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In this study, the vibrations of a coil, excited axially, in helical compression springs such as
tamping rammers are discussed. The mathematical formulation is comprised of a system of
four partial differential equations of first-order hyperbolic type, as the unknown variables
are angular and axial deformations and velocities. The numerical resolution is performed
by the conservative finite difference scheme of Lax–Wendroff. The impedance method is
applied to calculate the frequency spectrum. The results obtained with this method were
used to analyze the evolution in time of deformations and velocities in different sections of
the spring resulting from a sinusoidal excitation of the axial velocity applied at the end of
the spring. These results clearly show the effect of the interaction between the slow axial
waves and the fast angular waves, the resonance and other phenomena related to wave
propagations such as wave reflections and beat.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Helical springs are important mechanical components in many industrial applications [1,2]. The springs are elastic ele-
ments widespread in all kinds of machinery and equipment. Their functions are very diverse. The main role of the springs
is to absorb shock and reduce vibration. Several accidents have been explained by different forms of resonance oscillations
of the springs. For this reason, the frequency study must be carefully done.

Love [3] developed the equations to study the static response of helical springs subjected to large deformations. Given
their important role, modeling the behavior of the springs was a very interesting objective for a research work in dy-
namics [4–6]. When a helical spring is subjected to a sudden shock loading, considerable vibration may occur therein [7].
Gironnet and Louradour [8], Yildirim [9] determined the natural frequencies of helical springs.

Resonance is a phenomenon that occurs when the spring is excited by a periodic signal whose frequency is equal to the
natural frequency. This phenomenon may be initiated very gradually, and that builds up a steady-oscillatory regime in real
situations (unless failure occurs). Moreover, a beating of a transient nature develops when the period of the excitation is not
fundamental or harmonic [10]. Various numerical and analytical methods were applied to determine the natural frequencies
of resonance of the spring. These include for example: the method of transfer matrix [11], the formulation of the dynamic
stiffness [12] and the pseudo spectral method [13].

Yildirim [11] developed a method based on digitalizing the transfer matrix of rigidity to determine the natural frequen-
cies of a helical spring. Becker et al. [14] determined the resonance frequencies of a helical spring subjected to an axial
load of static compression. For this, they performed a numerical solution of the linearized equations of motion using the
method of transfer matrix. Lee and Thompson [12] developed the equations of motion of helical springs based on the Timo-
shenko beam theory. The natural frequencies of the spring are obtained by canceling the determinant of the stiffness matrix.
Jiang et al. [15] studied the forced vibration and wave propagation in helical springs with reference to partial differential
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equations describing the dynamic behavior of springs subjected to axial force and torque. They based their study on the
method of Laplace transform to find an analytical solution in the form of a numeric sequence that describes the vibrations
along the spring.

In this paper, we study the numerical propagation of elastic waves in a helical spring following a sinusoidal excitation
of the axial velocity. The analytical and numerical models describing wave propagation, in the case of gradual excitations
in time, have been prepared by Phillips, Sinha, and Costello [16,17]. The mathematical model is based on those estab-
lished by Phillips and Costello [16]. The strain evolutions in different sections of the spring due to an excitation of the
instantaneous velocity are studied. The impedance method is applied to the mathematical model consisting of four partial
differential equations of order one describing the propagation of deformations and velocities along the spring. The mechan-
ical impedance is expressed at any point of the spring and especially at the extremities that represent the most stressed
points. The frequency spectra are shown in the impedance diagrams. The numerical solution is carried out by the Lax–
Wendroff finite-difference method formulation, based on the conservative linear model. The effect of dynamic coupling,
resulting from Poisson’s ratio, between axial and angular waves in the spring is studied. The results were used to exam-
ine the evolution of angular and axial strains as a function of time at special points of the spring at different vibration
frequencies and to show concepts related to the wave propagation phenomena such as resonance and beat.

2. Mathematical formulation

In addition to the usual assumptions of continuum, elastic, homogeneous and isotropic materials, we add the following
assumptions: the one-dimensional motion is assumed along the axis of the spring, the terms of friction and volume forces
are neglected, the spring coils are not joined and the bending movement is assumed to be zero. The equations of the dy-
namic behavior of the coil springs are determined by applying a dimensional analysis with reference to the basic formulas
of the resistance of materials based on the results given by the general theory of bending and twisting slender rods, estab-
lished two coupled partial differential equations of second order that represent the equations of wave propagation of the
axial and angular movement of the springs [18]. This leads to the following system:

∂ut

∂t
= a

∂ux

∂x
+ b

∂vx

∂x
(1)

∂vt

∂t
= b

∂ux

∂x
+ c

∂vx

∂x
(2)

∂ux

∂t
= ∂ut

∂x
(3)

∂vx

∂t
= ∂vt

∂x
(4)

where u is the axial displacement of the spring, v = rφ is the angular displacement, ux = ε = ∂u/∂x is the axial deformation,
ut = ∂u/∂t is the axial velocity, vx = β = ∂v/∂x = r∂φ/∂x is the angular deformation and vt = ∂v/∂t = r∂φ/∂t is the angular
velocity.

This model is a system of four first-order partial differential equations of hyperbolic type. It takes into account all the
four unknown ut , ux , vt and vx that depend on abscissa x and time t , including the dynamic coupling between the axial
and angular waves.

In the case of a linear behavior and when the strains are small, i.e. |ux| � 1 and |υx| � 1, the coefficients appearing in
Eqs. (1) to (4) are defined by:

a = E Ih

Mr2

(
1 − υ

1 + υ
cos2 α

)
sinα (5)

b = − E Ih

Mr2

υ

1 + υ
sin2 α cosα (6)

c = E Ih

Mr2

(
1 − υ

1 + υ
sin2 α

)
sinα (7)

Angular deformations and velocities are therefore connected, at any time, to axial deformation and velocities and
vice versa. This coupling is due to the effects of Poisson’s ratio υ .

3. Numerical solution with the Lax–Wendroff method

The numerical solution of the problem for hyperbolic partial differential equations described by (1), (2), (3) and (4) can
be obtained by the method of Lax–Wendroff [19,20], through applying it to transform the system of partial differential
equations into a system of finite-difference equations. The scheme of the Lax–Wendroff method is a three-point explicit
accuracy method comprising two steps: prediction and correction. It is easily applied to the resolution of conservative
formulations [21]. The conservative formulation of Eqs. (1) to (4) writes as:
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∂Y

∂t
+ ∂G(Y )

∂x
= H(Y ) (8)

F and H are two vector functions of the unknown vector Y defined by:

Y =

⎛
⎜⎜⎝

ux

vx

ut

vt

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

ut

vt

aux + bvx

bux + cvx

⎞
⎟⎟⎠ and H = 0 (9)

The spring is divided into N equal elements of length �x. Indeed, with the notations of Fig. 2, we can write: Y k
i =

Y [(i − 1)�x,k�t] and Gk
i = G(Y k

i ).
Moreover, the unknown vector Y (x, t + �t) can be approximated with the first terms of its Taylor expansion about t ,

as follows:

Y (x, t + δt) = Y

(
(x, t) + δt

∂Y

∂t

)
(10)

Then, by introducing the physical laws of the dynamic response given by Eq. (8), i.e.:

∂Y

∂t
= −∂G(Y )

∂x
(11)

we obtain the finite-difference form:

Y (x, t + δt) = Y (x, t) − δt
∂G

∂x
(12)

Following the techniques described by Lerat and Peyret [22,23], the two-step Lax–Wendroff scheme used in conservative
equation (8), for any grid point (i,k + 1), can be inferred from (12) and is as follows.

For the first step or prediction phase [instant (k + 1/2)�t]:

Y k+1/2
i+1/2 = 1

2

(
Y k

i+1 + Y k
i

) − �t

2�x

(
Gk

i+1 − Gk
i

)
(13)

And for the second step or correction phase [instant (k + 1)�t]:

Y k+1
i = Y k

i − �t

�x

(
Gk+1/2

i+1/2 − Gk+1/2
i−1/2

)
(14)

where �x = h/N is the space division, N is the number of sections and �t is the time division.
The finite-difference scheme of Lax–Wendroff is a three-point explicit method, of second-order accuracy. It can be shown

that the requirement condition for stability is given by the Courant Friedrichs–Lewy condition:

�t

�x
� 1

maxk |λk| (15)

The λk are the eigenvalues of the matrix B , which is such that: ∂G(Y )
∂x = B ∂Y

∂x .
Under these conditions:

B = −

⎡
⎢⎢⎣

0 a 0 b
1 0 0 0
0 b 0 c
0 0 1 0

⎤
⎥⎥⎦ and det(B − λI) = λ4 − (a + c)λ2 + (

ac − b2) = 0 (16)

By posing μ = 1/λ, Eq. (16) can be written as:(
ac − b2)μ4 − (a + c)μ2 + 1 = 0 (17)

which admits four roots: {−Cf,−Cs, Cs, Cf} where Cf is the rapid angular wave celerity defined in the spring by:

Cf =
√

(a + c) + √
(a − c)2 + 4b2

2
=

√
E Ih

Mr2
sinα (18)

and

Cs =
√

(a + c) − √
(a − c)2 + 4b2

2
=

√
E Ih

Mr2

sinα

1 + υ
(19)
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Fig. 1. Helical spring description.

Hence the stability condition can be written as:

�t

�x
= 1

Cf
(20)

The coefficients a, b and c can be expressed in terms of Cs:⎧⎨
⎩

a = C2
s

(
1 + υ sin2 α

)
b = −C2

s υ cosα sinα
c = C2

s

(
1 + υ cos2 α

) (21)

Moreover, we can verify that:

a + c = C2
s + C2

f and ac − b2 = C2
s C2

f (22)

4. Impedance method

When the frequency varies in a certain interval, this method enables to determine the dynamic characteristics of the
spring: frequency response, transfer function, etc. An analytical solution of the equations of motion can be obtained as al-
gebraic equations in terms of mechanical and geometrical characteristics of the spring and boundary conditions. For this,
the partial differential equations considered are linear; they are solved for sinusoidal perturbations with the same frequency
throughout the system. The static behavior of the variables being initially zero (� = 0 and θ = 0), the instantaneous quan-
tities are fluctuation terms.

It is advantageous to separate the total instantaneous mechanical variables (ux , ut , υx , υt ) into two parts, the mean
variables (ūx , ūt , ῡx , ῡt ), and the oscillatory variables (u′

x , u′
t , υ ′

x , υ ′
t ), so that (ux = ūx + u′

x, . . .).
The mean variables are given by the initial conditions, represented by the static deflection of the spring (see Fig. 1b):

ūx = −�

h
, ūt = 0, ῡx = rθ

h
, ῡt = 0 (23)

Using this notation, the equations of motion (1 to 4) become:

∂u′
t

∂t
− a

∂u′
x

∂x
− b

∂υ ′
x

∂x
= 0 (24)

∂u′
x

∂t
− ∂u′

t

∂x
= 0 (25)

∂υ ′
t

∂t
− b

∂ux

∂x
− c

∂υ ′
x

∂x
= 0 (26)

∂υ ′
x

∂t
− ∂υ ′

t

∂x
= 0 (27)

As the behavior of the system is linear, Eqs. (24) to (27) have the same form as Eqs. (1) to (4). One may solve the
linearized equations of the coupled free vibration of helical springs by using the separation-of-variables technique, which
assumes that [10]:
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Fig. 2. Lax–Wendroff scheme.

u′
x = u′

x(x, t) = Ux(x)T (t)

u′
t = u′

t(x, t) = Ut(x)T (t)

υ ′
x = υ ′

x(x, t) = V x(x)T (t)

υ ′
t = υ ′

t(x, t) = Vt(x)T (t) (28)

where Ux(x), V x(x), Ut(x) and Vt(x) are non-time-varying complex functions of strains and velocities, and T is a function
of t only.

The impedance method [10] consists in solving the equations of system (8) by the method of separation of variables
Y (x, t) = X(x)T (t), where Xt(x) = ( Ux V x Ut Vt ) a vector of the single variable x and T is a function of the single vari-
able t .

By restricting the solution for T to the steady-oscillatory case, that is, by assuming a particular solution for T as a
harmonic oscillation, the solution can be expressed as:

T (t) = Dest (29)

where s is a complex-valued constant independent of space x and time t . s constant, is referred as the complex frequency,
or the Laplace variable, contains real and imaginary part σ and ω, respectively (s = σ + iω). The constant γ (γ = α + iδ),
which is a function of s, is called “the propagation constant”. The real parts of γ and s govern the decay of oscillations with
respect to time at a particular section and the attenuation of oscillations over a distance, respectively. The solution of X is
then of the form: X = Aeγ x + Be−γ x . Where A and B are constants of integration.

If we assume that the damping is negligible in the spring (σ = 0). Can therefore simplified solution and remains only
the imaginary part (s = iω).

After substituting and rearranging:

dX

dx
= iωB−1 X (30)

where:

X(x) =

⎡
⎢⎢⎣

Ux

V x

Ut

Vt

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
a b 0 0
b c 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

C2
s (1 + υ sin2 α) −C2

s υ sinα cosα 0 0
−C2

s υ sinα cosα C2
s (1 + υ cos2 α) 0 0

⎤
⎥⎥⎦

the solution of Eq. (30) can be written as [25,26]:

X(x) = eiωxB−1
X(0) = [

A(x)
]

X(0) (31)

The inverse of matrix B can be easily found by the Gauss elimination method:

B−1 =

⎡
⎢⎢⎣

0 0 c
ac−b2

−b
ac−b2

0 0 −b
ac−b2

a
ac−b2

1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 1+υ cos2 α
C2

f

υ sin α cos α
C2

f

0 0 υ sin α cos α
C2

f

1+υ sin2 α
C2

f
1 0 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎦ (32)

The eigenvalues of B−1 are the roots of the characteristic equation:
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det
(

B−1 − λI
) = λ4 − a + c

ac − b2
λ2 + 1

ac − b2
= 0 (33)

This equation has four roots, which are:

λ = ±
√

(a + c) ± √
(a − c)2 + 4b2

2(ac − b2)
(34)

Substituting expressions (5) to (7) into Eq. (34) yields:

λ1 = −
√

Mr2

E I H

(1 + υ)

sinα
= − 1

Cs
, λ2 = −

√
Mr2

E I H

1

sinα
= − 1

Cf
, λ3 =

√
Mr2

E I H

1

sinα
= 1

Cf
and

λ4 =
√

Mr2

E I H

(1 + υ)

sinα
= 1

Cs
(35)

Since B−1 is a four-by-four matrix, then, from the algebraic theory, Eq. (31) can be written as [24]:

X(x) = [
A(x)

]
X(0) = [

a0 I + a1
(
iωxB−1) + a2

(
iωxB−1)2 + a3

(
iωxB−1)3]

X(0) (36)

where ar values are defined by using determinants: ar = Dr
D , with:

D =

∣∣∣∣∣∣∣∣
1 1 1 1

iωxλ1 iωxλ2 iωxλ3 iωxλ4

(iωxλ1)
2 (iωxλ2)

2 (iωxλ3)
2 (iωxλ4)

2

(iωxλ1)
3 (iωxλ2)

3 (iωxλ3)
3 (iωxλ4)

3

∣∣∣∣∣∣∣∣
= −4υ2

√
1 + υ

(
ωx

Cf

)6

(37)

Dr is obtained by replacing the elements(iωxλ1)
r, . . . , (iωxλ4)

r in D byeiωxλ1 , . . . ,eiωxλ4 .
The eigenvalues of matrix B are {−Cf,−Cs, Cs, Cf} and those of the matrix ixωB−1 are {λ1 = −iωx/Cs, λ2 = −iωx/Cf,

λ3 = iωx/Cf, λ4 = iωx/Cs}.
By using Mathematica processing software, the following coefficients of the matrix [A(x)], indicated in the relation (33),

are obtained:

A11 = A33 = sin2 α cos

(
ωx

Cf

)
+ cos2 α cos

(
ωx

Cs

)
(38)

A12 = A21 = A34 = A43 = sinα cosα

[
cos

(
ωx

Cs

)
− cos

(
ωx

Cf

)]
(39)

A13 = i
sin2 α

Cf
sin

(
ωx

Cf

)
+ i

cos2 α

Cs
sin

(
ωx

Cs

)
(40)

A14 = A23 = −i sinα cosα

[
1

Cf
sin

(
ωx

Cf

)
− 1

Cs
sin

(
ωx

Cs

)]
(41)

A22 = A44 = cos2 α cos

(
ωx

Cf

)
+ sin2 α cos

(
ωx

Cs

)
(42)

A24 = i
cos2 α

Cf
sin

(
ωx

Cf

)
+ i

sin2 α

Cs
sin

(
ωx

Cs

)
(43)

A31 = iCf sin2 α sin

(
ωx

Cf

)
+ iCs cos2 α sin

(
ωx

Cs

)
(44)

A32 = A41 = i cosα sinα

[
Cs sin

(
ωx

Cs

)
− Cf sin

(
ωx

Cf

)]
(45)

A42 = iCf cos2 α sin

(
ωx

Cf

)
+ iCs sin2 α sin

(
ωx

Cs

)
(46)

Hence, the complex strains and velocities, as functions of position x in the helical spring, are:

Ux(x) = A11(x)Ux(0) + A12(x)V x(0) + A13(x)Ut(0) + A14(x)Vt(0)

V x(x) = A21(x)Ux(0) + A22(x)V x(0) + A23(x)Ut(0) + A24(x)Vt(0)

Ut(x) = A31(x)Ux(0) + A32(x)V x(0) + A33(x)Ut(0) + A34(x)Vt(0)

Vt(x) = A41(x)Ux(0) + A42(x)V x(0) + A43(x)Ut(0) + A44(x)Vt(0) (47)
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Fig. 3. Ends of the helical spring fixed at R (x = 0) and subjected to axial loading at S (x = h).

It can be noted that:

Aij(0) = δi j (48)

The mechanical impedances in the helical spring are defined as the ratio of complex axial and angular strains to the
complex axial and angular velocities, as follows:

Z1(x) = u′
x

u′
t

= A11(x)Ux(0) + A12(x)V x(0) + A13(x)Ut(0) + A14(x)Vt(0)

A31(x)Ux(0) + A32(x)V x(0) + A33(x)Ut(0) + A34(x)Vt(0)

Z2(x) = υ ′
x

u′
t

= A21(x)Ux(0) + A22(x)V x(0) + A23(x)Ut(0) + A24(x)Vt(0)

A31(x)Ux(0) + A32(x)V x(0) + A33(x)Ut(0) + A34(x)Vt(0)

Z ′
1(x) = u′

x

υ ′
t

= A11(x)Ux(0) + A12(x)V x(0) + A13(x)Ut(0) + A14(x)Vt(0)

A41(x)Ux(0) + A42(x)V x(0) + A43(x)Ut(0) + A44(x)Vt(0)

Z ′
2(x) = υ ′

x

υ ′
t

= A21(x)Ux(0) + A22(x)V x(0) + A23(x)Ut(0) + A24(x)Vt(0)

A41(x)Ux(0) + A42(x)V x(0) + A43(x)Ut(0) + A44(x)Vt(0)
(49)

Since the mechanical system has four degree of freedom, the transfer functions in the spring are defined as the ratio of
the complex angular strain or velocity to the complex axial strain or velocity, respectively:

W1(x) = υ ′
x

u′
x

= A21(x)Ux(0) + A22(x)V x(0) + A23(x)Ut(0) + A24(x)Vt(0)

A11(x)Ux(0) + A12(x)V x(0) + A13(x)Ut(0) + A14(x)Vt(0)

and

W2(x) = υ ′
t

u′
t

= A41(x)Ux(0) + A42(x)V x(0) + A43(x)Ut(0) + A44(x)Vt(0)

A31(x)Ux(0) + A32(x)V x(0) + A33(x)Ut(0) + A34(x)Vt(0)
(50)

In practice, we are interested in the mechanical impedances at the extremity S(x = h) of the spring, as indicated in Fig. 3.
In the case where the spring is clamped at the extremity R(x = 0) and axially loaded at the extremity S, the boundary

conditions can be expressed as:

Ut(0) = 0 Vt(0) = 0 Ut(h) �= 0 Vt(h) = 0 (51)

Impedance transfer functions are utilized to express the impedance at one point in terms of conditions at another
location, usually a terminal condition. For example, at x = 0, W1(0) = V x(0)/Ux(0). Although transfer functions may be
written to relate the impedance at any position x in a spring to the boundary conditions, the transfer equation that relates
impedance at the loaded extremity in terms of impedance at the clamped extremity is particularly useful:

Z1(h) = A11(h) + W1(0)A12(h)

A31(h) + W1(0)A32(h)
and Z2(h) = A21(h) + W1(0)A22(h)

A31(h) + W1(0)A32(h)
(52)

From relations (54), Vt(h) = 0 leads to:

W1(0) = V (0) = − A41(h)
(53)
U (0) A42(h)
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Fig. 4. Correspondence between the natural frequencies of the helical spring at x = h (a) and the impedence diagrams (b), (c). Color online.

Under these conditions, the impedance formulas, at x = h, are simplified:

Z1(h) = A11(h)A42(h) − A12(h)A41(h)

A31(h)A42(h) − A32(h)A41(h)
and Z2(h) = A21(h)A42(h) − A22(h)A41(h)

A31(h)A42(h) − A32(h)A41(h)
(54)

In the case where the load is angular, one can define two others impedances at the loaded extremity:

Z ′
1(h) = A11(h) + W1(0)A12(h)

A41(h) + W1(0)A42(h)
and Z ′

2(h) = A21(h) + W1(0)A22(h)

A41(h) + W1(0)A42(h)
(55)

where, from relations (47), Ut(h) = 0 leads to:

W1(0) = − A31(h)

A32(h)
(56)

and the impedances at x = h are simplified:

Z ′
1(h) = A11(h)A32(h) − A12(h)A31(h)

A41(h)A32(h) − A42(h)A31(h)
and Z ′

2(h) = A21(h)A32(h) − A22(h)A31(h)

A41(h)A32(h) − A42(h)A31(h)
(57)

The impedances (54) vary with the frequency and are maximal for an infinite number of frequencies. These are the
natural frequencies of the helical spring system and they correspond to the zero of the impedance denominator, i.e. the zero
of expression (Fig. 4):

A41(h)A32(h) − A31(h)A42(h) (58)

The amplitudes of the two impedances (57) according to the pulse diagrams are shown in the impedance dia-
grams (Fig. 4). The maximum values of the spectrum are on resonance frequencies, while the minimum values correspond



680 A. Hamza et al. / C. R. Mecanique 341 (2013) 672–686
Fig. 5. Sinusoidal excitation of the axial velocity at the impacted end of the spring x = h. Color online.

Table 1
Mechanical and geometric characteristics of the considered springs.

Height of the spring h 1193.8 mm
Helix angle α 0.198281 rad
Number of turns n 6
Poisson’s ratio υ 0.25
Young’s modulus E 206.85 GPa
Mass of the spring M 2.12868 kg
Radius of the spring r 157.607 mm
Wire radius r f 7 mm
Initial compression � 254 mm

to anti-resonance frequencies. When the pulse perturbations in the spring coincide with the resonance pulsations, strain
fluctuations are amplified and can cause the breakage of the spring. Several numerical methods can be used to determine
these fluctuations [25].

The following application illustrates the steps in a frequency response analysis, in which the impedance method is
used. The computations needed to evaluate the mechanical impedances at a point in a spring are quite involved when a
computer is not used. The general applicability of the method can be best indicated by discussing particular situations. In
the following examples, the receiving-end impedance of the system is assumed definable by the foregoing relationships, the
problem being to determine the impedance at other locations in the system.

5. Applications and results

5.1. Initial conditions

The spring is initially compressed at a distance � (see Fig. 1). For all x ∈ [0,h], the initial conditions are defined by:

ux(x,0) = −�/h, vx(x,0) = θr/h = 0, ut(x,0) = 0 and vt(x,0) = 0 (59)

These conditions satisfy the ordinary differential equation system obtained after having annulled terms ∂/∂t in partial
differential equations described by (1), (2), (3) and (4).

5.2. Boundary conditions

Consider a system spring shown in Fig. 3. The boundary conditions are expressed by:

ut(0, t) = 0, vt(0, t) = 0, ut(h, t) = ψ(t) = ut0 sin(ωt) and vt(h, t) = 0 (60)

The dynamic response studied here is due to sinusoidal excitations of the axial velocity at the end of the spring x = h.
Fig. 6 shows the excitation with the fundamentals frequencies. A FORTRAN program was run on a PC computer. The problem
has been solved by the finite difference Lax–Wendroff method using N = 200 grid points. The dynamic behaviour of the
spring is represented by axial waves and induced rotational waves because the coupling effect of Poisson. The coupling
effect may be accompanied with beating phenomena.

5.3. System description

Consider a system of steel helical spring whose geometric and mechanical characteristics are shown in Table 1.
A computer program in Fortran language has been developed, which computes the mechanical impedances over a wide

range of frequencies ω. In general, the terminal impedances are complex numbers and can be expressed as:

Z1(h) = Z1R + i Z1I = |Z1|eiψ1 and Z2(h) = Z2R + i Z2I = |Z2|eiψ2 (61)
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Fig. 6. Evolution of deformation following an excitation at the rapid fundamental period ωf . Color online.

Theses impedances vary with frequency and are maximal for an infinite number of resonating frequencies. These are the
natural frequencies of the helical spring system and, in the case of a spring originating in a clamped extremity, they corre-
spond to fundamental and harmonics. Each natural frequency or resonance, however, is separated on the frequency scale by
an anti-resonance, or frequency at which |Z1| and |Z2| become small or equal zero.

The impedance diagram provides a very useful aid in assessing the frequency response of a system. The most useful plot
is that of the modulus of the impedance versus the angular frequency. The impedance diagrams for the helical spring are
shown in Fig. 5, where the impedance modulus is plotted.

The resonances and anti-resonances are visible as points of high impedance and low impedance, respectively. The fun-
damental, second, third and fourth harmonics are easily identified as the frequencies associated with large impedances.
These frequencies correspond to the maximum impedance modulus values, that is, to the resonance frequencies and are
proportional to Cs and Cf , respectively. The two fundamental frequencies are given by:

ωs = π · Cs

h
= 98.035 rad/s and ωf = π · Cf

h
= 109.607 rad/s (62)

The corresponding natural fundamental frequencies, expressed in Hz, are:

fs = ωs

2π
= Cs

2h
= 15.60 Hz and f f = ωf

2π
= Cf

2h
= 17.44 Hz (63)

As indicated in Fig. 5, the number series of natural frequencies correspond to the zero of the denominator of |Z1| and
|Z2|, that is the zero of expression (58). The others natural frequencies are the multiples of ωs and ωf:

ωsk = k
π · Cs

h
= 98.035k, ωfk = k

π · Cf

h
= 109.607k, k = 0 1 2 . . . (64)

5.4. Excitation with fast frequency ωf

The numerical results are shown in Fig. 6, which illustrates the dynamic response represented by the forced vibration of
the strains in the spring. This dynamic response in different sections of the spring is due to a sinusoidal excitation of the
axial velocity of amplitude 1 m/s and of pulse corresponding to the fundamental frequency ωf = π ·Cf

h = 109.607 rad/s, i.e.
to the faster wave celerity.

The evolutions of axial and rotational strains, as functions of time t , are plotted at some sections of the spring: x = 0,
x = h/4, x = h/2, x = 3h/4, and x = h. From these results, the strains are maximal at the extremities of the spring.

Note that the resonance phenomenon occurs for the angular deformation, because the pulse ωf is a fundamental to
this mechanical quantity. Therefore, it is amplified continuously until it reaches a steady oscillatory regime. One can notice
that the angular deformation is maximal at both ends of the spring. For the axial deformation, it is rather a wave beat
phenomenon that occurs. Again, the deformation is maximal at both ends of the spring. The observed beat phenomenon
develops when two signals of the same type are energized with close frequencies. In this case, it is the axial velocity
of the wave that grows with an excitation pulse of ωf = 109.607 rad/s, and the axial strain wave which is excited with
the slow pulse ωs = 98.035 rad/s. So, the beat phenomenon reveals two characteristic times: T0 = 4π

ωs1+ωf1
= 0.0605 s and

Tb = 2π
|ωf1−ωs1| = 0.543 s.

T0, which is proportional to the inverse of the mean pulse waves, corresponds to the period of the oscillations of the
resulting signal and Tb , which is proportional to the difference between pulse waves, represents the period of the envelope
of these oscillations, that is the period of the beat or of the modulation. Actually, the resonance phenomenon can not be
developed for axial waves with fast beat, as they are quickly caught and then destroyed by the angular wave [19].
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Fig. 7. Evolution of deformation at x = h for different values of the frequency. Color online.

Fig. 8. Amplification of the beat of the axial deformation at x = h. Color online.

It can be seen that the resonance phenomenon manifests for rotational strains at all sections only at the middle of the
spring x = h/2. For the axial strain, the resonance is reduced to the beat phenomenon that takes place between the two
waves: the excitation ut which fluctuates at the fast frequency and the axial strain ux , which propagates at the slow wave
celerity. This can be explained by the fact that the excitation frequency is equal to the fundamental frequency of the rapid
rotational waves. Although the excitation frequency is also a fundamental for the axial strain, the resonance of this strain
did not occur, due the coupling effect and the competition of the axial and rotational waves.

Fig. 7 shows the response of the spring in terms of axial and angular deformation for several values of the frequency.
Coefficient p is the ratio of the excitation frequency ω to the fast fundamental frequency ωf:

p = ω

ωf
(65)

Note that the curve giving the evolution of the axial strain corresponding to p = 0.9 has not been traced, because for
this value, the excitation frequency is close enough to the slow fundamental pulse ωs1 and causes a very amplified beat of
the axial strain, as shown in Fig. 8.

5.5. Excitation with slow frequency ωs

Fig. 9 shows the evolution of axial and angular deformations due to a sinusoidal excitation to the axial velocity with
the natural frequency of the slow speed. The results show that the axial strain is increasing continuously, and significantly
reflects the growing resonance phenomenon in the spring for this quantity. The results also show that the resonance phe-
nomenon expands to the angular deformation. This can be explained by the dynamic coupling between the axial waves and
angular waves reflecting the fact that the angular waves are induced in the spring by the axial waves and are never caught
by these waves.

However, as shown in Fig. 10, the amplification in this case is slightly higher despite the slow frequency fs = 1
Ts

= ωs
2π =

15.603 Hz is smaller than the fast frequency f f = 1
T f

= ωf
2π = 17.445 Hz.

In Fig. 11, the responses of the spring, in terms of angular and axial strains, are shown for several values of the frequency.
The coefficient p is the ratio of the excitation frequency ω and of the slow fundamental frequency ωs:

q = ω

ωs
(66)
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Fig. 9. Evolution of deformation following an excitation at the fundamental period of slow ωs . Color online.

Fig. 10. Evolution of the angular deformation at x = h for two frequencies. Color online.

Fig. 11. Evolution of deformation at x = h for different values of the frequency. Color online.

The resonance of a system is a phenomenon that may be initiated very gradually and that builds up a steady-oscillatory
flow (unless failure occurs). If a forcing action is applied, resonance will develop and take the forcing function period if it is
close to the fundamental or a harmonic period of the system. When a system is altered from static conditions by a periodic
forcing function, a beat of transitory nature occurs if the forcing period is not the fundamental or harmonic of the system.

5.6. Excitation with harmonic frequencies

Fig. 12 presents dynamic responses of the spring in term of axial and rotational strains due to an excitation in the axial
velocity ut(h) = sin(ωt). Different harmonics of the two fundamental spring frequencies, ω = kωs and ω = kωf were used.
These results are obtained by the method of Lax–Wendroff and are drawn at the end x = h of the spring. As it can be
seen on these figures, the resonance phenomenon occurs at axial and rotational strains for all harmonics corresponding to
the slow frequency ωs. Similarly, it is confirmed that the beat phenomenon occurs for the axial strain when harmonics
correspond the fast frequency ωf . Moreover, as shown in Fig. 13, the phenomenon of resonance of rotational strain occurs
for all harmonics corresponding to this fast frequency. We can clearly observe that the resonance and the beat proceed
in stages or by levels for both axial and rotational strains and these are very clear for high harmonics. That is, for the
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Fig. 12. Evolution of the axial strain at x = h due to a sinusoidal excitation of ut at harmonic frequency of order k.

harmonic of order k, the amplitude of the axial strain corresponding to the slow excitation frequency remains constant
every k periods. The same effect is observed for excitation with fast frequency harmonic. Fig. 14 shows the evolution of the
strains, at x = h, obtained for different harmonics and presented for more important time period. It can be seen that the
evolution in stages of stains shows a loss in their amplitude modulation. This amortization is more pronounced for higher
harmonics.

6. Conclusion

This paper investigated the resonance and beat phenomena of strains due to forced sinusoidal excitation in helical
springs. To study vibrations in helical springs subjected to a sinusoidal excitation, we propose a coupled model. At first,
the natural frequencies of the spring were predicted by the impedance method. The impedance approach has been used
by restricting the solution to the steady oscillatory case, that is, by assuming harmonic oscillations. In this case, as the
behavior of the mechanical variables was governed by a linear system of partial differential equations, the separation of
variables technique has been used to develop the mechanical impedances of the spring. Theses impedances vary with
frequency and are maximal for the infinite number of resonating frequencies corresponding to fundamental and harmonics.
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Fig. 13. Evolution of the rotational strain at x = h due to a sinusoidal excitation of ut at harmonic frequency of order k.

The obtained results permitted to show that the natural frequencies are proportional to the two wave speeds in the spring:
the slow axial wave speed and the rapid rotational wave speed. Next, the evolution of axial and rotational strains, at various
sections of the spring, due to an axial velocity harmonic excitation, was analyzed and the phenomenon of resonance and
beat was illustrated. Numerical solutions were obtained by the Lax–Wendroff scheme when the vibrations were caused
by harmonic forced axial velocity. As there were two different sets of natural frequencies, because of the two different
waves that propagated through the spring, the dynamic behavior of the strains was conditioned by the wave that matched
the frequency of the excitation when resonance occurred. In this sense, our numerical results showed that the axial and
rotational strains resonated and followed the excitation for slow frequencies. The amplification is more important for the
axial deformation than for the angular deformation, which was resulting from the effect of coupling Poisson. Numerical
results related to the studied and simulated example have been confronted with such physical explanations regarding the
dynamical coupling between the axial and angular waves and the phenomena of wave reflections on both ends of the spring.
For excitations with rapid natural frequencies, the resonance occurred only for rotational strains and the beat phenomenon
was observed for axial strain.
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Fig. 14. Effect of the harmonic frequency order on resonance or beat amortizations.
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