. The second important assumption is that the model must have a
pre-existing initial crack, positioned at the material’s surface and outside the contact region. This predefined flaw is es-
sential for the computation of crack propagation, because the first iteration step requires an initial geometry for the crack
path. In Fig. 5, a general representation of the model used in the numerical simulations is given, where the location of the
predefined crack (initial flaw) can be appreciated.

This model represents a cylindrical sample loaded by a flat punch, where the crack propagation is evaluated on a merid-
ian section with respect to the indenter axis. The model corresponds to a square of 0.75 mm, composed by regular square
elements with the same edge size Le. Otherwise, the boundary conditions in this model avoid the horizontal displacements
of the nodes of the symmetrical axis and the vertical movement of the nodes located on the sample’s basis.

As it is presented in Fig. 5, the flat punch radius is a = 0.1 mm. Likewise, the initial crack length is defined as cf =
0.0325 mm and the radial position of the initial flaw is ro = 0.13 mm. Moreover, the Young modulus of the indented
material corresponds to E = 70 000 MPa and the Poisson ratio is defined as ν = 0.2. As a conclusion, it should be specified
that the final crack length for all the numerical simulations is defined as c = 0.5 mm.

1 Let us note here that this crack growth criterion apparently differs from the one used in theoretical investigations (i.e. maximization of G with respect
to ϑ ). This is particularly true in the context of mixed-mode propagation. But in the context of the cone crack system, it is observed to be almost similar [4].
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Fig. 4. Description of the numerical simulation of the Hertzian cone using the X-FEM procedure. Color online.

Fig. 5. Model employed for the numerical simulation of the Hertzian cone crack. Color online.

5. Results

In this section, results are compared with the solutions proposed by Kocer and the analytical and experimental descrip-
tions of the Hertzian cone system made by several authors in the past. It is important to keep in mind that the aim of this
work is to present the X-FEM procedure as a new alternative in the simulation of Hertzian cone crack propagation, but at
the same time, it is the center of discussion on how to discover new interpretations about this phenomenon.

5.1. The Hertzian cone crack path and the measurement of its angle ϑ

Before presenting the results obtained with the X-FEM method, a general approach of the procedure used in the visu-
alization and measurement of the Hertzian crack angle ϑ is exposed. This procedure is based on the use of the level set
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Fig. 6. Visualization of the Hertzian cone crack using the level set functions. Color online.

Fig. 7. Influence of the parameters Le and dl on the Hertzian cone angle. Color online.

functions in the representation of the crack path at the last iteration step (c = 0.5 mm) [23,24]. In Fig. 6, there is a general
description of the process followed. Then, there are two orthogonal family functions (X , Y ) from which the crack path is
formed by the isovalues “zero” of each function [19,25,26]. The zero-value contour of X represents the cone path and the
zero-value contour of Y permits to identify the crack tip at the intersection point of both curves (Fig. 6). Once the crack
path is known, the cone crack angle is evaluated with the least square method, identifying the angle of the straight line
that best approximates the crack geometry.

5.2. Parameters’ influence on the definition of the Hertzian cone

The influence of four parameters is investigated in this section: the mesh element size Le, the size of the incremental
crack step dl, the Poisson’s ratio ν and the Young modulus E . It should be mentioned that the first two parameters are
numerical parameters related to the X-FEM procedure detailed above; meanwhile the other two parameters are associated
with the material properties and conditions assumed from the experimental and theoretical analyses.

For constant material conditions (ν = 0.2 and E = 70 000 MPa), 18 numerical simulations were performed for all the
possible combinations of six different mesh element sizes Le (0.025 mm; 0.0166 mm; 0.0125 mm; 0.01 mm; 0.00833 mm;
0.005 mm) and three distinct crack increment values dl (0.01 mm; 0.005 mm; 0.003 mm). It should be specified that a
shorter crack increment size or a smaller element size obviously entails a higher computation time. The fastest numerical
simulation was made in 10 min on a standard Intel(R) Core(TM)2 duo 2.53 GHz PC with 4 Go memory.

The results obtained from this first study are presented in Fig. 7 by means of a graph in which the cone crack angle
is related to variables Le and dl. In this diagram, it is possible to observe that the cone angles for all the parameter
combinations converge to an average value of 24.5◦ . Furthermore, it is possible to appreciate that all the solutions are
located in a small interval between 24.38◦ and 24.58◦ , which means that the cone crack angle is not significantly affected
by the variation of those parameters. Otherwise, the solutions obtained are close to the experimental results (22 ± 1◦ for
ν = 0.21) and the results reached by Kocer [4].
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Fig. 8. Influence of the Poisson ratio on the Hertzian cone angle. Color online.

Fig. 9. Distribution of the principal stress direction σ3 according to the Hertzian cone crack propagation. Color online.

On the other hand, the parameters associated with the material properties were analyzed using a model with a constant
mesh size and a constant crack growth increment (Le = 0.025 mm and dl = 0.01 mm). In that case, it was possible to
remark that the cone angle ϑ decreases when the Poisson ratio ν increases, which corresponds to analytical investigations
[2,7]. It is of high interest to observe that the cone angle value is closer to the experimental results when ν = 0.22 than
when ν = 0.2 (Fig. 8). Finally, it was observed that the variation of the Young modulus E has no impact on the variation of
the crack angle, in good agreement with analytical results.

5.3. The principal stress field on the Hertzian cone system

In the last section, it was proved that the X-FEM is an appropriate technique to model Hertzian cone crack propagation,
considering the similarity and coherence between the computed solutions and the experimental results, as well as the
comparable material properties used in the numerical model. Thus, in this part of the work, another important feature of
the Hertzian cone phenomenon will be analyzed: the principal stress field involved in the Hertzian cone formation and its
relation with the crack path geometry. Therefore, for the characterization of the stress influence, only one model from the
18 configurations was employed (dl = 0.01 mm and Le = 0.01 mm), because of the negligible influence of those parameters
on the determination of the crack angle ϑ . According to the material properties, the Poisson ratio was selected as ν = 0.2
and the Young modulus as E = 70 000.

In Fig. 9, the distribution of principal stress σ3 direction during crack propagation is presented, as well as the crack
path. As the crack faces are submitted to free-surface boundary conditions, crack path-tangent vectors match with the σ3
direction. Likewise, as previously shown by Kocer [4], the stress direction diverges from the crack path in the regions where
the crack did not propagate yet [4,15].

In Fig. 10 is plotted the σ3 direction and the crack cone angles corresponding to the first and last iteration steps along
the crack path. The pre-existing stresses (iteration step 1) converge to 34.4◦ , whereas the stress direction matches the crack
path direction when crack propagates (iteration step 50). These results lead us to state that the principal stresses evolve
with crack propagation and the pre-existing stresses are altered from ∼ 35◦ to ∼ 24.5◦ , following the crack’s orientation.
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Fig. 10. The minimal principal stress σ3 orientation before and after the crack tip passage. Color online.

Fig. 11. Distribution of the principal stress σ1 and σ3 in MPa at iteration steps 10 and 40. Color online.

In Fig. 11 is plotted the distribution of principal stresses σ1 and σ3. Cone crack propagation is observed at two iteration
steps (10 and 40), in order to appreciate the crack advancement and the stress variation. In these figures, only the tensile
stresses are plotted (σ > 0), so that the contribution of each stress to the crack propagation can be identified.

From those illustrations, we observe that σ1 decreases when the crack tip reaches in-depth regions and, as proposed by
several authors, all stresses are compressive under the contact region [2,5,7]. Moreover, principal stress σ3 is compressive
everywhere for each iteration step of the crack’s advancement (a compressive stress is associated with the dark blue color),
which means that this stress does not contribute to the propagation of the cone crack. This assertion is based on the
fact that a compressive load cannot generate crack growth. It must be specified here that σ3 takes positive values at the
last iteration, but those values are negligible with respect to the tensile load caused by σ1. These results lead us to the
hypothesis that σ1 is the only stress that can generate the Hertzian cone propagation, in good agreement with previous
theoretical studies [2,7,8].
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Fig. 12. Stress intensity factors K1 and K2 as a function of the crack tip advancement. Color online.

Fig. 13. Strain energy release rate G as a function of normalized crack length c/a.

5.4. The stress intensity factors and the strain energy release rate G

The stress intensity factors (K1 and K2) are obtained for each iteration step by the interaction integral technique used
in the description of the Hertzian cone crack propagation. In Fig. 12, the variation of each factor as a function of the
iteration step is exposed. Factor K2 is related to a load applied in the tangential direction of the crack plane; meanwhile K1
corresponds to a normal load to the crack’s plane [12]. In this figure, we observe that factor K2 is negligible with respect to
factor K1, which means that the Hertzian crack propagation is only induced by principal stress σ1, and propagation follows
the crack plane orientation, as indicated in Fig. 12.

With regard to the strain energy release rate, the values of the stress intensity factors are employed for the estimation
of G as a function of the normalized crack length c/a (Fig. 13). Each curve of this graphic corresponds to a different
indenter penetration distance. From these results, it is appreciable that the Hertzian cone crack propagates in a stable
manner (negative slope in the curves) under the effect of a constant indenter load. This graph coincides with the curves
proposed by Mouginot and Maugis [2].
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6. Conclusion

In this section, we comment upon the most important features related to the numerical simulation performed with the
X-FEM technique and the most significant characteristics observed in the Hertzian cone system. First, we will remark that
the X-FEM method permits to reach a reliable and accurate representation of the Hertzian cone crack, without employing a
re-meshing step and with a reasonable computation-time cost. One interesting result is that the mesh size and the number
of iterations do not have a great impact on the crack angle result.

Moreover, the interest of this technique is that there is not a loss of information during stress field computation because
the model is never re-meshed, while the iteration process is occurring [16]. In addition to this, we emphasize that the
definition of the model on the X-FEM technique is simple and that the visualization of the crack path using the level set
functions is pretty useful.

It appears clearly in this paper that the X-FEM technique is very efficient to reproduce faithfully several characteristics of
the Hertzian cone crack phenomenon in a very simple manner. More specifically, the crack angle, the strain energy release
rate and the stress intensity factors are in good agreement with the solutions proposed in the past. The prediction of the
crack angle is in good agreement with experimental data presented in the literature [6,10]. The analysis of the stress field
ahead of the crack tip permits to confirm that the trajectories of the minimal principal stress σ3 evolve according to the
crack path extension, from ∼ 35◦ to ∼ 24.5◦ in the regions affected by the crack. Indeed, we appreciate that the cone crack
path does not follow the trajectories of the pre-existing stress σ3 (trajectories defined before the extension of the cone
crack) and that it corresponds to the current stress directions.

By the way, these results lead us to formulate a hypothesis about crack propagation: the crack is generated only by the
maximum principal stress σ1, which is orthogonal to the current direction of stress σ3. This assertion is strongly supported
by the results of the SIFs (K1 and K2) and the stress field distribution, where σ3 is compressive for all the iterations steps
of the crack growth.

In this work, it is assumed that the indented material remains in the elastic domain. It is now well known [27–29] that
even for brittle materials such as silica glasses, indentation-induced plasticity may occur, which could modify the stress field
inside the cone crack region. One perspective of our work is to describe the influence of such a plastic flow on the cone
crack angle.
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