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The simulation of heat convection problems usually leads to very large matrix systems
because both Navier–Stokes equations and the energy equations are to be taken into
account and discretized. Of course, such large matrix systems cannot be used for on-
line control algorithms due to memory limitations and computation time. On-line control
algorithms should rather consider much smaller matrix systems. Bearing this in mind,
model reduction techniques present a large interest to obtain a suitable low-order model
that can further be used in control processes. In this paper, reduced models are obtained
through the modal identification method. This method relies on the solution of an
optimization problem of parameter estimation following the steps: (i) the structure of the
state model is first defined, (ii) the related vectors and matrices are estimated through
the minimization of a corresponding functional, (iii) the reduced order model then must
be validated with input data different from those used within the identification process.
These steps being completed, other control algorithms can “plug” such reduced models.
Among linear control algorithms, the feedback control laws considered in this paper are
based either on the reduced state or on the output. A Kalman filter evaluates the state
through a limited number of measurements. The developed numerical application deals
with a temperature field within a 2D stationary flow over a backward-facing step. The
goal is to keep the outlet temperature as close as possible to a given temperature profile
downstream from the step, whatever the pipe inlet temperature fluctuations. One thus
searches some “optimal” heat fluxes upstream from the step that counteract the inlet
temperature variations.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Nowadays, the need to optimize system performance has become essential to reduce, for example, functions of pro-
duction costs or production rates of pollution such as emissions of greenhouse gases. Industries being more and more
confronted with this type of problem, the process control is becoming increasingly necessary. The optimal control of a
system allows us to reach a satisfying final goal while respecting reverts constraints.
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In the area of heat transfer and fluid mechanics, modeling returns often to a discretization of the local equations (the
energy equation and/or the Navier–Stokes equations) and then to the solution of a system of ordinary differential equations
which result from the spatial discretization. This discretization, which has to correspond to a very fine meshing in order to
capture the detailed physical phenomena, requires a large number of degrees of freedom for the corresponding models. In
spite of the continuous increase in the computational performances of computers, detailed simulations still necessitate large
computing times with large memory allocation. This makes impossible the use of such models for applications in inverse or
optimal control problems. In these cases, the need to obtain reliable and fast answers is paramount. It is in this view that
the methods of model reduction play a full role.

The goal of model reduction is thus to build a model of small size, allowing very short execution times with small
memory allocation. Model reduction techniques are particularly adapted to real-time applications. However, the obtained
Reduced Order Models (ROM) should preserve the properties of the studied physical phenomena and must also capture the
essential characteristics of the model of reference to an acceptable precision.

There is an extensive bibliography in which one can find many model reduction techniques either for linear systems
or for nonlinear ones. The reader interested by the techniques and the comments of these methods can refer to the more
detailed reviews and articles [1–3] (to cite a few). We focus here on the use of the Modal Identification Method (MIM) to
build ROM.

The MIM uses concepts stemming from the automatics community. This method has been specifically developed by the
heat transfer community to identify ROM in linear thermal diffusion processes from experimental data [4]. Next, the MIM
has been extended to nonlinear heat transfer [5,6]. An extension of the method to fluid flows has been proposed [7,8], the
identification method being reformulated using the adjoint-state method to compute the gradient of the cost function to be
minimized [9].

The Modal Identification Method relies on two main steps:

– the first stage is to define a structure of equations for the ROM. Starting from the local partial differential equations
describing the physics, a state-space representation which arises from space discretization is considered as a general
detailed model structure. Eventually, the ROM equations are similar to those of the state-space representation but under
the modal form;

– once the structure is chosen, the next step is to identify the parameters that define the ROM through the minimization
of a cost function that measures the difference between the outputs of the ROM and the outputs of the system (detailed
model or real process). The identification process therefore relies on the solution of an inverse problem of parameter
estimation in which the set of data to be recovered comes either from simulations performed with the detailed model
or from in-situ measurements.

2. Optimal control

The PID controllers (proportional–integral–derivative) are by far the most used in industry. However, a fine adjustment of
the control parameters (PID tuning) can be highly complicated especially for the Multi-Input Multi-Output systems. Indeed,
when the control parameters are chosen incorrectly, the controlled process can become unstable. The objectives of the
adjustment of the controller are thus, its robustness, its stability and the resulting accuracy.

The modern theory of control is based on the state-space representation. This representation makes it possible to model
a dynamic system in matrix form by relating the inputs to the outputs. To do so, let us consider the following linear
time-invariant state-space model:{

Ẋ(t) = A X(t) + Bu(t)

Y (t) = C X(t)
(1)

where X ∈ R
n , u ∈ R

p , and Y ∈ R
q are the state, the control input, and the controlled output, respectively, and A, B and C

are the corresponding matrices. The optimal feedback control process consists in acting on the control input u(t) so that the
outputs of the system stored in Y present the wished characteristics. The use of optimal feedback controllers is particularly
suited when the dynamics of the system is known in spite of the disturbances, as well as for Multi-Inputs/Multi-Outputs
(MIMO) systems. Optimal control deals with the problem of finding a control law for a given system in such manner that
a certain optimality criterion is satisfied. Besides, this paper rather focuses on the feedback controllers based on quadratic
cost functions, i.e. on LQ controllers (LQ standing for Linear Quadratic). In the present work, two optimal feedback control
problems are considered: the tracking problem and the regulator problem, the state-space model being given through the
use of model identification techniques.

2.1. Tracking problem

Let us first consider the tracking problem where the aim is to find the optimal command that makes the system follow
a prescribed trajectory. This is performed by minimizing the following cost function:
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J =
∫
I

[
εT Q ε + uT �2

pu
]

dt (2)

where ε = Y − Yc is the tracking error that integrates the difference between the output model Y and the desired output
Yc , I denotes a time range, Q is a weighting matrix and �2

p is the diagonal matrix �2 I p (with I p the identity matrix
of dimension p), and � is a parameter that penalizes excessive control input magnitudes. When considering the tracking
problem, the error depends on time, thus ε = ε(t), and inputs are also time-dependent, thus u = u(t).

In order to obtain the optimal command (i.e. the minimum of the cost function J ), the Hamiltonian function

H = εT Q ε + uT �2
pu + λT (A X + Bu) (3)

is introduced with λ the co-state variable. The differentiation of H with respect to X , u and λ leads to the equations of
optimality [10]:

−λ̇ = ∂H
∂ X

= AT λ + C T Q C X − C T Q Yc (4)

0 = ∂H
∂u

= �2
pu + BT λ (5)

Ẋ = ∂H
∂λ

= A X + Bu (6)

In order to perform the optimal feedback control, a feedback relationship between the state X and its related co-state λ

is defined:

λ = P X + L (7)

Inserting this relationship into the adjoint equation (4) and integrating the optimality condition (5), one obtains the expres-
sion of the optimal control law:

u = −(
�2

p

)−1
BT P X − (

�2
p

)−1
BT L (8)

where P and L are the so-called Riccati matrices, solutions of the differential Riccati equations:

Ṗ + P A + AT P − P B
(
�2

p

)−1
BT P + C T Q C = 0

L̇ + AT L − P B
(
�2

p

)−1
BT L − C T Q Yc = 0 (9)

2.2. Regulation problem

Now, let us consider the regulation problem. As in [11,12], the regulation problem consists in finding the control law
that minimizes the deviation δX between the actual state X and the steady optimal state X̄ (relative to the target Yc). This
can be mathematically rephrased as minimizing:

J = 1

2

∫
I

[
δX T Q δX + δuT �2

pδu
]

dt (10)

where δu = u − ū is the deviation from the optimal input. In short, the regulation problem consists in minimizing the cost
function that integrates deviations from the optimal trajectory. The control u that minimizes (10) is given by [12]:

δu(t) = −(
�2

p + BT Π B
)−1

BT Π Aδx(t) (11)

where Π is the solution of the differential Riccati equation:

Π = AT Π A − AT Π B
(
�2

p + BT Π B
)−1

BT Π A + C T C (12)

2.3. State estimation

The optimal control laws defined by (8) and (11) require the knowledge (or at least an evaluation) of the state at each
discrete time. In practice, we do not have a complete knowledge of the state of the system. In this case it is necessary to
introduce estimators for the state that give state approximations assimilating measurements. In the present case, the Kalman
filter is used to provide an optimal estimation of the state from stochastic state propagation and from noisy observations.
Let us consider the following stochastic state model:{

Ẋ(t) = A X(t) + Bu(t) + G w(t)
(13)
Y (t) = C X(t) + v(t)
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Fig. 1. The backward-facing step scheme. The upstream tube is 4h long; the downstream tube is 30h long. The dashed line represents the place where the
sensors are and where the optimization is performed on.

where w is the state noise and v is the observation noise. Both noises are assumed to be white zero mean Gaussian noises
and to be independent:

E
[

w(t)w(t + τ )
] = W δ(τ ) (14)

E
[
v(t)v(t + τ )

] = V δ(τ ) (15)

E
[

w(t)v(t + τ )
] = 0 (16)

where E[·] is the expected value, and δ(�) = 1 only if the integer � = 0, and δ(�) = 0 otherwise, and matrices W and V
are the covariance matrices associated with noises w and v . The Kalman filter enables on-line state estimation under
assumptions presented above. The filtering problem eventually consists in evaluating the state estimation X̂ of the real
state X taking into account of outputs Y available until this moment.

To do so, let us consider the estimation error ex(t) defined by:

ex(t) = X(t) − X̂(t) (17)

The Kalman filter allows us to establish the structure of the linear system providing X̂ such as the average of the estimation
error ex(t) tends towards 0 when t tends towards infinity. It gathers two differential equations, one for the state estimate
and one for the covariance matrix [10]:

˙̂X(t) = [
A X̂(t) + Bu(t)

] + K f
[
Y (t) − C X̂(t)

]
(18)

where K f (t) = ΣC T V −1 is the Kalman gain matrix and Σ is solution of the differential Riccati equation:

Σ̇ = Σ AT + AΣ − ΣC T V −1CΣ + GW G T (19)

The control laws given by (8) and (11) are actually applied on state estimations X̂ given by the integration of (18) rather
than on the unknown state X . Both above presented controllers coupled with the Kalman state estimation filter are to be
based on small size linear models like the ones presented in Section 4.

3. The studied system

This section describes the studied system, along with some numerical results of simulations. Let us consider a 2D in-
compressible laminar flow over a backward-facing step with an expansion ratio of 2.0, as schematically depicted in Fig. 1.
In the present case, the upstream height and step height are h =1 cm, hence the downstream height is 2h.

The coordinate system is defined as shown schematically in this figure, where the �x1 and �x2 coordinate directions
denote respectively the streamwise and the transverse directions. The chosen fluid which is assumed to be Newtonian and
incompressible is air, with the following constant properties: dynamic viscosity μ = 1.81 × 10−5 kg/(m s), density ρ =
1.205 kg/m3, heat capacity C p = 1005 J/(kg K), and thermal conductivity λ = 0.0262 W/(m K). A fully developed velocity
profile v and a temperature T∞ are imposed at the entrance of the channel. The flow geometry was considered by Armaly
et al. [13] who chose to define the Reynolds number Re, as follows:

Re = U∞2h

ν
(20)

where U∞ is the inlet mean velocity and ν = μ
ρ is the kinematic viscosity of the fluid. The use of 2h as the characteristic

length scale is attributed to the fact that the Reynolds number is based upon the hydraulic diameter of the inlet channel.
The equation that describes the parabola velocity profile at the entrance (x1 = −4h and x2 ∈ [h : 2h]) is given by:{

ū1(−4h, x2) = 3
Reν

h3
(x2 − h)(2h − x2)

ū2(−4h, x2) = 0
(21)

where (u1, u2) are the components of the velocity vector v in the (�x1, �x2) coordinate directions. At the opposite, the free
outflow boundary condition is considered at the outlet section. This condition assumes that the flow is fully developed at



780 Y. Rouizi et al. / C. R. Mecanique 341 (2013) 776–792
Fig. 2. Size of the main recirculation region length X1/h as a function of the Reynolds number Re.

the outlet section. This can be done when the outlet is located far enough downstream, assuming that ∂u1
∂x1

= 0. On all other
boundaries a null velocity is prescribed. In the present study, the flow is driven at a fixed Reynolds number equaling 500,
and the velocity is assumed to be known and steady. Hence, only the energy problem is considered. At the entrance of the
channel, the fluid is at temperature T∞ and the outflow boundary condition leads to ∂T

∂x1
= 0. Next, two uniform heaters

(in terms of fluxes) are imposed on a portion of external faces. Heaters respectively located at x1 ∈ [2h : 4h] bottom and top
(see Fig. 1) heat the flow at reason of flux density equaling respectively ϕ1 and ϕ2. All other boundaries but the inflow and
outflow are considered as insulated. The initial condition for temperature T (t = 0) is assumed to be known and equal to
300 K.

3.1. The reference model

A reference model is considered at the building-data stage before the identification of low-order models. The numerical
simulations are performed with the computational fluid dynamics (CFD) software (Fluent® version 6.3.26) [14]. Grid inde-
pendence tests have been performed using several grid densities, and the reattachment location on the stepped wall has
been used as the mesh convergence criterion. In the present study, 144,247 nodes have been used for the computations,
while respecting grid independency.

The validation of this reference model is performed for several Reynolds numbers Re within the range [100 : 800]. The
numerical model is compared to the existing material from literature (experimental study provided by Armaly et al. [13]
and numerical studies provided by Erturk [15] and Zang et al. [16]) through the evolution of the recirculation region length:

– for all Reynolds numbers used, there is a main recirculation region whose length X1 increases with the Reynolds
number;

– for Reynolds numbers greater than 400, a second recirculation bubble appears attached to the upper wall of the channel,
between X2 and X3.

Figs. 2 and 3 present the evolution of lengths X1/h, X2/h and X3/h with respect to the Reynolds number from 100 up to
800. It is seen that detachment and reattachment locations found by our simulations are in coherence with the results from
literature. With such results, one can consider that the used numerical model is validated and is thus able to give accurate
results for any Reynolds number within the considered range.

Once the fluid simulation methodology is validated, the thermal simulation in forced convection problems with the
CFD code should be accurate enough, the energy equation being linear and much simpler to solve than the Navier–Stokes
equations. Moreover, it can be observed that several benchmark solutions are available in the literature when the heat flux
is applied in the stepped wall; however, to our knowledge, there is no benchmark solution available when the heat flux is
applied in the stepped wall just before the sudden expansion region. Note again that the aim of the present paper is to give
an example illustrating the use of optimal control algorithms coupled with low-order models, rather than giving a complete
study of the test problem.

The objective of the present study is, in fine, to control the temperature profile on a vertical line located at x1 = 16h
through the two heaters when the inlet temperature (at x1 = 0) varies in time. More precisely we would like the tempera-
ture on the considered line to be as close as possible to the temperature T̃ whatever the inlet temperature T∞(t) � T̃ .



Y. Rouizi et al. / C. R. Mecanique 341 (2013) 776–792 781
Fig. 3. The locations of the detachment point X2/h and the reattachment point X3/h as a function of the Reynolds number Re.

3.2. The governing equation

The energy problem for a given velocity distribution v is described by the following convection–diffusion equation:

ρC p

(
∂T

∂t
+ v · ∇T

)
− ∇ · (λ∇T ) = 0 (22)

where T = T (x, t) is the temperature distribution for t � 0 and x ∈ Ω . Within the scope of this paper, Ω represents the
backward-facing step pipe presented schematically in Fig. 1. The boundary conditions are set as follows:

– the time-dependent inlet temperature is assumed to be x2-independent, hence T (x, t) = T∞(t) for x ∈ ∂Ωin;
– the heaters on boundaries ∂Ωϕk deliver a known prescribed flux density ϕk , hence λ∇T · n = −ϕk for x ∈ ∂Ωϕk , k = 1,2

with n the outward unit normal vector;
– the zero diffusion flux condition is applied at the outflow boundary as the flow is assumed to be thermally fully

developed;
– the null flux is applied on all other boundaries, then ∇T · n = 0 for x ∈ ∂Ωwall\(∂Ωϕk ∪ ∂Ωin);
– the initial condition T (x,0) = T0(x) is also considered at time t = 0.

The space discretization of the partial differential equation (22) with above-considered boundary conditions leads to the
set of ordinary differential equations presented in matrix form as:

Ṫ = AT + Bu + GT∞ (23)

where A gathers both the convection operator (v ·∇) and the diffusion operator (∇ ·λ∇), B is the command matrix relative
to the flux input vector u(t) = [ϕ1(t),ϕ2(t)]T and G is the operator that applies the inlet Dirichlet boundary condition to
the system. Note that the temperature variables T in (23) and T in (22) have a very different meaning since T in (22)
represents the space-continuous temperature variable while T in (23) represents the semi-discretized temperature variable.
The solution of (23) gives the temperature response T (t) for a given inlet temperature T∞(t) and input flux u(t) and with
a given initial condition T (0) = T0. The number N of differential equations involved in (23) depends on the discretization
type and fineness. This set of ordinary differential equations (23) is coupled with an output equation for space selection:

Y = CT (24)

where Y ∈ R
q , q � N and C is the observation matrix which allows to select a part of the whole temperature field. The

output Y actually represents the quantity of interest for control applications detailed later on. Note that whatever the
discretization type and fineness, the number N of differential equations involved in (23) is likely to be by far too large
for most real on-line control applications. A way to reduce the number of differential equations in (23) (or in any other
equivalent system) is to consider model reduction approaches.

4. Model reduction

The numerical solution of fluid mechanics and thermal problems usually needs a fine spatial discretization of the consid-
ered domain. Consequently, the matrix systems may be large and the computational times may be elevated. Although these
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models may be highly reliable and accurate, the computational cost can be too high to treat applications such as real-time
control and inverse problems for instance. The alternative is to build a reduced order model (ROM) that contains a much
lower number of degrees of freedom and that still reproduces well enough the dynamics of the reference model.

Many reduction methods have been developed, for linear or nonlinear problems. Within the field of fluid mechanics, the
most commonly-used approach is the Proper Orthogonal Decomposition method coupled with a Galerkin projection of the
partial differential equations (POD-G). The reader interested in reviews on such reduction techniques and others can refer
to [1] or [2,3] for instance.

The technique used in this study is the Modal Identification Method (MIM). The MIM consists in identifying the compo-
nents of a matrix system equivalent to (23) but written in its modal base. Only a small number of modes are considered
for the identification. Usually, the MIM is coupled with iterative methods using gradient-type methods and the adjoint-
state method for the computation of the objective function gradient. We describe hereafter the main features related to the
MIM. The reader could refer to [17,8,18,6,9,5] for more details on recently developed numerical methods as well as related
applications.

4.1. ROM structure

The first step considered within the Modal Identification Method is to define the general structure of the ROM starting
from the modal structure of the Detailed Model equations (23). Let Â be the diagonal matrix of A involved in (23) and Σ

the matrix of eigenvectors of A such that Â = Σ−1AΣ , and let us perform the change of variable T = Σ X , X ∈ R
N where

N is the number of degrees of freedom involved in (23). Doing so, (23) becomes:

Ẋ = ÂX + B̂u + ĜT∞ (25)

where B̂ = Σ−1B and Ĝ = Σ−1G . The output relationship is also expressed as:

Y = ĈX (26)

where one used Ĉ = CΣ . At this stage, the modal formulation (25)–(26) is still of order N . In classical modal reduction
methods, a spectral problem associated with the state matrix (A) of Eq. (23) is solved, then the reduced models are ob-
tained by selecting the most dominant modes (n � N modes) according to some temporal or energetic criteria. Instead of
computing these modes and selecting them afterwards, the MIM consists in identifying the components of a matrix system
of the form (25)–(26) but of smaller dimension, say with the reduced order variable x ∈ R

n , and output y ∈R
q:

ẋ = ax + bu + gT∞ (27)

y = cx (28)

4.2. Principle of identification

The above developments enabled to define the form of the ROM. The approach of identification does not solve any
eigenvalue problem as it is the case with most other reduction approaches. The identification procedure consists in identi-
fying the following matrix components: n non-zero components for the diagonal matrix a, n × p components for the input
matrix b, n components for the vector g , and q × n components for the selection matrix c.

The procedure of identification relies on the minimization of the mean squared discrepancy J (θ). This function is based
on the difference between the response of the reference model y j(θ, tk) and the outputs Y ∗

j (tk) given by the ROM when
the same input signal is applied for both (the ROM outputs implicitly depend on the parameter vector θ = {aii,bij, gi, cki},
i = 1, . . . ,n, j = 1, . . . , p, k = 1, . . . ,q that gathers all unknown components of (27)–(28)). More specifically, the cost function
J (θ) integrates the squared differences for the temperature at K time steps and at the q selected locations.

J (θ) = 1

2

K∑
k=1

q∑
j=1

(
y j(θ, tk) − Y ∗

j (tk)
)2

(29)

The identification process relies on the solution of the optimization problem that consists in finding the optimal param-
eter vector θ̄ such that:

θ̄ = arg min
[
J (θ)

]
(30)

In the following applications, the BFGS quasi-Newton optimizer [19] has been used due to its inherent convergence
ability and robustness.
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Fig. 4. Evolution of the cost function value J with respect to the optimization iterations for reduced model orders increasing until n = 10.

Table 1
Evolution of the cost function value J and of the mean quadratic errors σ with
respect to the reduced model order n.

Order n J (K2) σ (K)

1 0.214 × 106 0.141 × 101

2 0.221 × 105 0.452 × 100

3 0.783 × 104 0.269 × 100

4 0.234 × 104 0.147 × 100

5 0.872 × 103 0.899 × 10−1

6 0.517 × 103 0.692 × 10−1

7 0.334 × 103 0.556 × 10−1

8 0.296 × 103 0.523 × 10−1

9 0.128 × 103 0.344 × 10−1

10 0.666 × 102 0.248 × 10−1

Fig. 5. Top: inlet temperature evolution (K); bottom: input flux evolution (W/m2 – red line: ϕ1, green line: ϕ2). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

4.3. The reduced order model on the studied system

In order to make sure that the ROM is able to reproduce the dynamics of the three inputs together, the three inputs of
the model (ϕ1 and ϕ2 and T∞) have been first applied separately.

The obtained time varying temperatures, from which is subtracted the initial temperature, are then used as data for the
model identification.

The initial temperature T (x,0) is taken constant at 300 K with inlet temperature also equal to 300 K and null fluxes ϕ1
and ϕ2. At time zero the flux ϕ1 jumps from 0 to 300 W/m2 then stays constant. At time t = 40 s the flux ϕ2 jumps from
0 to 300 W/m2 then stays constant. Then, at time t = 80 s, the inlet temperature jumps to 325 K then stays constant. This
procedure is presented below:⎧⎨

⎩
ϕ1(t) = 300 ×H(t)

ϕ2(t) = 300 ×H(t − 40) (31)
T∞(t) = T (x,0) + 25 ×H(t − 80)
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Fig. 6. Left: temperature evolution (K) for both the detailed model (green line, l.h.s.) and the six-order reduced model (red line, l.h.s.) for location x1 = 16h
and x2 = 0, and the absolute difference (K) between both models (blue line, r.h.s.); right: temperature profile (K) at t = 4 s and x1 = 16h for both the
detailed model (green line) and the six-order reduced model (red line). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Studied system.

Fig. 8. Block diagram of the PID controller.

where H is the Heaviside step function.
Fig. 4 presents the evolution of the cost function value J (defined by (29)) as a function of the increasing reduced model

order n and, for each order in the minimization procedure. This figure shows that for a given order the cost function J is
still decreasing and that the cost function value is generally decreasing with respect to the reduced model order at the end
of the optimization iterations. Note that roughly 200 iterations are needed for convergence for each given reduced model
order. 2009 iterations in total were necessary for global convergence until order n = 10. Table 1 gives the evolution of the
cost function and of the mean quadratic error σ (such that σ 2 = 2(K × q)−1J ) with respect to the reduced model order
after reached inner-loop convergence.

Once the ROM has been identified, the next step is to validate it. The purpose of validation is actually to verify that
the reduced model is able to reproduce the behavior of the reference model when other input evolutions are prescribed.
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Fig. 9. The signal of disturbance: inlet temperature T∞ .

Fig. 10. The obtained command law u = [ϕ1(t),ϕ2(t)]T .

According to Table 1, it can be seen that the best minimization is obtained for the highest order. The increase of the order
model from 6 to 10 does not decrease significantly the cost function. For our study, the order 6 gives satisfying enough
results. This model is the one that shall be used for validation and used within control procedures.

The input fluxes used for validation are presented in Fig. 5. The resulting temperature evolutions in some outputs (loca-
tion of the maximum error) for both the detailed model and the reduced model are presented in Fig. 6. One can see that the
temperature evolutions and profiles computed with both the detailed and the reduced model are in very good agreement,
the maximum temperature difference between both models being negligible when compared to orders of magnitude of the
temperature steps.

Further, the obtained reduced model of order 6 will be the one used for solving optimal control problems, this model
being assumed to approximate sufficiently well the physical behavior of the heated flow over the concerned backward-facing
step. It is emphasized that the required CPU time for solving the full original flow problem along with the related energy
problem was about a couple of hours. In the other hand, the CPU time required for running the reduced models was less
than 0.1 s on the same computer.
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Fig. 11. The signal of the output temperature y = [Ym1, Ym2]T .

Fig. 12. Temperature profile obtained with ū and T∞ = 300 K.

5. Control application

The goal of this section is to show the feasibility and ability of the approach that combines the model reduction with
the optimal control theory. There exists other applications combining these two approaches, among which one can quote
[20–24]. As far as we are concerned, we propose to use a ROM identified by the MIM to determine a control law in order
to control a temperature profile at the outflow of a pipe. We are interested in the reduced model of order n = 6 identified
and developed in the previous section. Recall that this model is based on three inputs, and has an observable vector of
dimension 135 located on the line x1/h = 16. The flow is heated by both flux densities placed just upstream of the step and
there is a temperature fluctuation around a nominal value (that must be counteracted) at the channel entrance (see Fig. 7).
We propose in this study different control problems:

– the first control problem concerns the regulation problem (with a constant target), where the aim is to control two
mean temperatures among 135 observables with the two input fluxes ϕ1 and ϕ2 by using the PID controllers;

– the second control problem is another regulation problem (still with a constant target), where the objective is to control
all 135 observables by the two input fluxes ϕ1 and ϕ2; this control problem features the LQG algorithm;
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Fig. 13. Perturbation T∞(t).

Fig. 14. Optimal command u = [ϕ1(t),ϕ2(t)]T .

– the third control problem is a tracking problem (with a varying target) dealing again with the 135 observables placed
on a virtual line close to the pipe outflow at x1 = 16h.

5.1. Regulation problem: two inputs to control two outputs

In this first test problem, the output vector of the ROM is decomposed into two parts: the upper part Ym1 which
contains the average of half of the observables values (from 1 to 68) and the bottom part Ym2 that contains the average of
the remaining values of the observables (from 69 to 135).

One formulates the optimal control problem as: “whatever the supposed unknown disturbance of the inlet temperature
T∞ , one seeks the optimal inputs u = [ϕ1(t),ϕ2(t)]T so that the output vector y = [Ym1, Ym2]T is as close as possible to
a constant vector determined by the user (e.g. yc = [320,320] K)”. In this control problem we have two inputs to control
two outputs. The block diagram of the PID controller is given in Fig. 8. The signal of disturbance, that is the evolution of
the inlet temperature is plotted in Fig. 9. The results of this control application in terms of the obtained command and the
output thermograms are given in Figs. 10 and 11. One can note that the obtained control law acts in a significant way to
counteract the disturbance and highly reduces the gap between the desired temperature and the output one.
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Fig. 15. Temperature evolution at x2 = 3h
2 .

Fig. 16. Contribution of the �2
p parameter on the evolution of the input ϕ1.

5.2. Regulation problem: two inputs to control 135 outputs

In this section, our objective is to implement an algorithm which makes it possible to control the temperature profile
(135 outputs) located on x1/h = 16 by acting on the flux densities (2 inputs) situated upstream of the step. One formulates
the optimal control problem: “whatever the supposed unknown disturbance of the inlet temperature T∞(t), one seeks the
optimal inputs u = [ϕ1(t),ϕ2(t)]T so that the output vector y ∈ R

135 is as close as possible to a constant vector determined
by the user (e.g. yc = 320 ∈ R

135 K)”. In this control problem we have two inputs to control 135 outputs. When compared
to the previous PID controller, the feedback control with a Linear Quadratic Regulator (LQR) allows to implement this kind
of control problem. To do so, the control law is based on the deviation δx between the actual state x and the optimal
steady-state x̄ rather than on output y. In order to find ū and x̄ implicitly involved in (10), the following overdetermined
system (with no perturbation) is solved:(

S T S
)
ū = S T yc (32)

where S is the sensitivity matrix S = −ca−1b. Then x̄ is obtained by x̄ = −a−1bū.
Fig. 12 presents the optimal temperature profile along x1 = 16h obtained with ū and without perturbation (i.e. with

T∞ = 300 K). We note that without disturbance, the command ū allows a close temperature profile to the set 320 K.
However, in the presence of disturbances, i.e. when the temperature at the entrance of channel T∞(t) varies, the command
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Fig. 17. Contribution of the �2
p parameter on the evolution of the input ϕ2.

Fig. 18. Contribution of the �2
p parameter on the evolution of the mean temperature.

ū is no more valid. The objective is thus, when the inlet temperature T∞ is disturbed with the signal of Fig. 13, to find
the command allowing to correct this influence and to make the obtained temperature as close as possible to 320 K. The
Kalman filter is used at this stage to estimate the state x of order 6 from 3 temperature measurements placed at x1 = 16h
and for vertical positions x2 = h

2 , x2 = h and x2 = 3h
2 (see Fig. 7). The obtained optimal input u = [ϕ1(t),ϕ2(t)]T is reported

in Fig. 14. The temperature evolution at x2 = 3h
2 is plotted in Fig. 15. We can note that the uncontrolled temperature is far

away from 320 K. The obtained optimal law (Fig. 14) allows to reduce drastically this discrepancy.
These results are relative to a regulation problem with the parameter �2

p = 10−4. We further analyze the sensitivity of

the results to this parameter. Let us recall that in the criterion to be minimized, the parameter �2
p comes to balance the

effect of the command u: to have a weak δu it is necessary to give a raised value to �2
p; the goal of this parameter is to

attenuate the use of excessive controls. One presents in Figs. 16 and 17 the evolutions of the optimal commands and in
Fig. 18 the evolution of the corresponding space-mean output temperature, for different values of �2

p . As it was planned, the

variations of u decrease as �2
p increases (10−5 to 1). The value �2

p = 1 crushes the variation of the obtained command u. For

a low value of �2
p (for example �2

p = 10−5) the optimal commands present strong fluctuations. In return, this value allows
us to obtain the best results in terms of temperature outflow (cf. Fig. 18). According to all these curves, we thus see that
the adjustment of the value of �2

p corresponds to a compromise between acceptable fluctuations in inputs and deviations
from the target.



790 Y. Rouizi et al. / C. R. Mecanique 341 (2013) 776–792
Fig. 19. Block diagram of the tracking problem with the state estimation.

Fig. 20. The signal of disturbance: inlet temperature T∞(t).

5.3. Tracking problem: two inputs to control 135 outputs

Previous sections concerned regulation problems where the desired output was constant. This section now gives an
illustration of the tracking problem when the desired output is varying in time. The block diagram of this algorithm is given
in Fig. 19, and the results of this application are presented in Figs. 20, 21 and 22.

The measurements ym (of dimension 3 in this case) and Kalman filter model are used to estimate the state x̂ (of
dimension 6) and deduce the control low U = (ϕ1,ϕ2)

t that counteracts the disturbance T∞ from the computation of the
gains Γ 1 and Γ 2.

In Fig. 20 we plot the signal of the disturbed inlet temperature T∞(t). The obtained control law u = [ϕ1(t),ϕ2(t)]T is
plotted in Fig. 21. The temperature evolution at point (A) as well as the target temperature are given in Fig. 22. In this
figure, we give also the evolution of the mean of the whole temperature profile. As it can be seen, the control law is acting
efficiently to reduce the discrepancy between the evolutions of the output and of the desired temperature.

6. Conclusion

This study presented three feedback optimal control applications using a Reduced Order Model based on the Modal
Identification Method and applied to a convection–diffusion problem. Two problems concerned regulation while the other
one dealt with a tracking problem. A Kalman filter has been designed to evaluate the state from a few simulated points. If
this system had been treated by a classic modeling, the corresponding model would not have allowed the control. That is
the reason why a reduction technique has been used. The Modal Identification Method, which rests on an inverse problem of
parameter estimation, is well suited for convection–diffusion processes. This study also showed that the Modal Identification
Method seems to be efficient when being coupled with feedback controllers, integrating unknown perturbations and a filter
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Fig. 21. The obtained command law u = [ϕ1(t),ϕ2(t)]T .

Fig. 22. Evolution of the target temperature, temperature at A point, and mean temperature.

to reconstruct the consequently unknown state. Next steps will include the coupling with some fluid mechanics reduced
models in order to integrate some input velocity within the command.
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