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The simulation of the hydro-mechanical behavior of unsaturated soils is becoming a subject
of major importance in soil mechanics. However, unlike the laws governing the behavior
of saturated soils, those used to describe the behavior of unsaturated soils still lack
of simplicity for common engineering practice. This is why it is important to reconcile
saturated and unsaturated soil mechanics and establish a unified theory. In this paper, we
use the same strength equation of saturated soils in unsaturated materials and verify that
a single failure surface is obtained for any value of suction in wetting and drying paths.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Shear strength is one of the most important engineering properties of soils. This is because most civil engineering works
require the knowledge of the soil resistance to design safe structures.

The shear strength of soils can be measured in equipments that apply three-dimensional pressures (directions 1, 2 and
3). In this case, the triaxial cell or the true triaxial apparatus can be used. When different pressures are applied in two or
three directions, they cause shear stresses that are supported by the internal structure of soils. When these acting stresses
exceed the strength of the material, it is said that the soil fails. In the case of saturated materials, this failure state is
identified through the final deviator stress (qf = σ1 − σ3) and the final mean effective stress (p′ = (σ ′

1 + 2σ ′
3)/3) where

the effective stress (σ ′) is defined as the difference between the total stress and the pore pressure. If we plot these values
(p′

f,qf) under different confining stresses for a saturated soil, they exhibit a single failure line with a slope called M . In this
sense, the failure deviator stress is equal to Mp′

f and represents the maximum internal resistance in a failure plane when
the soil sample is subjected to external loads:

qf = Mp′
f (1)

In contrast, the shear strength in unsaturated soils can be predicted using two different approaches. The first one is
based on the independent stress state variables and considers that the strength due to mechanical loading is independent
of the strength due to suction [1]. The variables used to establish the governing equations in this approach are the mean net
stress pnet = (σ1 + 2σ3)/3, the deviator stress q = σ1 −σ3 and suction s. Matric suction s = ua − uw represents the pressure
difference of the fluids in the soil pores: air (ua) and water (uw). Suction is included as a third variable in order to take
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into account correctly the effect of moisture on the strength of the material. This approach considers the stress state as a
function of these three variables f = f (pnet,q, s).

The second approach is similar to the saturated case, where the strength of the material is linked to the shear stress and
the mean effective stress. Models written in terms of effective stress couple the mechanical and hydraulic behavior of the
material in this single variable. For the case of unsaturated soils, the most popular effective stress relationship is Bishop’s
effective stress equation, which in tensorial form is written as:

σ ′
i j = σ t

i j − uaδi j + χ sδi j (2)

where σ t
i j represents the total stress applied at the boundaries of the soil, δi j is the Kronecker delta and χ is Bishop’s

parameter, closely related to the degree of saturation of the soil [2]. More recent studies relate this parameter to saturated,
dry, and unsaturated fractions of soil [3].

When relationship (2) is multiplied by the Kronecker delta, the mean effective stress is expressed in terms of the mean
net stress (pnet) and suction:

p′ = pnet + χ s (3)

Several researchers have made attempts to establish analytical equations to obtain parameter χ . The most simplistic of
them assumes that it is equal to the degree of saturation of the material (χ = Sr).

This paper focuses on the prediction of the shear strength of unsaturated soils using the effective stress concept as it
shows some advantages when compared to the independent stress state variables approach. Among other advantages, effec-
tive stress models require less constitutive parameters to be formulated. Furthermore, in order to calibrate these parameters,
more simplistic and economical laboratory tests are required [4]. In this paper, we only consider the effect of matric suction
and neglect those produced by other types of suction.

A model to predict the strength of unsaturated soils is proposed herein. First, an analytical equation to determine Bishop’s
parameter based on the analysis of the equilibrium of the soil phases (solid, liquid, gas) is presented. Then it is demonstrated
that it can be applied to any type of soil. Later, a probabilistic porous model is developed to generate the parameters
required to obtain the effective stresses in unsaturated materials. Additionally, proper details regarding the calculation of
the variables that intervene in the effective stress equation proposed herein are provided. Finally, some numerical and
experimental results comparisons are presented.

2. Bishop’s parameter determination

Fig. 1(a) outlines a porous structure composed of solids and pores. These pores can be of two different types: sites and
bonds. The sites contain the largest part of the voids and can be subdivided in macropores and mesopores. The bonds or
throats are the elements that interconnect the sites.

Consider that a soil is initially subjected to a high suction and all pores are dry. If suction is reduced by steps, at certain
point, water intrudes into the system. Initially, only the smaller bonds located at the boundaries of the sample saturate.
With further reductions in suction, other larger elements start to saturate. Fig. 1(b) shows the distribution of water in the
system at a certain stage of the wetting process. It can be observed that the system is now composed of pores that may be
either dry or saturated (both sites and bonds). Additionally, it can be observed that solids can be completely surrounded by
either saturated or dry pores, or even they can be surrounded by a combination of them. For example, solid 6 in Fig. 1(b)
is completely surrounded by dry pores and in that sense it is called a dry solid. Instead, solids 1 and 3 are completely
surrounded by saturated pores and therefore they are called saturated solids. Finally, solids 2, 4 and 5 are surrounded by a
combination of saturated and dry pores, then they are called unsaturated solids. Notice that the definitions of the different
fractions involve both solids and pores and not the pores alone. The total volume of solids added by the volume of their
surrounding pores forms the volume of the fraction, be it saturated, dry, or unsaturated.

It will be seen later that the value of Bishop’s parameter as proposed herein depends on the quantification of the
different fractions. Because the saturated and the dry fractions do not share common elements, these two fractions are the
first ones to be quantified. Then, the unsaturated fraction is quantified from the difference with the total volume of bonds,
sites and solids. In this form we ensure that neither element is counted twice.

Let us define the saturated fraction f s as the ratio between the saturated volume (saturated solids and its surrounding
pores) and the total volume of the sample V ; the saturated ( f u) and the dry fraction ( f d) are defined in the same way:
the unsaturated volume divided by the total volume and, the dry volume divided by the total volume, respectively.

f s = (
V s

SOL + V s
S + V s

B

)
/V (4a)

f d = (
V d

SOL + V d
S + V d

B

)
/V (4b)

f u = (
V u

SOL + V u
S + V u

B

)
/V (4c)

In this way, the condition f s + f d + f u = 1 must be satisfied at any value of the degree of saturation. Variables in Eq. (4)
show subscripts that refer to either solids (SOL), sites (S), or bonds (B). On the other hand, superscripts indicate whether
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Fig. 1. Sketch of the porous structure of a soil in (a) dry and (b) wetting process conditions.

the referred volume V belong to a saturated (s), dry (d), or unsaturated (u) fraction. Notice that, for an initially saturated
soil subjected to a drying process, f u and f d should be initially cero ( f s = 1, f d = 0, f u = 0). Then when suction increases,
some pores will dry, consequently, the unsaturated and, eventually, the dry fraction will increase their value. Finally, at the
end of the drying process, condition f s = 0, f d = 1, f u = 0 should be accomplished.

The volume of pores surrounding the unsaturated solids is called the unsaturated volume of voids V u
v (no matter they

are saturated or dry); moreover, this unsaturated volume of pores is formed by the unsaturated volume of sites and bonds,
in the form V u

v = V u
S + V u

B . Notice that, according to Fig. 1, the unsaturated voids volume V u
v is the sum of all dry and

saturated pores surrounding the unsaturated solids.
Because the unsaturated fraction shows both saturated and dry pores, a degree of saturation for this fraction can be

defined. Let us define the degree of saturation of the unsaturated fraction Su
r as the volume of water inside the pores

surrounding the unsaturated solids divided by the total volume of those pores (Sr
u = V u

w/V u
v ).

From the analysis of the equilibrium between the different phases of a loaded soil sample, an equation to quantify the
effective stress in unsaturated materials is obtained [5]:

σ ′ = σnet + (
f s + f u Su

r

)
s (5)

Notice that Eq. (5) can be arranged in the form of Bishop’s stress with χ = f s + f u Su
r . The physical meaning of parameter

χ can be found when it is expressed under the form χ = f s Ss
r + f u Su

r + f d Sd
r , where Ss

r and Sd
r represent the degree of

saturation of the saturated and the dry fractions, respectively. Therefore, parameter χ represents the weighted degree of
saturation of the sample, as all three fractions are multiplied by their corresponding degree of saturation.

Parameters f s, f u and Su
r can only be evaluated when the distribution of water in the soil pores is known. This distri-

bution of water can be approximately determined through a solid–porous model able to simulate the hydraulic behavior of
soils during wetting–drying cycles. Such a model requires the pore size distribution and the grain size distribution of the
soil as data.

The pore size distribution can be obtained from mercury intrusion porosimetry or scanning electron microscopy tests.
In the first method, the volume of mercury intruding the pores of the soil is quantified. The size of cavities being filled
is obtained from Laplace’s law: Rc = 2Ts/p, where Ts is the interfacial surface tension between air and mercury, p is the
mercury pressure [6], and Rc is the critical radius, representing the maximum size of pores being filled with mercury.
Because, in general, pores show very complex geometries, Rc represents in fact an equivalent size of the real pore.

Both mercury intrusion and scanning electron microscopy show similar results to those presented in Fig. 2 (black squares)
in the axis of cavity size versus relative volume. In this figure, the relative volume is the volume of pores of certain size di-
vided by the total volume of pores. It can be observed that this distribution approximates a logarithmic normal distribution,
hence it can be modeled with the aid of just two statistical parameters: the standard deviation (σ ) and mean value (μ). In
the case of doubled structured soils, a double logarithmic normal distribution can be used.

The solid–porous model can be built in a regular network where nodes represent the sites and the connectors represent
the bonds. As stated before, sites are subdivided in macropores and mesopores. The main difference between these two
elements is that macropores are responsible for most of the volumetric deformation of soils when subjected to loading or
suction increase while mesopores maintain their size [7].

The porous model can be built using a bidimensional or tridimensional network. In the first case, sites are represented
by circles and bonds by rectangles. For the tridimensional model sites are represented by spheres and bonds by cylinders.
Because the network is built with elements of different sizes, some constrains must be established in order to ensure that
the model is physically possible. These constraints are summarized in the following construction principle: when two bonds
with radius rb1 and rb2 are concurrent (they meet at 90◦) to a site with radius rst, then their size must satisfy the condition

rst �
√

r2
b1 + r2

b2. This principle avoids the overlapping between concurrent bonds and also guaranties that all sites are larger

than their concurrent bonds.
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Fig. 2. Experimental (black squares) and theoretical (solid line) relative volume distribution.

Some computational codes to build virtual porous networks have been developed. These networks usually focus on the
simulation of water distribution. In general, these models require a minimum size for the network to guarantee the conver-
gence of results. This may be a problem for the case of soils, because their pores sizes involve several orders of magnitude
(from hundreds to thousands of micrometers); therefore, not all pore sizes can be adequately represented on small grids.
This is why computational models require large networks and large memory resources (above those of a common PC) to
simulate properly drying–wetting processes, and thus they become impractical for the case of soils.

Percolation models represent an alternative to computational models [3]. Basically, these models simulate the distribution
of water in the porous structure by analyzing the probability of a pore of certain size to saturate or dry during a wetting or
drying process, respectively. The equations of the model are derived from the analysis of the basic units for sites and bonds.
A basic unit is represented by the minimum number of elements required to determine if a site or a bond saturates or dries
at certain suction during a wetting or drying process, respectively. Then, the equations of these two basic units are simulta-
neously solved and the probabilistic equation for the wetting or drying process of soils can be established. If the pore-size
distribution of the material is known, then it is possible to determine the volume of water intruding or withdrawing the
pores of soil at certain suction and, finally, the soil–water retention curves can be obtained. The mathematical expressions
to obtain these curves can be easily programmed and the results are obtained in seconds.

It is assumed that the basic units repeat indefinitely in the system and therefore the mass of soil is treated as homoge-
neous. This means that boundary conditions in the porous–solid model are not taken into account. In any case, the influence
of the boundary conditions is negligible in the case of real soils [3]. For example, if it is assumed that at the borders of the
network, only solids and bonds can be found, then the basic unit for bonds differs from the one considered, as, in such a
case, bonds are connected with a single site. In a cubic network made of n sites per side, the proportion of bonds at the
border with respect to the total is approximately 3/n, which represents a very small proportion if it is acknowledged that n
is of the order of several thousands to several billions per gram of material, depending on the type of soil.

In conclusion, computational models for soils require large networks and sophisticated software that need several hours
to produce results. In contrast, probabilistic models are simple and produce immediate results. In the following section, the
equations for a probabilistic solid–porous model are derived.

3. Probabilistic model

Equations to model the water distribution need to be established for both the wetting and the drying conditions. In
order to establish these equations, the distribution of the relative volume of pores is required. During a wetting process, the
smallest pores (commonly bonds) are the first to saturate, while the largest are the last (Fig. 3). The maximum size of pores
that can be intruded by water is given by the Laplace equation, which establishes a relationship between suction and the
maximum size of pores (R) able to saturate, in the form R � 2Ts/s. In this case, the contact angle between water and soil
is considered to be zero, while adsorption phenomena are neglected.

Fig. 3 shows the distributions of the relative volume versus pore radius for sites (V RS) and bonds (V RB). The area below
each one of these curves is unity meaning that they represent in fact the distribution of probabilities for sites and bonds.
The relative volume at the critical radius Rc represent the addition of all relative volumes smaller than or equal to the
critical radius and is given by the equations S(Rc) = ∫ Rc

0 V RS dR and B(Rc) = ∫ Rc
0 V RB dR , for sites and bonds, respectively.

The critical radius Rc represents the scanning limit given by the Laplace equation. In the same way, it is possible to define
the relative volume distribution for solids in the form Sol(R) = ∫ R

0 V SOL dR .
In addition, connectivity C is defined as the number of bonds concurrent to a site. A regular bidimensional network has

a connectivity of 4, while a regular tridimensional network has a connectivity of 6.
Consider the basic unit for sites in the bidimensional network depicted in Fig. 4(a). It consists of a central site with

four concurrent bonds connected with the same number of external sites. Consider now that the basic unit is initially dried
and subjected to a wetting process. By inspection, we can determine that this site may saturate when the following two
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Fig. 3. Wetting scanning to simulate Sr increments.

Fig. 4. Basic unit for (a) sites and (b) bonds.

conditions are met: (a) its radius is smaller or equal to the critical radius so water can intrude it and (b) at least one bond
connected with this site is already saturated and connected with the bulk of water.

The first condition can be written as S(R) (see Fig. 3) and the second one as [1 − (1 − LBI(Rc))
c] where LBI(Rc) is the

probability for a bond to be intruded by water. So, if LSI(Rc) represents the probability for a site to be saturated during
a wetting process, its value will be given by the product of the two aforementioned conditions because they must occur
simultaneously:

LSI(Rc) = S(Rc)
[
1 − (

1 − LBI(Rc)
)c]

(6)

In a similar manner, Fig. 4(b) depicts the basic unit for bonds. It consists of a central bond linked to two sites, each of
them connected with C − 1 additional bonds. With Fig. 4(b) in mind, it can be established that a bond must satisfy the
following two conditions to saturate: (a) its radius is smaller or equal to the critical radius, and (b) at least one of its two
sites is already saturated. The first condition can be written as [1− (1− LSI(Rc))

2]. Then, if LBI(Rc) represents the probability
for a bond to saturate during a wetting process, its value will be given by the product of the two aforementioned conditions
as they must occur simultaneously:

LBI(Rc) = B(Rc)
[
1 − (

1 − LSI(Rc)
)2]

(7)

Eq. (6) can be rewritten in the form LSI(Rc) = S(Rc)FSI(Rc), where FSI(Rc) is a non-constant factor defining the frac-
tion of saturated sites during a wetting process. Thus, LSI(Rc) represents the distribution of probabilities of saturated sites
when the critical radius reaches value Rc (see Fig. 3). These considerations are helpful to establish the following equation
to compute the total volume of saturated sites during a wetting process: V s

SI = FSI(Rc)(
∫ Rc

0 V RS dR)V S, where V S repre-
sents the total volume of sites of the soil sample. In the same way, Eq. (7) can be rewritten as LBI(Rc) = B(Rc)FBI(Rc),
where FBI(Rc) represents a non-constant factor defining the fraction of saturated bonds during a wetting process. There-
fore, LBI(Rc) is the distribution of the probabilities of saturated bonds when the critical radius reaches the value Rc. In the
same way as for sites, the total volume of saturated bonds during a wetting process is obtained through the relationship
V s

BI = FBI(Rc)(
∫ Rc

0 V RB dR)V B, where V B represents the total volume of bonds of the soil sample.
These equations can be solved for any value of suction and thus, the total volume of water intruding the sites during

a wetting process can be obtained. This procedure can also be applied to a drying process (Fig. 5) and therefore, the
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Fig. 5. Drying process.

conditions to determine the probabilities for a site LSD(Rc) or a bond LBD(Rc) to be saturated during a drying process can
be established:

LSD(Rc) = S(Rc) + [
1 − S(Rc)

][
LBD(Rc)

]c
(8a)

LBD(Rc) = B(Rc) + [
1 − B(Rc)

][
LSD(Rc)

]2
(8b)

Eq. (8a) can be rewritten in the form LSD(Rc) = S(Rc) + [1 − S(Rc)]FSD(Rc), where FSD(Rc) denotes the fraction of
saturated sites with radius smaller than critical during drying. In the same way, (8b) can be rewritten in the form LBD(Rc) =
B(Rc) + [1 − B(Rc)]FBD(Rc), where FBD(Rc) represents a non-constant factor defining the fraction of saturated bonds with
radius larger than critical.

Parameters LSD(Rc) and LBD(Rc) in Eqs. (8a) and (8b) can be obtained by solving these equations simultaneously.
Once the total volume (V s

S + V s
B) of saturated sites and bonds is obtained for wetting and drying, the retention curves

can be plotted. Also, the theoretical relative volume distributions for both elements can be obtained. Nevertheless, at this
stage, the model has no information regarding the saturated, dry, or unsaturated fractions of the soil. These parameters are
obtained in the next section.

It can be stated [8,9] that pore-size distribution can be derived from the capillary pressure. This implies that retention
curves and pore-size distribution maintain a one-to-one relationship. Hysteresis appears in the retention curves because the
sites control the wetting process as they are larger than bonds and require lower suction values to saturate. In contrast, the
drying process is controlled by bonds because they are smaller than the sites and require larger suction values to dry. This
is why different degrees of saturation are reached in wetting and drying for the same value of suction in a soil showing a
single PSD.

3.1. Saturated, dry and unsaturated fractions

Using soil’s grain size distribution, it is possible to define the parameters μ and σ of the solid fraction. In this case, it
is also possible to use double- or triple-logarithmic normal distributions for samples made of mixtures of different types of
soil.

Consider now that the basic unit for solids is the one represented by the shaded elements shown in Fig. 6. It is formed
by a solid, four surrounding (BU) sites, eight external (E) sites and 16 farther external sites (FE), with their respective
bonds. Notice that Fig. 6 shows only one FE bond and one FE site in dotted lines. Assume that initially all pores are dry
and that the soil undergoes a wetting process. It can be established that all surrounding sites (BU) saturate when the
following two conditions are fulfilled: (a) all bonds and sites surrounding a solid are smaller than the critical radius and (b)
at least one external bond (E) has saturated already and is connected with the bulk of water. Since 2(C − 2) and 4(C − 3)

represent the number of sites and bonds related to the solid in Fig. 6, respectively, the first condition may be expressed as
S(Rc)

2(C−2)B(Rc)
4(C−3) . Then, if LBI1 (Rc) represents the probability for an external bond (E) to saturate, the second condition

may be written as {1 − [1 − LBI1 (Rc)]C(C−2)}. In this case, C(C − 2) represents the number of E bonds.
Now, if LPI(Rc) represents the probability that all (BU) sites of the basic unit depicted in Fig. 6 are saturated, then:

LPI(Rc) = S(Rc)
2(C−2)B(RC )4(C−3)

{
1 − [

1 − LBI1(Rc)
]C(C−2)}

(9)

Eq. (9) may be rewritten in the form LPI(Rc) = F S̃
SI(Rc)S(Rc), where F S̃

SI(Rc) = S(Rc)
2(C−5)B(Rc)

4(C−3){1 − [1 −
LBI1 (Rc)]C(C−2)} is a factor analogous to the factors FSI(Rc) and FBI(Rc) previously defined. This factor can be used to
obtain the volume of saturated solids up to the critical radius Rc.

Parameter LBI1 (Rc) may be obtained in the following form: combining Eqs. (6) and (7) results in:

LBI(Rc) = B(Rc)
[
1 − (

1 − S(Rc)
[
1 − (

1 − LBI(Rc)
)C−1])2]

(10)

Notice that exponent C in Eq. (7) has been replaced in the above equation by C − 1. This is because the bond under
consideration is connected with two sites each one with only C − 1 additional bonds able to saturate (see Fig. 4).

Now, it can be shown that the number of FE bonds connected with the E sites in Fig. 6 is C(C − 2)2 + 2(6 − C).
Furthermore, the number of E sites in this same unit is C(C − 2), thus, if LBI1 (Rc) represents the probability for a single site

E to be saturated, exponent C − 1 in Eq. (10) will be replaced by C(C−2)2+2(6−C) , resulting in:
C(C−2)
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Fig. 6. Basic unit for solids.

LBI1(Rc) = B(Rc)S(Rc)
[
1 − (

1 − LBI1(Rc)
) C(C−2)2+2(6−C)

C(C−2)
]

(11)

Notice that exponent 2 in Eq. (10) has been replaced with 1 in the above equation, because all external bonds are
connected with a single E site. Eq. (11) can be substituted in Eq. (9) to obtain LPI(Rc) representing the probability of solids
to be saturated during a wetting process.

Furthermore, as 2(C − 2) represents the number of sites surrounding a solid (Fig. 6), then, the probability GPI(Rc) for a
solid to remain dry during a wetting process can be obtained with the relationship:

GPI(Rc) = (
1 − LSI1(Rc)

)2(C−2)
(12)

The procedure to derive LSI1 (Rc) is similar to that used to obtain LBI1 (Rc) and it starts by combining Eqs. (6) and (7). In
this case, connectivity C is substituted by C/2 because it represents the number of E bonds connected with a single S site
(see Fig. 6):

LSI1(Rc) = S(Rc)
{

1 − [
1 − B(Rc)LSI1(Rc)

]C/2}
(13)

The procedure to obtain the saturated, the dry, and the unsaturated fractions during a drying process is similar to
that employed for a wetting process. For example, consider a soil undergoing a drying process. If LPD(Rc) represents the
probability that all sites surrounding a solid remain saturated, it can be calculated with the following relationship:

LPD(Rc) = LSD1(Rc)
2(C−2) (14)

with LSD1 (Rc) given by:

LSD1(Rc) = S(Rc) + [
1 − S(Rc)

]{
B(Rc) + [

1 − B(Rc)
]
LSD1(Rc)

}C/2
(15)

Parameter LSD1 (Rc) represents the probability for a surrounding site (BU) to remain saturated.
In order to compute the total volume of dry sites and bonds surrounding a solid during a drying process, it is

necessary to establish its corresponding probability distribution GPD(Rc) as follows. A solid belongs to the dry frac-
tion when it complies with the following two conditions: all its surrounding sites and bonds must be able to dry
([1 − S(Rc)]2(C−2)[1 − B(Rc)]4(C−3)) and, at least one external bond should already be dry and connected with the bulk
of gas [1 − LBD1 (Rc)

C(C−2)]. These two conditions are multiplied as they must occur simultaneously, therefore:

GPD(Rc) = [
1 − S(Rc)

]2(C−2)[
1 − B(Rc)

]4(C−3)[
1 − LBD1(Rc)

C(C−2)
]

(16)

where LBD1 (Rc) represents the probability for a surrounding bond to remain saturated during a drying process. Eq. (16)
can be rearranged to obtain GPD(Rc) = F d

SD(Rc)[1 − S(Rc)], where F d
SD(Rc) represents the fraction of those dry sites

surrounding dry solids during a drying process; consequently, their total volume can be computed as V d
SD(Rc) =

V S F d
SD(Rc)(

∫ Rmax
Rc S(Rc)dR) = V S F d

SD(Rc)[1 − S(Rc)]. This very same Eq. (16) can be rearranged to obtain the volume of

dry bonds surrounding a solid during a drying process V d
BD(Rc) = V B F d

BD(Rc)(
∫ Rmax

Rc B(Rc)dR) where parameter F d
BD(Rc) can

be obtained by isolating factor [1 − B(Rc)] from Eq. (16). Notice that parameter GPD(Rc) can be applied to sites or bonds
indistinctly because the probability to have one dry solid is the same as to have four dry sites connected through four dry
bonds (in the bidimensional case).
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Table 1
Barcelona soil properties.

Relative density
of solids

Liquid limit
(%)

Plastic index
(%)

Void ratio
e

Dry unit weight
γd
(kN/m3)

USCS classification

2.71 28.1 9.3 0.82 14.9 CL

Fig. 7. Barcelona clay grain size distribution.

The value of LBD1 (Rc) can be computed by combining Eqs. (8a) and (8b), thus obtaining LBD(Rc) = B(Rc) + [1 −
B(Rc)][S(Rc)+[1 − S(Rc)][LBD(RC)]C ]2. Here, exponent C must transform into C(C−2)2+2(6−C)

C(C−2)
which represents the number

of FE bonds connected with a single external site, while exponent 2 is changed into 1 because it represents the number
of external bonds connected with a single external site. Additionally, the factor [1 − B(Rc)]S(Rc) is removed because this
product implies that some sites are connected with larger bonds, condition forbidden by the constructive principle. These
considerations lead us to finally obtain:

LBD1(Rc) = B(Rc) + [
1 − B(Rc)

]{[
1 − S(Rc)

]
LBD1(Rc)

C(C−2)2+2(6−C)
C(C−2)

}
(17)

Moreover, the degree of saturation of the unsaturated fraction for any suction value can be calculated in the form Su
r =

V u
w/V u

v , where V u
w represents the volume of water of the unsaturated fraction, which is obtained from relationship V u

w =
V w − V s

w, where V w is the total volume of water of the sample and V s
w is the volume of water of the saturated fraction.

The volume of voids of the unsaturated fraction (V u
v ) can be obtained from the following equation: V u

v = V v − V s
v − V d

v ,
where V v, V s

v and V d
v represent the total volume of voids, the volume of voids of the saturated fraction and that of the dry

fraction, respectively. Notice that in this form, the volume of any site or bond is assigned to a single fraction.
Once f s, f u and Su

r are obtained, the mean effective stress can be calculated using Eq. (3) and Eq. (1) can be used to
compute the slope of the failure envelope M .

4. Numerical and experimental comparisons

4.1. Experimental data of a Barcelona clay

To evaluate the capability of the proposed model to simulate the strength of unsaturated soils, experimental data con-
cerning the Barcelona clay reported by Buenfil [10] have been used. These data come from a series of suction controlled
triaxial tests on remolded soil samples showing sand, silt, and clay contents of 40, 42, and 18%, respectively. The aim of the
whole experimental study was to observe the hydro-mechanical behavior of samples subjected to different suctions. Basic
properties of tested samples are detailed in Table 1. According to Barrera [11], the clay fraction consists primarily of illite
minerals. Table 1 contains some mass–volume properties as well as the USCS classification for the Barcelona clay.

The grain-size distribution, obtained from sieve analysis complemented with the hydrometer technique, is shown in
Fig. 7. This figure also shows the best fitting of the numerical curve using proper μ and σ parameters. The best fit was
accomplished by considering that the soil shows a bimodal distribution where V SOL = V SOL1 + V SOL2 (see Fig. 8). The pa-
rameters used to represent these distributions were: μSOL1 = 0.7, σSOL1 = 4.2; μSOL2 = 0.0005, σSOL2 = 6.6.

The procedure to prepare compacted soil specimens of Barcelona clay for the triaxial compression tests was as follows.
The soil was air dried under laboratory conditions and then carefully mixed with water to reach a water content of 12%. The
mixture was sealed in airtight bags for at least 24 hours to allow homogenization. Static compaction was performed using a
compression speed of 0.2 mm/min in moulds of 3.8 cm diameter and 7.6 cm height. Each sample was packed in three layers
under a static pressure of 0.27 MPa to achieve the gravimetric and volumetric characteristics shown in Table 1. Suction was
measured in compacted soil samples using a high-range tensiometer which produced an average value of 270 kPa. However,
some specimens reduced their volume when they were subjected to smaller suction (e.g. samples shrunk when suction
was brought to 200 kPa). These experimental observations among others suggest that the initial suction for Barcelona clay
ranged between 100 and 200 kPa. Buenfil [10] suggests that initial suction was close to 100 kPa.



H. Arroyo et al. / C. R. Mecanique 341 (2013) 727–742 735
Fig. 8. Particle size distribution for Barcelona clay.

Table 2
Confining stresses σ3 for different specimens (kPa).

SM1 SI1 SI2 SI3 IW I3 I2 IWD A1 I1

100 200 400 600 200 150 200 200 400 600

Fig. 9. Theoretical (T) and experimental (E) soil–water retention curves.

Once samples were set up in the triaxial test system, a suction equalization stage was applied through the axis translation
technique. Water pressure uw varied while air pressure ua was maintained constant until the desired suction value was
reached. Mean net and deviator stresses of 23 and 10 kPa, respectively, were applied in order to guarantee continuous
contact between triaxial apparatus and soil specimen. The equalization stage was assumed to be completed when water
content as well as volume deformations were stabilized (or when the change in water content was less than 0.04% per day).

During the equalization stage, volumetric collapse was observed in those specimens reaching the saturated condition
(s = 0). In the case of these samples, the volumetric collapse reached an average value of 4.9%. Sample IWD also showed
collapse during saturation although its equalization stage was somewhat different. Initially this sample was brought to a
suction of 200 kPa. This generated a small volumetric reduction in the sample. Then, the suction was reduced to 0 kPa
(i.e. saturated conditions). At this last stage, a volumetric collapse of 5.6% was reported, mainly occurring at the range
between 10 to 0 kPa of suction. Finally, the sample was subjected to a suction increment of 100 kPa which led the soil
to shrink an additional 12.8%. This volumetric deformation would generate a radical change in the structure of the sample,
producing a substantial change in parameters μ and σ of the pore-size distribution and on the values of parameter χ .
Additionally, according to the critical state theory, the shear strength of soils depends on the mean net stress pnet and the
preconsolidation stress which evolves with the plastic volumetric strains [12]. With this in mind, it can be pointed out that
specimen IWD suffered larger plastic volumetric strains during the equalization stage which is why the strength of this
sample cannot be directly compared with the other specimens.

At the end of the equalization stage, the isotropic net stress pnet was increased in drained conditions (constant suction),
while the volumetric deformation was recorded until the isotropic net stress reached the value indicated in Table 2 for each
test. Finally, the deviator stresses qf was increased while the confining stresses σ3 and suction remained constant.

The soil–water retention curves of the Barcelona clay are depicted in Fig. 9, including the wetting (circles) and the
drying (squares) branch. These data were obtained from suction controlled odometric tests using samples 5 cm in diameter
and 10 cm in height subjected to a constant vertical net stress of 20 kPa. These samples were obtained using the same
compaction procedure as for the other samples. At the end of compaction, these samples had the characteristics indicated
in Table 1 and exhibited a suction of around 100 kPa. From this value, suction was reduced by steps to 10 kPa using the
axis translation technique. Then, additional suction reductions up to almost complete saturation were imposed to the sample
using the negative water column technique [13]. Finally, wetting paths were conducted from values of suction near 0 kPa to
8 kPa using the negative water column technique.

Fig. 9 also shows the fitting of the numerical soil–water retention curves obtained from the probabilistic solid–porous
model. Buenfil [10] pointed out that there is strong evidence that the initial part of the wetting path (identified with
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Fig. 10. Theoretical (line) and experimental (circles) pore-size distributions for the Barcelona clay.

Table 3
Parameters employed to reproduce the grain and pore-size distribution of the Barcelona clay.

Standard deviation Mean value of the distribution
σ μ

Solids 1 4.2 0.7
Solids 2 6.6 0.0005
Macropores 3.5 1.5
Mesopores 3.8 0.005
Bonds 1 3.5 2.0
Bonds 2 9.0 0.005

rhombus in Fig. 9) is in fact a wetting scanning curve (see, e.g. [14]), since the slope of the curve is rather small at this
suction range (100 to 10 kPa) compared with the slope at the range from 10 to 1 kPa.

In addition, Buenfil [10] carried out mercury intrusion porosimetry tests (MIP) on compacted samples of the Barcelona
clay. These results are shown by circles in Fig. 10. This figure also shows the numerical pore-size distribution obtained for
the best fit of the soil–water retention curves shown in Fig. 9. As in the case of the grain size distribution, the fitting of
the soil–water retention curves was achieved under the consideration that the porosimetry of the Barcelona clay shows a
bimodal distribution, as in fact it was experimentally observed according to Fig. 10. Other researchers [15,16] also report
bimodal pore-size distributions for compacted kaolin.

In Fig. 10 it can be observed that the sizes of sites corresponding to the peaks of the numerical and experimental dis-
tributions coincide. However, relative volumes for mesopores and macropores are larger and smaller than the experimental
values, respectively. These discrepancies can be attributed to the diverse structure of samples used for MIP test and retention
curves. While the soil sample used to obtain the retention curves was subjected to the equalization stage, the sample used
to obtain the pore-size distribution was not. It is known that volumetric deformation is mainly generated by the shrink-
age of macropores [7]. In such a case, the pore size distribution shows a reduction in the relative volume of macropores
while that of mesopores seems to increase. Because the experimental retention curves were used to obtain the numerical
pore-size distribution of the material, this would explain the differences between these curves.

Furthermore, notice that theoretical bonds volume (bonds 1 and bonds 2) can be neglected from the total volume. More
detailed descriptions concerning the entities used to model unsaturated soil structures can be found elsewhere [17,18].

The parameters used to reproduce the fits in Figs. 7 and 9 are included in Table 3.
At this stage of the process, it is now possible to calculate parameters f s, f u and Su

r , and, therefore, it is possible to
apply Eq. (5) in order to obtain the effective stresses for any degree of saturation. These parameters are plotted on Fig. 11
as a function of the degree of saturation Sr.

The values of parameters f s, f u and Su
r shown in Fig. 11 were used to calculate Bishop’s parameter (χ = f s + f u Su

r )
included in Eq. (5).

The results of the shear triaxial tests are presented in Fig. 13 in the axes of net stress against deviator stress. Air and
water pressures in the triaxial chamber were controlled to maintain a constant suction of 0, 0.4, 10, 100 and 600 kPa.
Samples subjected to the same suction approximately align with a slope similar to that observed for saturated samples.

When these results are plotted on the effective stress axis instead of the net stress axis, Fig. 14 is obtained. For this plot,
the data presented in Figs. 12, 13 and Eqs. (1) and (5) have been used.

Fig. 14 shows that all failure points (pf,qf) align, independently of whether the soil is in saturated or unsaturated
conditions. With this in mind and recalling that Buenfil [10] reported that the initial suction of compacted samples was
between 100 and 200 kPa, it can be pointed out that the specimen subjected to 600 kPa in suction followed a drying path,
while those subjected to suctions of 100, 10, 0.4 and 0 kPa followed a wetting path prior to failure. These results indicate
that the effective stress concept can be applied to the strength of soils under any suction and drying–wetting path.

A slight scattering can be observed in the experimental results presented in Fig. 14, in particular the failure point of
test IWD. This scattering may be explained by the fact that samples subjected to failure experience important volumetric
deformation. This reduction in volume makes both branches of the soil–water retention curves displace to larger suctions,
modifying the values of parameter χ , which in turn affects the value of the effective stress. In that sense, volumetric strains
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Fig. 11. (a) Saturated fraction, (b) unsaturated fraction and (c) degree of saturation of the unsaturated fraction, as a function of the Barcelona clay saturation
degree.

Fig. 12. Parameter χ for wetting and drying paths.

Fig. 13. Barcelona clay shear strength.

should be taken into account in the porous model to correctly determine the effective stresses. However, at its present stage,
the porous model does not take into account volumetric strains, and therefore the simulation presented herein can still be
improved.

Notice from Table 4 that all samples suffered negligible volumetric strains at the end of the equalization stage, except
for saturated specimens SI1 and SI2, which experienced volumetric collapse of about 5% during this stage. Likewise, sample
IWD collapsed during saturation, but, unlike SI1 and SI2, it was taken through new progressive suction increments during
equalization (s = 0 to s = 100 kPa), which led to additional volumetric strains. This second equalization stage resulted in a
total volumetric strain of 18.38% (5.6% and 12.7% due to volumetric collapse and drying process respectively). Furthermore,
in contrast with the other unsaturated specimens, IWD underwent a testing program (i.e. isotropic and triaxial compres-
sions) under considerably larger volumetric strains compared with other unsaturated specimens (I1, I2, I3, A1) (i.e. 20%
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Fig. 14. Barcelona clay shear strength simulation through effective stresses.

Table 4
Total volumetric strains (%).

Specimen After equalization After applied isotropic mean net stress After applied deviator stress

I1 0.87 10.10 18.67
(unsaturated)

I2 −0.27 5.90 14.60
(unsaturated)

I3 −0.33 10.69 20.01
(unsaturated)

A1 0.00 8.06 21.49
(unsaturated)

IWD 18.38 20.90 25.77
(unsaturated)

SI1 −0.55 16.71 21.71
(saturated)

SI2 4.90 19.12 24.12
(saturated)

SI3 4.92 No information No information
(saturated)

SM1 1.64 No information No information
(saturated)

Fig. 15. Experimental and numerical fitting for (a) the soil–water retention curves and (b) the grain-size distribution from residual undisturbed gneiss.

against 10% average). These considerations, among others described previously, may explain why IWD shifts away from the
failure line in Fig. 14.

4.2. Strength of a residual gneiss

In this section, some experimental results for a residual gneiss [19] are presented and compared with the numerical
simulations obtained from the porous–solid model. Undisturbed soil samples were obtained with initial water contents
between 31 and 32%. Clay, silt and sand fractions were of the order of 46%, 9% and 45%, respectively. Retention curves
were obtained using two different techniques: filter paper and axis translation techniques (see Fig. 15(a)). The experimental
grain size distribution along with the numerical fitting are presented in Fig. 15(b). The parameters used to fit this figure are
presented in Table 5.

Notice that experimental retention curves (Fig. 15) show that the drying process ended at a degree of saturation of 44.6%
and then the samples were subjected to wetting up to a suction of 0.012 MPa.

The parameters used to reproduce the soil–water retention curves are shown in Table 5. Their corresponding relative
volume distributions are depicted in Fig. 16 along with the experimental pore-size distribution of the material.
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Table 5
Parameters employed to reproduce the grain and pore-size distribution of residual gneiss.

Mean value of the distribution
μ

Standard deviation
σ

Solids 1 6 3.5
Solids 2 0.0001 6
Macropores 10 2.5
Mesopores 0.0005 3
Bonds 1 8 4
Bonds 2 0.00001 13

Fig. 16. Theoretical (line) and experimental (circles) pore-size distributions for residual gneiss.

Fig. 17. Experimental soil–water retention curves from residual undisturbed gneiss.

The fitting of the experimental soil–water retention curves using the porous–solid model is shown in Fig. 17. Notice the
typical shape of retention curves for a bimodal pore size distribution: first, an abrupt desaturation is underwent by the
soil when suction ranges between 0.001 and 0.01 MPa. Then, further increase in suction only reduces slightly the degree
of saturation (Sr). Finally, when suction becomes larger than 5 MPa, abrupt changes in the degree of saturation occur once
more. This behavior is explained by the relative volume distribution shown in Fig. 16: the first step in the drying retention
curve is produced by the drainage of macropores and the second by the drainage of mesopores.

Using these results, it is now possible to compute parameters f s, f u and Su
r , and apply Eqs. (1) and (5) to obtain

the effective stress for any degree of saturation the material. These parameters are plotted in Fig. 18 as a function of the
saturation degree Sr.

Notice the influence of the shape of the retention curves (Fig. 17) on the parameters shown in Figs. 18 and 19. An abrupt
change in the drying curves for the three parameters is observed as the degree of saturation reduces from 100 to 67%. For
the wetting curves, a slight change in these curves can be seen when the degree of saturation becomes larger than 40%.

Along with the experimental results for suction-controlled triaxial tests for samples subjected to different confining
stresses, the numerical simulations are presented in Fig. 20. The undisturbed samples of residual gneiss were initially sub-
jected to an equalization stage and then their suction was increased to 100 or 300 kPa. Two to six hours were necessary to
stabilize air and water pressures, then, the samples were loaded to the initial net mean stresses indicated in Table 6.

Then the samples were subjected to an increase in the deviator stresses in drained conditions up to failure. These results
are plotted in Fig. 20 along with the results of samples tested in saturated conditions [20].

Once parameter χ has been defined, it is possible to obtain the shear strength envelope in the effective stress plane, as
represented in Fig. 21. Again, failure stress states align with those obtained in saturated conditions, just as effective stress
concept establishes.

Notice that samples subjected to 100 kPa shift away from general alignment. It is important to point out that even
though critical state was intended to be achieved [21], this condition was not reached on some samples as volumetric
strains were still occurring at the end of these tests as it can observed in Fig. 22.

At its present stage, the porous–solid model presented herein does not consider the collapse of macropores during
loading or suction increase. This behavior can be included into the porous–solid model and is the subject of future work.
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Fig. 18. (a) Saturated fraction, (b) unsaturated fraction and (c) degree of saturation of the unsaturated fraction, as a function of the degree of saturation.

Fig. 19. Parameter χ for wetting and drying paths.

Table 6
Initial net mean stresses for suction controlled tri-
axial compression tests.

Suction
(kPa)

Initial net mean stress
(kPa)

100 25, 50, 100, 200 and 400
300 25, 50, 100, 200 and 500

Fig. 20. Residual gneiss shear strength.
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Fig. 21. Residual gneiss shear strength simulation through effective stresses.

Fig. 22. Volumetric and axial strains of samples subjected to s = 100 kPa.

5. Conclusions

A probabilistic solid–porous model able to reproduce both branches of the soil–water retention curve is presented. The
model can be generated from the grain and the pore-size distributions of the material. When the pore-size distribution
is missing, it can be generated by fitting both branches of the numerical soil–water retention curve with the experimen-
tal ones. Comparisons between experimental and numerical results for the two soils show that the predicted pore-size
distributions using the probabilistic solid–porous model are accurate.

A single failure line is obtained for samples tested at different suctions and following wetting or drying paths when
plotted in the effective stress-versus-shear stress plane.

An improvement that needs to be included in the probabilistic porous–solid model is the effect of the volumetric defor-
mation on the soil–water retention curves, which in turn affect the value of parameter χ .
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