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In this paper, the 2D mathematical water pollution model describing the transport–
diffusion processes of some contaminant substances in Thanh Nhan Lake in Hanoï is
considered. The finite-volume method is used to solve the model equations. The Singular
Evolutive Interpolated Kalman filter is applied to evaluate the pollution level at arbitrary
mesh point based only on a small number of measurement points.
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r é s u m é

Dans cet article, on étudie le processus de transport–diffusion de substances contaminantes
dans le lac Than Nhan de Hanoï. Cela se traduit par un modèle mathématique bimensionnel
d’équations aux dérivées partielles. Une approximation numérique de la solution est
obtenue par une méthode de volumes finis. Des mesures de pollution sont faites en un
nombre de points faible. Pour évaluer la pollution en tout point de discrétisation, on
propose d’utiliser la méthode du filtre de Kalman singulier évolutif et interpolé.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Water pollution is nowadays one of the most serious problems. Water quality influences directly public health. It is of
interest to be able to evaluate the water pollution level at any point in the area of interest and at any time. But in practice,
only a small number of measurements can be made.

In this paper, 2D hydraulic and pollution models are used to describe the transport of pollution substances. The linear 2D
water pollution has been studied by the semi-group method in [1] to prove the unique existence of the problem solution.
The nonlinear 2D-Imech water pollution model has been studied in [2]. This model has been developed to simulate the
transport of pollution substances and thus can be used to estimate the pollution level if the initial values for the model
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equations are known and the model parameters are adequately specified. Since these initial values for the model are un-
known, estimates are used instead, which are often taken as the average values over a long run of the model. As these
estimates will not be exact and the model can be imperfect or not adequately specified, pollution estimation from the
model will contain errors. Data assimilation techniques permit to combine the available limited number of measurements
and the model to obtain a more precise estimate of the system state. In this paper, we shall use the Singular Evolutive
Interpolated Kalman (SEIK) filter as a data assimilation method, as it has been seen to be successful in many large-scale
data assimilation problems [3–5]. The SEIK filter is a kind of Kalman filter which incorporates two basic tools:

– interpolation: the Kalman filter is designed for a linear model. For nonlinear models, one often makes a linearization
based on the first-order Taylor approximation, leading to the so-called extended Kalman filter. The SEIK filter uses
interpolation instead, which handles better the nonlinearity of the model;

– order reduction: in the present problem, as well as in many other problems in geophysics, the system is described by
several vector (or scalar) fields, which after discretization results in a big state vector of very high dimension. The filter
error covariance matrix would then be huge, leading to unaffordable computation cost. The SEIK filter incorporates an
order reduction, by making the filter error covariance matrix singular with low rank. This permits its application to very
large systems.

The SEIK filter was first introduced in [5] and is further described, for example, in [3,6]. It supersedes the previous SEEK
(singular evolutive extended Kalman) filter [4], which, similar to the extended Kalman filter, is based on the first-order
linearization of the system. An advantage of the SEIK over the SEEK filter, apart from the fact that it is more robust against
a nonlinearity of the system, is that it avoids the computation of the gradient (Jacobian) of the system transition operator,
which is not easy for complex systems.

There is a strong similarity between the SEEK filter and the Ensemble Kalman Filter (EnKF) [7,8] and the Unscented
Kalman Filter (UKF) [9–11]. The EnKF, however, used ordinary sampling, while the SEIK filter uses second-order exact sam-
pling, which propagates more accurately the filter error covariance matrix. The UKF, on the other hand, uses deterministic
sampling points and more points than necessary, while the SEIK and EnKF use the minimum number of interpolating points
(ensemble members). Further, the UKF in its original form does not incorporate order reduction and thus is not applicable
to very large systems.

2. Formulation of the water pollution problem

A 2D water pollution model consists of a hydraulic model and a transport–diffusion of pollution substances model. In
our hydraulic model, the Saint-Venant equation is used as follows [12]:
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Here,

– Ω is a bounded domain of R2 with a boundary Γ ,
– z is the free surface elevation,
– h is the water depth,
– u is the average velocity in the x direction,
– v is the average velocity in the y direction,
– g is the gravity acceleration,
– Kx is the Strickler coefficient in the x direction,
– K y is the Strickler coefficient in the y direction.

We suppose that there are m substances dissolved in water. Then our transport and diffusion processes of pollution sub-
stances are described by the following equation [13]:
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Here,

– Ci is the concentration of the i-th substance,



108 T.H. Tran et al. / C. R. Mecanique 342 (2014) 106–124
– f i is the pollution source of the i-th substance (see formula (22)),
– Di is the diffusion coefficient of i-th substance.

Eq. (4) can be rewritten in the vector form as follows:
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)
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where: C = (C1, . . . , Cm), f = ( f1, . . . , fm), D is the diagonal matrix with diagonal elements D1, . . . , Dm . The initial condi-
tions are, U = (u, v) denoting the water velocity vector:

U (x, y,0) = U0(x, y)

z(x, y,0) = z0(x, y)

C(x, y,0) = C0(x, y)

In the slow changing process for water pollution problem, the boundary conditions are:

– U (x, y, t) · n = Ū in(t), C(x, y, t) · n = C̄in(t) on inflow boundary Γ1,
– z(x, y, t) = z̄(t), ∂C/∂n = 0 on outflow boundary Γ2,
– U (x, y, t) · n = 0, C(x, y, t) · n = 0 on solid wall Sw,

where n is the unit vector normal to Γ , Γ2 and Γ1 are respectively the outflow and inflow boundaries of the Ω domain,
Sw is the solid wall of Ω and Γ = Γ1 ∪ Γ2 ∪ Sw is the boundary of the region Ω .

3. Algorithm for calculating 2D water pollution

3.1. Equation for 2D flow system

To numerically solve the above model equations, a cell centered finite volume method is used (see [12]). The type
of mesh employed in this method is an unstructured triangulation of the solution domain, enabling arbitrarily shaped
geometries to be accommodated more easily than a square grid system (see [12]). The mesh points of the grid are numbered
in some given but arbitrary way.

To apply the finite-volume method, Eqs. (1)–(3) are rewritten as follows:
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We divide the domain Ω , with Np mesh points, into N small cells Ω j , that have boundaries γ j, j = 1, . . . , N . A small cell
Ω j is described in Fig. 1 with index points (x jk, y jk), center point (x jc, y jc) and unit vectors n j,ik normal to the lines with
lengths l j,ik joining two points (x ji, y ji) and (x jk, y jk) (i,k = 1, . . . ,3 with i �= k).

In this small cell Ω j , integrating two sides of Eq. (6) with respect to the spatial variables x and y, we get the formula:
∫
Ω j

∂V

∂t
dx dy +

∫
Ω j

∇ · (A, B)dx dy =
∫
Ω j

F dx dy

where ∇ = (∂/∂x, ∂/∂ y). We assume that in the small cell Ω j the variables z, u, v , h = z − zbottom and F can be approxi-
mated as constants. Therefore, using Green formula, the above formula can be rewritten as follows:

dV

dt
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j
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Fig. 1. A cell.

In formula (7), S is the cell’s area, n is the unit vector normal to γ j , with components in x and y directions denoted by nx

and ny respectively.
To solve the above equation, we introduce the discrete scheme of integration of any function w on the boundary γ j of

cell Ω j :

∮
γ j
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2
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2
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2
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where in the j-th cell, w jk is the value of w at the point number jk with coordinate (x jk, y jk) (k = 1,2,3).
In the small cell Ω j , the functions ∂ w/∂x and ∂ w/∂ y are assumed to be constants. Then, they can be calculated using

the following formulas:
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Therefore, the functions ∂ w/∂x and ∂ w/∂ y can be discretized by the following formulas:

∂ w

∂x
= (w j2 − w j1)(y j3 − y j1) − (w j3 − w j1)(y j2 − y j1)
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(12)
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(13)

The value of function w in the center of the j-th is denoted by w( j,c) and is approximated by the formula:

w( j,c) = w j1 + ∂ w

∂x
(x j1 − x jc) + ∂ w

∂ y
(y j1 − y jc) (14)

If the k-th mesh point is the joint point of M cells (see the left of Fig. 2), then the value of a function w at this point
can be discretized by the following formula:

wk = 1

M

M∑
m=1

w( jm,c) (15)

where w( jm,c) (m = 1, . . . , M) are the values of function w at M cell centers (see the right-hand side of Fig. 2).

3.2. Discrete calculation scheme for (z, u, v)

For 2D flow problem the functions (z, u, v) can be calculated by the following scheme:

(i) the starting values of (z, u, v) in Np mesh points are given;
(ii) the values of (z, u, v) in Np mesh points are called the values in the previous step;
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Fig. 2. Left: Joint point of M cells (the k-th mesh point). Right: wk at this joint point of M cells.

(iii) calculate the integrals on boundary γ j arising from Eq. (7) such as:

Iz =
∮
γ j

(hunx + hvny) dγ j (16)
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)
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]
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by a similar way as in (8), (9) with function values (z, u, v) and h = z − zbottom obtained from the previous step;
(iv) by the same way as in formula (14), we calculate the values of (z, u, v) at the center of the cells Ω j ( j = 1, . . . , N)

denoted by (zt , ut, vt). These zt , ut, vt values are called the values of z, u, v at the cell center of Ω j in the previous
step;

(v) calculate h = zt − zbottom at the center of the cell Ω j ;
(vi) the functions ∂ut/∂x, ∂ut/∂ y, ∂vt/∂x and ∂vt/∂ y are calculated in a similar way as in (12) and (13);

(vii) then using Eq. (7), the values of (z, u, v) at the center of the cell Ω j in the current step can be solved using the
following equations:
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(viii) using the values of (z, u, v) in the current step at the centers of N cells, we calculate the values of (z, u, v) at Np
mesh points in the same way as in formula (15);

(ix) for the next time step, go to item (ii) of this scheme.

3.3. Equation for transport–diffusion processes

In the pollution model, the pollution process depends on the combination of substances and on their number. This
combination is represented by the source vector f = ( f1, . . . , fm) in the right-hand side of (5), where f i (i = 1, . . . ,m) are
determined from the conversion terms and can be written as follows:

f i =
m∑

j=1

ki, jC j (22)

where ki, j (i, j = 1, . . . ,m) are the coefficients depending on temperatures and different substances. Thus the source vector
can be rewritten as:

f = KC (23)
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Table 1
The substances and conversion terms.

Substances Conversion term

DO C(DO) = k2(Dos − DO) − k3BOD − Y1k4NH3 + Po − R9

BOD C(BOD) = −k3BOD
PO4 C(PO4) = Y2k3BOD − Y4(Po − Ro) + k6PO4

NH3 C(NH3) = Y3k3BOD − k4NH3 − Y5(Po − Ro) − Y6k3BOD
NO3 C(NO3) = k4NH3 − k5NO3

where:

K =

⎡
⎢⎢⎢⎢⎣

k1,1 k1,2 · · · k1,m

k2,1 k2,2 · · · k2,m

...
...

. . .
...

km,1 km,2 · · · km,m

⎤
⎥⎥⎥⎥⎦ (24)

In the pollution model, the following substances and the conversion terms are given in Table 1 (see [14,15], and [16]),
where:

– k2: dissolution coefficient of oxygen through free water surface,
– k3: disintegrated coefficient of BOD,
– k4: nitration velocity,
– k5: reaction velocity of nitration,
– k6: disintegration coefficient of PO4,
– Y1: productivity of using oxygen in nitration process,
– Y2: phosphorus content in the organic mixture,
– Y3: nitrogen in organic mixture,
– Y4: phosphorus coefficient absorbed by flora,
– Y5: ammoniac coefficient absorbed by flora,
– Y6: absorbtion coefficient of ammoniac by organism,
– Po: velocity of oxygen produced through photosynthesis,
– Ro: oxygen respiration velocity by microorganisms and organism,
– Dos: sutured oxygen content.

By the same way as in calculating (z, u, v) in a small cell Ω j ( j = 1, . . . , N), integrating two sides of Eq. (5) with respect
to the spatial variables x and y then using Green formula, we get:∫

Ω j

∂C

∂t
dx dy −

∫
Ω j

C∇ · U dx dy +
∮
γ j

(U Cn − D∇ · Cn)dγ j =
∫
Ω j

KC dx dy (25)

Using the discrete schema described in formulas (8)–(13), the integration on cell boundary γ j in Eq. (25) is calculated with
functions (u, v) obtained by formulas (20)–(21) in the current step and C, ∂C/∂x, ∂C/∂ y obtained from the previous step:

Ic =
∮
γ j

[
(u · nx + v · ny)C − D

(
∂C

∂x
nx + ∂C

∂ y
ny

)]
dγ j (26)

As in Section 3.1, h can be approximated as constant in the small cell Ω j , then from Eq. (1), the function ∇ · U can be
calculated approximately by the following formula:

∇ · U = −1

h

∂z

∂t
Then Eq. (25) can be rewritten as follows:

∂C

∂t
S + C

1

h

∂z

∂t
S + Ic = KC S (27)

The values of functions (1/h)∂z/∂t and ∂C/∂t are approximated by the formulas:

1

h

∂z

∂t
= z − zt

h�t
,

∂C

∂t
= C − Ct

�t
where z, C = (C1, . . . , Cm) and zt , Ct = (C1,t, . . . , Cm,t) are the water levels and concentrations at the centers of the cell s at
the current and previous steps; (z − zt)/h is obtained when z is calculated by the formula (19).
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Eq. (27) can be discretized as follows:

C − Ct

�t
S + Ct

1

h

z − zt

�t
S + Ic = KCt S (28)

Thus in small cell Ω j , C can be calculated by the formula:

C = KCt�t + Ct

(
1 − z − zt

h

)
− �t

S
Ic (29)

where Ic is obtained by Eq. (26). Then using the obtained C in the centers of N cells we can calculate C in Np mesh points
in the same way as in formula (15).

3.4. Discrete calculation scheme for (z, u, v) and C

The discrete scheme calculating (z, u, v) and C can be briefly written by the following steps:

(i) the starting values of (z, u, v) and C are given in Np mesh points;
(ii) the values of (z, u, v) and C in Np mesh points are called the values in the previous step;

(iii) on cell boundaries γ j ( j = 1, . . . , N), the integrals involved in formulas (19)–(21) such as Iz , Iu , I v (see formulas
(16)–(18)) are calculated in the same way as in formulas (8)—(9) with the function values z, u, v obtained from the
previous step;

(iv) calculate the values of (z, u, v) and C at cell centers for the previous step, denoted by (zt , ut, vt) and Ct , and their
derivatives, denoted by ∂ut/∂x, ∂ut/∂ y, ∂vt/∂x, ∂vt/∂ y, ∂Ct/∂x, ∂Ct/∂ y, in the same way as in formulas (13)–(14);

(v) calculate (z, u, v) and (z − zt)/h at N cell centers for the current step by formulas (19)–(21);
(vi) on cell boundary γ j , the integral Ic appearing in formula (29) is calculated by formula (26) with the function values

(u, v) obtained in the current step and C , ∂C/∂x, ∂C/∂ y obtained in the previous step;
(vii) using the obtained values of Ic and (z − zt)/h, calculate C at N cell centers for the current step by formula (29);

(viii) using the values of (z, u, v) and C in the current step at N cell centers obtained from the above steps, calculate
(z, u, v) and C at Np mesh points in the same way as in formula (15);

(ix) for the next time step, go back to item (ii) of this scheme.

3.5. The technique for getting a stable concentration solution C

For the stable solution of V = (z, u, v), the algorithm is working well with a small time step (see [12]). To get a stable
numerical solution C , the scheme will be developed as following:

(i) in step k − 1, after the values of vector functions Ck−1 in Np mesh points are computed, the values of vector functions
C in N cell centers, denoted by Ct , are obtained in the same way as in formula (14);

(ii) the derivatives C ′
x = ∂Ck−1/∂x, C ′

y = ∂Ck−1/∂ y in N cell centers can be calculated in the same way as in formulas
(8)–(9);

(iii) by the above scheme, the values of C in N cell centers are obtained by the function C∗ = fC (U k, Ct , C ′
x, C ′

y);
(iv) By the new C∗ in N cell centers, their values in Np points are calculated in the same way as in formula (15);
(v) we go back to the item (ii) of this scheme;

(vi) the iteration will be stopped when the values C∗ obtained from the last two calculations are close enough. In our
experiment, the number of iterations is about 5;

(vii) after the last iteration, we put Ck = C∗ in N cell centers and in Np mesh points for the k-th step of the algorithm.

3.6. Testing the algorithm

We will test the hydraulic algorithm by two test cases and the pollution algorithm by another two test cases. In these
test cases, we consider the problems of water flows in a rectangular lake with length L and width W (0 � x � L in the
hydraulic test cases and −L/2 � x � L/2 in the pollution test cases, and 0 � y � W ). The velocities by the x direction uin
into the lake and the water depth out hout are constant in time. Then the hydraulic state will tend to a stable one. One can
compute the exact solution, which is used for comparison with the simulation. The boundary conditions are:

– on the inflow boundary, x = 0, 0 � y � W : u(0, y, t) = uin(t) (see Figs. 3, 4, left), v(0, y, t) = v in = 0,
– on the outflow boundary, x = L, 0 � y � W : h(L, y, t) = hout(t) (see Figs. 3, 4, middle),
– on the solid wall y = 0, y = W , 0 � x � L: v(x, y, t) = 0.

The initial conditions for the hydraulic test cases are: u0 = v0 = 0 and h(x, y,0) = h0(x, y) (see Figs. 3, 4, right).
With these boundary conditions for the hydraulic test cases, we can obtain the exact solutions using a 1D hydraulic

model (see test case 2 in [17], and test case 1 of Section 6.3 in [18, p. 118]). The difference between our hydraulic test cases
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Fig. 3. Boundary conditions and initial conditions of the first hydraulic test case.

Fig. 4. Boundary conditions and initial conditions of the second hydraulic test case.

Table 2
Data of the hydraulic test cases.

Probl. W (m) L (m) K uin (m/s) v in (m/s) hout (m) S0(x) Mesh type Time step (s) hin(m) on the gate
into lake

1 150 10 000 30.6 2 0 7 0.0005 Triangular 3 5.139558
2 10 150 33.3 2.5 0 0.800054 formula (30) Triangular 0.3 0.800289

Fig. 5. (Color online.) The first hydraulic test case. Left: bed level and water levels from simulation and exact solution. Right: simulation error.

and the test cases in [17,18] is that we change the discharge conditions for the velocity conditions into the lakes at the
gate, using formula uin = Q in/(W · hin). Here, hin is obtained by the exact solution of the considered test cases in [17,18].
The data of the hydraulic test cases are presented in Table 2, in which:

– K is the Strickler friction coefficient,
– S0(x) is the bed slope of lake by x direction. For the second test case (see Section 6.3 in [18]), it is given by the

following formula:

S0(x) =
(

1 − (u.a)2W

9.08665ĥ3(x)W 3

)
ĥ′(x) + (u.a)2(W + 2ĥ(x))4/3

ĥ10/3(x)W 10/3 K 2
(30)

where a = W ·h is the lake’s section area crossing x direction and the function ĥ is: ĥ(x) = 0.8+0.25 exp(−33.75(x/150−
1/2)2).

The bed levels comparisons and the errors between simulations and exact solutions of water levels for the these two test
cases are presented in Figs. 5–7. From these figures, the errors between exact solutions and simulations of the first and the
second hydraulic test cases are less than 4 cm and 5.5 cm, respectively. The maximum error in those test cases are actually
less than 1% and 5.1% percent of the true values.
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Fig. 6. (Color online.) The second hydraulic test case. Left: bed level and water levels from simulation and exact solution. Right: simulation error.

Fig. 7. (Color online.) Lake’s water surface level in the first (left) and second (right) hydraulic test cases. (The unlabelled axis correspond to the lake’s width
direction.)

Table 3
Data of pollution test cases.

Prob. W (m) L (m) K uin (m/s) v in (m/s) hout(x) S0(x) Mesh type Time step (s) D Cin ∂Cout/∂n

1 200 10 000 30.6 0.3 0 0.8 0.00025 Triangular 1 30 2 0
2 200 10 000 30.6 0 0 7 0.00025 Triangular 1 30 2 0

To test the numerical algorithm for the 2D pollution problem, we consider the pollution equation (5) for only one
substance (m = 1). The source function f in the right-hand side of this equation is then obtained by the formula:

f = Ra − Rs (31)

where Ra is the generative velocity of the substance and Rs is the losing velocity of the substance.
The data for the two pollution test cases are given in Table 3. In these pollution test cases, we suppose that there is

a dissolvable substance distributed in this lake only along the x direction (the concentration is not changing along the
y direction) with the initial condition having discontinuity at x = 0 (see [19]), defined by C(x,0) = C1 when x ≺ 0 and
C(x,0) = C2 when x � 0 and the boundary condition at infinity C(x, t) = C1 when x → ∞ and C2(x,0) = C2 when x → −∞.
In our test cases, we let C1 = 2, C2 = 0. The substance’s boundary conditions on in- and out-gates of lake are: C in =
2, ∂Cout/∂n = 0. In the calculation process, we suppose that the substance is not generative and not lost. Then we have
Ra = 0 and Rs = 0. Therefore, Eq. (5) becomes:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
(32)
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Fig. 8. The initial concentration conditions of the first (left) and second (right) pollution test cases.

Fig. 9. The concentration errors between the exact solution and the simulation result (at time 2000 s) for the first (left) and second (right) test cases.

– The first test case for the pollution algorithm
The exact solution of Eq. (32) can be obtained for all times t , expressed in terms of the complementary error function
erfc(x) (see [19]):

C(x, t) = A1 − A2 · erfc

(
x − ut√

Dt

)
(33)

where A1 = (C2 + C1)/2, A2 = (C2 − C1)/2.
The large downward jump (at x = 0) of the initial concentration condition in this test case will cause difficulty in the
numerical algorithm solving the problem. To overcome this difficulty, the initial concentration condition needs to be
smoothed out. Therefore, we take as initial condition for the computational algorithm the exact concentration solution
at time t = 1000 s (see Fig. 8).

– The second test case for the pollution algorithm
In this test case, u and v are equal to zero. Hence, Eq. (32) becomes:

∂C

∂t
= D

∂2C

∂x2
(34)

The exact solution of this equation is:

C(x, t) = A1 − A2 · erfc

(
x√
Dt

)
(35)

The large downward jump (at x = 0) of the initial concentration condition in this test case does not cause difficulty
in the numerical algorithm solving the problem. Therefore, the initial concentration condition for the computation
algorithm is left the same as in the theoretical problem (see Fig. 8).

The results of the above test cases are presented in Figs. 9–11. In these figures, the concentration results at time 2000 s
after the start of the simulation are presented. It is easy to see in Fig. 11 that the errors are quite small: the mean absolute
error is less than 0.04% and 0.54% of the mean concentration level, for the first and second test cases, respectively.
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Fig. 10. (Color online.) The simulation results of concentration (at time 2000 s) for the first (left) and second (right) test cases. (The unlabelled axis
corresponds to the lake width direction.)

Fig. 11. Mean absolute errors of concentration in percentage of mean concentration for the first (left) and second (right) pollution test cases.

4. The SEIK filter

4.1. Model and notations

We consider a physical system described by:

Xk = Fk−1(Xk−1) + Vk (36)

where Xk and Vk are the state vector and the error vector at the time point tk; Fk−1(·) is generally a nonlinear function
modeling the transition of the system from time tk−1 to time tk . The function Fk−1(·) can involve other external (dynamical)
variables which are known (or observable). Such variables will not be indicated. In the present application, Xk will be a very
large vector composed of the values of pollutant concentrations at every mesh points. Other hydrological variables such
as water velocity, temperature. . . are considered external, and assumed known for simplicity. The state vector Xk is only
partially observable through the measurement equation:

Yk = Hk(Xk) + Wk (37)

where Hk is some possibly nonlinear function and Wk is the measurement error vector. In the present application, the
observation is made only at certain points of the area. Thus, Yk is composed of the pollutant concentrations measures at
certain mesh points only. In fact, we allow that observation is made also only at certain time points, so Eq. (37) does not
exist for all k.

It is assumed that the vectors Vk, Wk , k = 1,2, . . . , are independent random vectors of zero mean and covariance matrix
Qk and Rk , respectively.

The aim is to estimate the state Xk based on the measurements Y1, . . . , Yk up to time tk .
The SEIK filter works in a sequence of two stages: forecast and correction, preceded by an initialization stage.

– Initialization stage. An initial estimate X̂0 of the state vector and its error covariance matrix P0 must be provided.
This can be obtained from historic data about the steady state of the system or more practically from a preliminary
simulation study. A long sequence state vectors X̃1, . . . X̃N is generated from the model equation (by solving the direct
problem). This provides an estimated distribution of the steady state of the state vectors, more precisely estimates of
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its means, by X̂0 = (1/N)
∑N

j=1 X̃ j , and of its covariance matrix, by P̃0 = (1/N)
∑N

j=1( X̃ j − X̂0)( X̃ j − X̂0)
T. (Here and in

the sequel T denotes the transpose.) We take X̂0 as the estimate of the initial state. The initial error covariance matrix
could be P̃0. However, the SEIK filter requires an initial error covariance matrix P0 of low rank r; therefore, we shall
take it as a rank-r approximation to P̃0. In practice, r can be quite low (relative to the state vector dimension). Let
P̃0 = ∑N−1

j=1 λ j Z j Z T
j be an eigen-decomposition of P̃0 where λ1 � · · · � λN−1 are its eigenvalues, arranged in decreasing

order, and Z1, . . . , Z N−1 are the corresponding (normalized) eigenvectors. The sequence of eigenvalues usually decreases
to zero very fast so that one may retain only the first r terms in the above sum, yielding a rank-r approximation to P̃0:
P0 = ∑r

j=1 λ j Z j Z T
j . The quality of the approximation can be measured by the ratio (λ1 + · · · + λr)/(λ1 + · · · + λN−1).

A ratio 0.9 or greater is often judged sufficient. Note that P0 can be expressed in the factorized form L0U0LT
0 where

L0 = [Z1 · · · Zr] and U0 is the diagonal matrix with diagonal elements λ1, . . . , λr . Such a form is needed in subsequent
stages.

– Forecast (or prediction) stage. This stage aims at forecasting the state vector and providing the forecast error, based on
the model equation and the knowledge of the previous system state. Thus, at time tk−1, let us assume that an estimate
of the state vector X̂k−1 and its error covariance matrix Pk−1 are available.
It is of interest to express X̂k−1 and Pk−1 as a sample mean and covariance matrix. We assume that, as mentioned
above, Pk−1 is given in the factorized form: Lk−1Uk−1LT

k−1. We first write it as (Lk−1U1/2
k−1Ωk−1)(Lk−1U1/2

k−1Ωk−1)
T, where

U1/2
k−1 is a square root of Uk−1 defined by U1/2

k−1U1/2 T
k−1 = Uk−1 and Ωk−1 is an r × (r + 1) matrix (randomly chosen) such

that its row vectors are orthonormal, with components summing to zero. (An algorithm for constructing such a matrix
is available, see [6].) Then define Xi

k−1 − X̂k−1 to be the i-th column of
√

rLk−1U−1/2
k−1 Ωk−1, one has:

Pk−1 = 1

r

r+1∑
i=1

(
Xi

k−1 − X̂k−1
)(

Xi
k−1 − X̂k−1

)T

Explicitly, Xi
k−1 = X̂k−1 +√

rLk−1U−1/2
k−1 Ω

(i)
k−1, where Ω

(i)
k−1 denotes the i-th column of Ωk−1. Since

∑r+1
i=1 Ω

(i)
k−1 = 0, X̂k−1

is indeed the sample mean of X1
k−1, . . . , Xr+1

k−1. Of course, their sample covariance matrix is Pk−1.

The set {Xi
k−1, i = 1, . . . , r + 1} may be viewed as a representation of the distribution of the state vector at time tk−1, as

far as second-order statistics are concerned. Thus it is natural to forecast Xk by the sample means of Xi
k− =Fk−1(Xi

k−1):

X̂k− = 1

r + 1

r+1∑
i=1

Xi
k− (38)

The forecast error covariance matrix would be:

Pk− = 1

r

r+1∑
i=1

(
Xi

k− − X̂k−
)(

Xi
k− − X̂k−

)T + Q̄k (39)

Q̄k = Q̄k−1 + Qk denotes the cumulative dynamical (model) error covariance matrix, at time tk .
– Correction stage. This stage takes into account the information provided by the observation to obtain a new more accu-

rate estimate of the state vector and update the error covariance matrix accordingly.
If no observation has been made at time tk , there will be no correction, one just put Xi

k = Xi
k− and continue at the next forecast-

ing stage. Otherwise, to perform the correction without excessive computational cost, the SEIK filter assumes that the
forecast error covariance matrix (39) is of low rank r and given in a factorized form Pk− = LkUk−LT

k . Note that the first
term in (39) can already be written in this form. Indeed, let T be an (r + 1) × r matrix with columns forming a basis of
the linear subspace of all (r + 1)-vectors with components summing to zero,1 then:

[
X1

k− − X̂k− · · · Xr+1
k− − X̂k−

]
T
(
TTT

)−1
TT = [

X1
k− − X̂k− · · · Xr+1

k− − X̂k−
]

since any row vector of the matrix in the above right-hand side can be written as (Tv)T and (Tv)T[T(TTT)−1TT] = (Tv)T.
From this result and the fact that [1 · · · 1]T = 0, it can be seen that the first term in (39) also equals:

1 An example of T is:

T =

⎡
⎢⎢⎢⎣

1 0
. . .

0 1
0 · · · 0

⎤
⎥⎥⎥⎦ − 1

r + 1

⎡
⎢⎣

1 · · · 1
.
.
.

.

.

.
.
.
.

1 · · · 1

⎤
⎥⎦ (40)

The product TTT (which will be needed later) has r/(r + 1) on the diagonal and −1/(r + 1) outside this diagonal.
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Table 4
Data of the SEIK filter test case.

Prob. W
(m)

L (m) K uin
(m/s)

v in
(m/s)

hout

(m)
S0(x) Mesh type Time

step (s)
hin (m) D k1,1 C in

(mg/l)
∂Cout

/∂n

1 200 10 000 30.6 2 0 7 0.0005 Triangular 1 5.139558 1.7E−6 −4.05E−6 24 0
2 800 3000 30.6 0.35 0 7 0.0 Triangular 1 7 1.7E−6 −4.05E−6 24 0

[
X1

k− · · · Xr+1
k−

]
T
(
rTTT

)−1
TT[ X1

k− · · · Xr+1
k−

]T = Lk
[
(r + 1)TTT

]−1
LT

k

with

Lk = [
X1

k− · · · Xr+1
k−

]
T (41)

To obtain a factorized form for Pk− , we will approximate Q̄k by Lk(LT
k Lk)

−1(LT
k Q̄kLk)(LT

k Lk)
−1LT

k . (No approximation is
needed if Q̄k = 0.) Then Pk− = LkUk−Lk where:

Uk− = (
rTTT

)−1 + (
LT

kLk
)−1(

LT
kQ̄kLk

)(
LT

kLk
)−1

(42)

For simplicity, consider the case that Hk is linear: Hk(Xk) = Hk Xk . The formula for the correction stage is then the
same as for the Kalman filter:

Gk = Pk−HT
k

(
HkPk−HT

kRk
)−1

X̂k = X̂k− + Gk(Yk − Hk X̂k−) (43)

The error covariance matrix (after correction) is:

Pk = Pk− − Pk−HT
k

(
HkPk−HT

kRk
)−1

HPk−

From the factorization of Pk− , the matrix Pk also admits a factorized form LkUkLT
k where:

Uk = Uk− − Uk−LT
kHT

k

(
HkLkUk−LT

kHT
kRk

)−1
HPk−

By a matrix identity, the above right-hand side is invertible if Uk− is and admits as its inverse:

U−1
k = U−1

k− + LT
kHT

kR−1
k HkLk (44)

The matrix Gk can also be computed alternatively as:

Gk = PkHT
kR−1

k = LkUkLT
kHT

kR−1
k (45)

More details of calculations can be found in [4,5].
After correction, the matrix Q̄k is reset to 0.
In practice, the matrix Uk is not computed, only its inverse is, via (44). The (big) matrix Pk is not computed either, since
one only needs its factorized form for the next forecasting stage. To compute the matrix U1/2

k needed at this stage, one

can make a Cholesky decomposition U−1
k = CkCT

k , where Ck is lower triangular. Then U1/2
k = (CT

k)−1.

4.2. Test cases of the SEIK filter algorithm

To test the SEIK algorithm, we consider two problems with one pollutant indicator BOD5 (see Section 6.2) and with data
from Table 4. In the first test case, the gate into the lake is at x = 0 and the gate out of the lake is at x = 10 000. The initial
conditions for u and v in this test case are the same as in the case of the first hydraulic test. In the second test case, the
gate into the lake is at x = 0, y ∈ [0,200] and the gate out of the lake is at x = 3000, y ∈ [600,800]. The initial conditions
are: u = 0, v = 0. In two test cases, the concentration boundary condition at the gate into the lake C in = 24 mg/l, and that
at the gate out of the lake is ∂Cout/∂n = 0. The initial concentration is C(x, y,0) = 24 mg/l.

In these two test cases, the lakes with unstructured nets and the concentration fields with measurement positions P1–P6,
test position P7, are shown in Figs. 12 and 15.

We will test the SEIK filter by considering a “twin experiment”. A run of the model (with arbitrary initial values) simu-
lating the true pollutant concentration levels, is used as a reference. The initial value for the SEIK filter is taken as the average
of another long model run (2000 s), with a different initial value. (Note that the initial value for this run does not matter
much, since we have taken the average over a very long run.) The initial filter error covariance matrix is also constructed
from this run, as described in Section 4. The reference run is used to extract the “pseudo” observations, at certain points of
the lake. In this experiment, these observation points are six points P1–P6, indicated in Fig. 12, right panel. Measurements
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Fig. 12. (Color online.) The first Kalman filter test case: unstructured net with triangular cells (left); concentration field with measurement positions P1–P6
and test position P7 (right).

Fig. 13. (Color online.) The first Kalman filter test case: BOD5 concentration fields of the reference (left), of the model without Kalman correction (middle),
and of the model with Kalman correction (right).

Fig. 14. (Color online.) The first Kalman filter test case: mean absolute errors of BOD5 concentration in percentage of its mean value on the lake (left); error
of BOD5 concentration in percentage of its value at the P7 point (middle); BOD5 concentration at the P7 point (right).

are at 1 s, 4 s, 9 s . . . (one per 3 s) and the algorithm is run for 260 s. The performance of the SEIK filter can be assessed by
comparing the pollutant concentration levels that it provides and that of the reference, at other non-measurement points.

The comparison results of two test cases at the time 260 s and in the period from the starting time up to time 260 s are
respectively shown in Figs. 13, 14 and 16, 17. It is easy to see that the model with Kalman filter is closer to the reference
than the one without Kalman filter.

5. Simulation experiment for the Thanh Nhan Lake

The Thanh Nhan Lake is located in Hanoï. Its area and water capacity are about 8.1 ha and 162 000 m3, respectively.
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Fig. 15. (Color online.) The second Kalman filter test case: unstructured net with triangular cells (left); concentration field with measurement positions
P1–P6 and test position P7 (right).

Fig. 16. (Color online.) The second Kalman filter test case: BOD5 concentration fields of the reference (left), of the model without Kalman correction (middle)
and of the model with Kalman correction (right).

Fig. 17. (Color online.) The second Kalman filter test case: mean absolute errors of BOD5 concentration in percentage of its mean value on the lake (left);
BOD5 concentration error in percentage of its value at the P7 point (middle); BOD5 concentration at the P7 point (right).

5.1. Physical hydro properties

– The temperature of the lake oscillates from 23.4 ◦C to 23.8 ◦C in the dry season.
– The muddy level oscillates from 9 mg/l to 34 mg/l.
– The concentration of water-dissolved oxygen oscillates from 7.9 mg/l to 11.6 mg/l.

5.2. Chemical hydro properties

– Organic element group:
– The content of NH3 oscillates from 0.51 mg to 0.62 mg/l.
– The need for chemical biology oxygen BOD5 oscillates from 15.5 mg/l to 24.0 mg/l.
– The need of chemical oxygen COD oscillates from 345 mg/l to 400 mg/l.

– The group of chemical toxin: it consists of some elements that have heavy metals such as mercury, lead, and manganese.

In this paper, we only study BOD5’s, COD’s and NH3’s indicators. The BOD5’s indicator shows the oxygen quantity needed
for bacterium in reactions with oxygen of organic substances in water. The COD’s indicator shows the chemical oxygen’s
quantity needed for reactions of organic substances with oxygen leading to disintegration processes into CO2 and H2O. The
indicators BOD5, COD, NH3 have exchange relations. The chemical processes leading to the disintegration of the pollution
indicators and substances are described as follows:

Si(BOD5) = k11BOD5

Si(NH3) = k21BOD5 + k22NH3

Si(COD) = k33COD
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Fig. 18. Unstructured net with triangular cells (left) and velocity field with measurement positions P1, P2, P3 and test position P4 shown (right).

Fig. 19. (Color online.) BOD5 concentration fields of the reference (left), of the model without Kalman correction (middle), and of the model with Kalman
correction (right).

On the collected data, we establish input data for the model. The geographical data are divided into the boundary and
the inside area of the lake. These data are divided by the unstructured net with 1964 triangular cells and 1058 nodes. This
unstructured net is described in Fig. 18, left panel.

The data of discharges and substance contents at the gate into the lake are as follows.

– The discharges in and out of the lake are 2100 m3 per day–night.
– The content of BOD5 at the gate into the lake is the same as the measurement value 24 mg/l.
– The content of COD at the gate into the lake is the same as the measurement value 400 mg/l.
– The content of NH3 at the gate into the lake is the same as the measurement value 0.52 mg/l.

On the gate out there are the conditions of concentration: ∂Ci/∂n = 0 (i = 1 . . .m).

5.3. Simulation setup and results

As in the SEIK filter test case (see Section 4.2), we consider a “twin experiment”. A run of the model (with arbitrary
initial values) simulating the true pollutant concentration levels is used as a reference. The initial value for the SEIK filter is
taken as the average of another long model run (7180 h), with a different initial value. The reference run is used to extract
the “pseudo” observations, at certain points of the lake. In this experiment, the observation points are three points P1, P2
and P3, indicated in Fig. 18, right panel. Measurements are also only made at 1.2 h, 2.6 h and 4 h, and the algorithm is
run for 6.8 h. The performance of the SEIK filter can be assessed by comparing the pollutant concentration levels that it
provides and that of the reference, at other non-measurement points.
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Fig. 20. (Color online.) COD concentration fields of the reference (left), of the model without Kalman correction (middle), and of the model with Kalman
correction (right).

Fig. 21. (Color online.) NH3 concentration fields of the reference (left), of the model without Kalman correction (middle), and of the model with Kalman
correction (right).

In Figs. 19–21, the vertical and horizontal axes provide the coordinates along x and y directions (with the unit: m), and
the concentration indicators (with the unit: mg/l) are described in the small color boxes, which are the same for the three
panels (left, middle, and right), for ease of comparison.

It is also of interest to compare the performance of the SEIK filter with “doing nothing”. To this end, we run the same
model with the same initial values as in the SEIK algorithm, but without making any correction. The pollutant concentrations
obtained from the “model only” can then be compared with that of the reference and/or that provided by the SEIK algorithm.

Figs. 19–21, right panel, show the results of the application of our algorithm (after a 6.8-h run) concerning the concen-
trations of BOD5, COD, and, NH3 respectively. For comparison, the reference fields of these pollutant concentrations (which
serve to provide the measurements) and the results of the use of the model alone (without Kalman correction) are shown
in the left and middle panels, respectively.

The right panels in Figs. 22–24 plot the mean absolute errors of BOD5, COD, and NH3 concentrations, in percentage of
the mean concentrations, obtained by our algorithm and by the “model only” approach, respectively. The left panels of these
figures plot the values of these pollutant concentrations given by the reference, the “model only” approach and the filter
algorithm, at some point in the middle of the lake (point P4 in Fig. 18).

The results of the experiment show the good performance of the algorithm. The values of the pollutant concentrations
are very close to the reference in the middle area of the lake, as can be seen in Figs. 19–21 and 22–24. The results are less
good toward the south of the lake, but on a point P4 in the middle of the lake, the errors are very small, as can be seen
from Figs. 22–24, left panel. Note that these figures correspond to the last time point 6.8 h, and the last measurement is
at 4 h.
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Fig. 22. (Color online.) Left: BOD5 concentration at a point P4 in the middle of the lake, given by the reference (long dashes with stars) and by the model
with (dashes) and without (solid) Kalman correction. Right: relative mean absolute error (in percentage) of BOD5 concentration in the models with (solid)
and without (dash) Kalman correction.

Fig. 23. (Color online.) Left: COD concentration at a point P4 in the middle of the lake, given by the reference (dashes and dots) and by the model with
(solid) and without (dashes) Kalman correction. Right: relative mean absolute error (in percentage) of COD concentration in the models with (solid) and
without (dashes) Kalman correction.

Fig. 24. (Color online.) Left: NH3 concentration at a point P4 in the middle of the lake, given by the reference (dashes and dots) and by the model with
(solid) and without (dashes) Kalman correction. Right: relative mean absolute error (in percentage) of NH3 concentration in the models with (solid) and
without (dash) Kalman correction.

In the popular PC (Intel core I5 2.6 GHz), it takes about 15 min and 2 h to run the Kalman filter algorithm with one
substance and with three substances, respectively.

6. Conclusion

Our simulation results suggest the good performance of the method. We have considered only three pollutants, but
the model can be used to simulate the transport of combinations of substances in water, with an unlimited number of
them if we have enough data. In order to obtain coefficients ki, j (i, j = 1, . . . ,m) in the combinations of pollution sources
f i (i = 1, . . . ,m) needed in the right-hand side of Eq. (4), we use the experimental results from the Institute of Chemistry.
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To apply the Kalman filter method, the source and diffusion coefficients Di, kij have been obtained by the optimal variation
method. The application of this method in this pollution problem will be described in another paper. The correction by the
SEIK filter makes the simulation closer to the truth, and thus more useful for the simulation of the model. With the aid
of the SEIK filter, the model can be used as a support tool to estimate substance contents and study water quality for the
pollution problem.
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