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We investigate the boundary condition between a free fluid and a porous medium,
where the interface between the two is given as a periodically curved structure. Using
a coordinate transformation, we can employ methods of periodic homogenisation to derive
effective boundary conditions for the transformed system. In the porous medium, the fluid
velocity is given by Darcy’s law with a non-constant permeability matrix. In tangential
direction as well as for the pressure, a jump appears. Its magnitudes can be calculated
with the help of a generalised boundary layer function. The results can be interpreted as a
generalised law of Beavers and Joseph for curved interfaces.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère le comportement d’un fluide libre au-dessus d’un milieu poreux avec une
interface courbée périodique. Utilisant une transformation des coordonnées, on peut
utiliser des méthodes d’homogénéisation périodique pour la dérivation des conditions aux
limites. Le comportement du fluide en milieu poreux est donné par une loi de Darcy
avec une matrice de perméabilité non constante. Ensuite, on obtient le comportement du
fluide à l’interface. Une discontinuité apparaît pour la pression ainsi que pour la vitesse
tangentielle. L’amplitude des discontinuités peut être calculée par une fonction de couche
limite généralisée. Ainsi, les résultats donnent une loi généralisée de Beavers et Joseph
pour des interfaces courbées.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The interface condition coupling a free flow with a flow in a porous medium is of great interest in mathematical
modelling, groundwater flow or soil chemistry, among others. From a physical point of view, the fluid velocity of an incom-
pressible fluid has to be continuous in normal direction to the interface due to mass conservation. However, other conditions
are not so obvious due to the different nature of the governing equations: For the free fluid, the Stokes or Navier–Stokes
equation is of second order for the velocity and of first order for the pressure, whereas for the Darcy equation in the porous
medium the order of the terms is exchanged. By practical experiments, Beavers and Joseph [1] concluded that a jump in
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the effective velocities appears in tangential direction. Using a statistical approach, this condition was verified by Saffman
in [2]. However, some parameters in this approach still need to be determined by experiments.

Starting in 1996, Willie Jäger and Andro Mikelić applied the theory of homogenisation to the problem. They first devel-
oped a theory of mathematical boundary layers in [3], using these to rigorously derive Saffman’s modification of the jump
condition:

√
kε (∇vFν) · τ = αvF · τ +O

(
kε

)
(1)

in [4], where vF denotes the velocity of the free fluid at the interface; kε = kε2 is the (scalar) permeability of the porous
medium (where ε denotes its characteristic length), and ν and τ are the unit normal and unit tangential vector, respectively.
The slip-coefficient α can be calculated explicitly. They considered a situation that corresponds to the experimental setup of
Beavers and Joseph. Later in [5], Mikelić and Marciniak-Czochra extended the results to an arbitrary body force, which gave
an additional pressure jump condition. However, all the results above suffer from one drawback: only a planar boundary
in the form of a line or a plane is considered. Therefore, the effect of a possible curvature of the interface is not known.
Generalisations of the boundary layers in [3] were developed by Maria Neuss-Radu in [6]. However, applications only treat
reaction–diffusion systems without flow, and explicit results can only be obtained in the case of a layered medium, see [7].

In [8] we proposed a new approach to consider the case of a non-flat interface by using a coordinate transformation.
In this note — using generalised boundary layer functions developed in [9] — we are able to derive boundary conditions of
Beavers and Joseph for the case of a periodically curved non-flat interface.

2. Overview of the geometries

In this section we describe the main geometrical settings that are used throughout this work. Let L, K ,h > 0. Then Ω :=
(0, L)× (−K ,h) is a rectangular domain in R

2 (later corresponding to the reference domain) with parts Ω1 := (0, L)× (0,h)

(later the reference free fluid domain), Ω2 := (0, L)× (−K ,0) (the reference porous medium) and Σ = (0, L)×{0} (later the
reference interface). Let g ∈ C∞(R) be a given function such that g(y + L) = g(y) for all y ∈ R. We consider g to describe
a periodic curved structure in our domain of interest. Define the coordinate transformation:

ψ : Ω −→ Ω̃,

(
x1
x2

)
�−→

(
z1
z2

)
=

(
x1

x2 + g(x1)

)

such that Ω̃ = ψ(Ω), Ω̃1 := ψ(Ω1), Ω̃2 := ψ(Ω2) and Σ̃ := ψ(Σ) = {(y, g(y))|y ∈ (0, L)}. We are interested in the be-
haviour of a fluid flowing through the curved channel Ω̃ , where Ω̃1 represents a domain with a free fluid flow, and Ω̃2 is
a porous medium. We are especially interested in the behaviour of the fluid at the curved boundary Σ̃ . Let Ω̃S � Ω̃2 be a
given solid inclusion. We will use a sequence of such inclusions to create a porous medium via homogenisation theory.

To do so, define an ε-periodic geometry in Ω2 by the use of a reference cell Y := [0,1]2, containing a connected open
set YS (corresponding to the solid part of the cell). Its boundary ∂YS is assumed to be of class C∞ with ∂YS ∩ ∂Y = ∅. Let
Y ∗ := Y \YS be the fluid part of the reference cell.

For given ε > 0 such that L
ε ∈ N, let χ be the characteristic function of Y ∗ , extended by periodicity to the whole R

2. Set
χε(x) := χ( x

ε ) and define the fluid part of the porous medium as Ωε
2 = {x ∈ Ω2 | χε(x) = 1}. The fluid domain is then given

by Ωε = Ω1 ∪ Σ ∪ Ωε
2 , and the solid part by ΩS = Ω2\Ωε

2 .
In order to obtain the effective fluid behaviour near Σ , we have to define a number of so-called boundary layer problems.

To this end, we introduce the following setting: we consider the domain [0,1] × R subdivided as follows: Z+ = [0,1] ×
(0,∞) corresponds to the free fluid region, whereas the union of translated reference cells Z− = ⋃∞

k=1{Y ∗ − (0
k

)}\S is
considered to be the void space in the porous part. Here S = [0,1] × {0} denotes the interface between Z+ and Z− . Finally,
let Z = Z+ ∪ Z− and ZBL = Z+ ∪ S ∪ Z− be the fluid domain without and with interface.

3. Fluid behaviour at the interface — main results

For a given body force f̃ ∈ L2(Ω̃), we assume that a mathematical description of the fluid is given by the steady-state
Stokes equation with no slip condition on the boundary of the solid inclusion and on the outer walls:

−μ�zũ(z) + ∇z p̃(z) = f̃ (z) in Ω̃\Ω̃S

divz
(
ũ(z)

) = 0 in Ω̃\Ω̃S

ũ(z) = 0 on ∂Ω̃S ∪ ∂Ω̃\({z1 = 0} ∪ {z1 = L})
ũ, p̃ are L-periodic in x1

Here μ > 0 denotes the dynamic viscosity. We are looking for a velocity field ũ ∈ H1(Ω̃)2 and a pressure p̃ ∈ L2(Ω̃)/R.
The Stokes equation is an approximation of the full Navier–Stokes equation which is valid for low Reynolds number flows.
Using the transformation rules for the differential operators (see [8]), we obtain the following equation for the transformed
quantities uε(x) = ũ(ψ(x)), pε(x) = p̃(ψ(x)) and f (x) = f̃ (ψ(x)) in the rectangular domain Ω:
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−μ · divx
(

F −1(x)F −T (x)∇xuε(x)
) + F −T (x)∇x pε(x) = f (x) in Ω\ΩS = Ωε (2a)

divx
(

F −1(x)uε(x)
) = 0 in Ω\ΩS = Ωε (2b)

uε(x) = 0 on ∂ΩS ∪ ∂Ω\({x1 = 0} ∪ {x1 = L}) (2c)

uε, pε are L-periodic in z1 (2d)

Here ΩS := ψ−1(Ω̃S) is the transformed solid inclusion, and F is defined as the Jacobian matrix of ψ , given by:

F (x) =
[

1 0
g′(x1) 1

]

Since det(F ) = 1, ψ is a volume-preserving C∞-coordinate transformation. Note that the transformed normal vector to Σ

is given by F −T(x)e2, and the transformed tangential vector by F (x)e1, where ei , i ∈ {1,2}, denote the usual unit vectors
in R

2. For simplicity, we set μ = 1 in the sequel. All subsequent derivations will be based on Eq. (2). We consider a
sequence of scale parameters ε going to 0. In the limit, this leads to the formation of an effective porous medium in Ω2 via
homogenisation theory, where for g ≡ 0 the functions uε and pε converge to the Darcy velocity and pressure, respectively
(see [10]).

For the general case presented here, the fluid behaviour can be approximated by the following effective equations: the
velocity field in the free fluid domain Ω1 is given by the following problem.

Find a velocity ueff and a pressure peff such that:

−div
(

F −1 F −T∇ueff) + F −T∇peff = f in Ω1 (3a)

div
(

F −1ueff) = 0 in Ω1 (3b)∫
Ω1

peff dx = 0 (3c)

ueff = 0 on (0, L) × {h} (3d)

ueff, peff are L-periodic in x1 (3e)

ueff = −εCbl on Σ (3f)

Cbl is the decay function of the boundary layer function βbl defined in Section 4. It can be calculated by:

Cbl(x) = −
1∫

0

βbl(x, y1,+0)dy1

It holds Cbl(x) · F −T(x)e2 = 0. The effective Darcy pressure p̃eff in Ω2 is given by:

div
(

F −1 A
(

f − F −T∇ p̃eff)) = 0 in Ω2 (4a)

A
(

f − F −T∇ p̃eff) · F −Te2 = 0 on (0, L) × {−K } (4b)

p̃eff = peff + Cbl
ω on Σ (4c)

p̃eff is L-periodic in x1 (4d)

Cbl
ω is the pressure stabilisation function of the boundary layer pressure ωbl defined in (6). It can be calculated by Cbl

ω (x) =∫ 1
0 ωbl(x, y1,+0)dy1. A is obtained with the help of the cell problem for the transformed Darcy law (see also [8]): fix x ∈ Ω

and let (w j(x, ·),π j(x, ·)) ∈ H1
#(Y ∗)2 × L2(Y ∗)/R be a solution of the parameter-dependent cell problem:

−divy
(

F −1(x)F −T (x)∇y w j(x, y)
) + F −T (x)∇yπ

j(x, y) = e j in Y ∗

divy
(

F −1(x)w j(x, y)
) = 0 in Y ∗

w j(x, y) = 0 in Y S

w j(x, y),π j(x, y) are Y -periodic in y

Define the matrix-valued function A : Ω → R
2×2 by:

[
A(x)

]
ji =

∫
∗

w j
i (x, y)dy, i, j = 1,2
Y
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The cell problem is a partial differential equation in y ∈ Y ∗ , depending on x ∈ Ω as a parameter. Using the implicit function
theorem for Banach spaces, one can derive differentiability properties of these functions in x-direction, see [9]. Furthermore,
one can show that the matrix A(x) is symmetric and (uniformly) positive definite.

Define the effective mass flow rates in transformed tangential direction as:

Meff :=
∫
Ω1

ueff · F e1 dx and Mε :=
∫
Ω1

uε · F e1 dx

We obtain the following estimates.

Theorem 3.1. Let f ∈ C∞(Ω̄) be L-periodic in the first variable. For (uε, pε) as defined in Eq. (2) and (ueff, peff) defined in (3) the
estimates:

∥∥uε − ueff
∥∥

L2(Ω1)2 + ∣∣Mε − Meff
∣∣ � Cε

3
2∥∥uε − ueff

∥∥
H

1
2 (Ω1)2

+ ∥∥pε − peff
∥∥

L1(Ω1)
+ ∥∥∇(

uε − ueff)∥∥
L1(Ω1)4 � Cε

∥∥|x2| 1
2 ∇(

uε − ueff)∥∥
L2(Ω1)4 + ∥∥|x2| 1

2
(

pε − peff)∥∥
L2(Ω1)

� Cε

hold with a constant C > 0, independent of ε. On the interface Σ , we have:

1

ε

(
uε − ueff) ⇀ 0 in L2(Σ),

∥∥uε − ueff
∥∥

H− 1
2 (Σ)

� Cε
4
3 (5)

In the porous medium Ω2, we arrive at the following results.

Theorem 3.2. For the effective pressure in the porous medium defined by (4), we have for all δ > 0:

1

ε2
uε − A

(
f − F −T∇ p̃eff) ⇀ 0 in L2((0, L) × (−K ,−δ)

)

pε − p̃eff ⇀ 0 in L2(Ω2),
∥∥pε − p̃eff

∥∥
H− 1

2 (Σ)
� Cε

1
2

with a constant C > 0 independent of ε.

4. Aspects of the derivation

In this section, we show how the initial steps of the derivation of the main results are performed. In principle, we
correct the velocity uε and pressure pε with a sequence of solutions to auxiliary problems, until we are finally able to get
reasonable estimates. There are basically three types of auxiliary problems: Boundary layer functions, which are used to
correct jumps across the boundary Σ ; counterflow functions, which correct for the decay of the boundary layer functions
towards a constant, and functions for the correction of the divergence.

We start by eliminating the right-hand side of (2a) in Ω1. Let (u0,π0) be a solution of:

−div
(

F −1 F −T∇u0) + F −T∇π0 = f in Ω1

div
(

F −1u0) = 0 in Ω1

u0 = 0 on ∂Ω1\
({x1 = 0} ∪ {x1 = L})

u0,π0 are L-periodic in x1

There exists a unique solution in u0 ∈ H1(Ω1)
2, π0 ∈ L2(Ω1)/R by the results for the transformed Stokes equation. By

regularity results (see, e.g., [11]), this solution is smooth for smooth f . We extend the velocity u0 by 0 in Ω2 and the
pressure to a pressure π̃0, defined as the Darcy pressure in Ω2 given by:

div
(

F −1 A
(

f − F −T∇π̃0)) = 0 in Ω2

A
(

f − F −T ∇π̃0) · F −Te2 = 0 on (0, L) × {−K }
π̃0 = π0 + Cbl

ω on Σ

π̃0 is L-periodic in x1

The term F −1 F −T∇u0e2 prevents better estimates in the weak formulation of the velocity difference uε − u0 and
the pressure difference pε − π̃0. That is why we construct a correction for this term: consider the following parameter-
dependent boundary layer functions (βbl,ωbl) satisfying:
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−divy
(

F −1(x)F −T(x)∇yβ
bl(x, y)

) + F −T(x)∇yω
bl(x, y) = 0 in Ω × Z (6a)

divy
(

F −1(x)βbl(x, y)
) = 0 in Ω × Z (6b)[

βbl(x, y)
]

S = 0 on Ω × S (6c)[(
F −1(x)F −T(x)∇yβ

bl(x, y) − F −1(x)ωbl(x, y)
)
e2

]
S

= F −1(x)F −T(x)∇u0(x)e2 on Ω × S (6d)

βbl(x, y) = 0 on Ω ×
∞⋃

k=1

{
∂Y S −

(
0

k

)}
(6e)

βbl(x, ·),ωbl(x, ·) are 1-periodic in y1 (6f)

and define βbl,ε(x) = εβbl(x, x
ε ) as well as ωbl,ε(x) = ωbl(x, x

ε ). Here [h]S := h|Z+ − h|Z− denotes the jump of the function
h across the boundary S . By the theory of the boundary layer functions, there exist constants Cbl(x) ∈ R

2, Cbl
ω (x) ∈ R such

that, for q � 1:

1

ε

∥∥βbl,ε − εCbl(x)H(x2)
∥∥

Lq(Ω)2 + ∥∥ωbl,ε − Cbl
ω (x)H(x2)

∥∥
Lq(Ω)

+ ∥∥∇yβ
bl,ε

∥∥
Lq(Ω)4

+
∥∥∥∥∇x

(
βbl

(
x,

x

ε

)
− H(x2)Cbl(x)

)∥∥∥∥
Lq(Ω)4

+
∥∥∥∥divx

(
F −1 F −T ∇yβ

bl
(

x,
x

ε

))∥∥∥∥
Lq(Ω)2

� Cε
1
q

Here H denotes the Heaviside function. This correction introduces problems due to the stabilisation towards Cbl. Therefore
we define the following counterflow:

−div
(

F −1(x)F −T(x)∇uσ (x)
) + F −T(x)∇πσ (x) = 0 in Ω1

div
(

F −1(x)uσ (x)
) = 0 in Ω1

uσ (x) = 0 on (0, L) × {h}
uσ (x) = Cbl(x) on Σ

uσ ,πσ are L-periodic in x1

Since
∫
Σ

Cbl(x) · F −T (x)e2 dx = 0, there exist a unique velocity uσ and a pressure πσ , unique up to constants. Define as a
first approximation:

Uε := uε − u0 + (
βbl,ε − εCbl H(x2)

) + εuσ H(x2)

Pε := pε − π0 H(x2) − π̃0 H(−x2) + (
ωbl,ε − Cbl

ω H(x2)
) + επσ H(x2)

Upon considering the weak formulation of (Uε,Pε), one finds that these corrections above are not enough to derive
reasonable estimates; therefore, higher order correctors (having a prefactor of ε2 or more) are required:

– first, another boundary layer function is constructed that corrects the term divx(F −1(x)F −T (x)∇yβ
bl(x, y)); this is ac-

companied by a corresponding counterflow;
– then, the term F −T(x)∇x(ω

bl(x, y) − H(x2)Cbl
ω (x)) stemming from the pressure is corrected in a similar fashion;

– finally, the divergence is corrected such that the final velocity Uε
0 satisfies div(F −1Uε

0 ) = 0.

Details of these corrections together with existence and uniqueness results as well as decay estimates will be presented in
forthcoming publications. Finally, one arrives at the following estimates.

Proposition 4.1. For the corrected functions, it holds:

ε
∥∥∇Pε

∥∥
H−1

(
Ωε

)2 + ε
∥∥∇Uε

∥∥
L2

(
Ωε

)4 + ∥∥Uε
∥∥

L2
(
Ωε

2

)2 + ε
1
2
∥∥Uε

∥∥
L2(Σ)2 � Cε2

as well as

ε
∥∥Pε

∥∥
L2(Ω1)

+ ∥∥Uε
∥∥

H
1
2 (Ω1)2

� Cε
3
2

Now the estimates of Theorem 3.1 follow by using the fact that uε − ueff = Uε − (βbl,ε − εH(x2)Cbl), the estimates above
and the theory of very weak solutions for the transformed Stokes equation. Theorem 3.2 follows by showing that one can
approximate the solution of Eq. (4) by the corresponding problem, replacing peff in (4c) by π0 and using the two scale
convergence towards the transformed Darcy law.
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5. Final comments

Our results show that the following behaviour of a free fluid in contact with a flow in a curved porous medium can
be expected for low Reynolds number flows: in the free fluid domain, the velocity and pressure are given by the Stokes
equation. In the porous medium, the flow is pressure driven and given by Darcy’s law. At the interface, the velocity is
given with the help of the decay function Cbl(x) of an auxiliary boundary layer problem. This depends on parameters from
the geometry of the interface. In tangential direction, a jump between the velocities and pressures occurs. In transformed
normal direction Cbl(x) · F −T(x)e2 = 0 holds, which is an approximation of continuity of the velocity in that direction.

Therefore, we showed that for curved interfaces, a generalisation of the boundary condition of Beavers and Joseph is
valid. It has to incorporate effects stemming from the geometry of the fluid–porous interface. The estimate on the right-hand
side of (5) corresponds to a generalised rigorous version of (1). Note, however, that contrary to [4] and [5], we are not able
to write the function Cbl(x) as a product containing a factor of ∇u0. The latter velocity appears instead in the equations
for βbl, see (6d). For the choice g ≡ 0, the matrix F equals the identity matrix, and the constants and auxiliary problems
defined in this note match those given in [5]. Thus in the case of a planar boundary, we recover the boundary conditions
derived by Marciniak-Czochra and Mikelić.

We can compare our results with those obtained by Beavers, Joseph and Saffman in [1] and [2]. They proposed the
continuity of the normal velocity together with a condition of the form (1). The jump condition in Section 3 does not
have this specific form; however, by looking at Eq. (6d), one sees that the gradient of the velocity in the free fluid still
influences the jump of the velocity, albeit in a more complex way. In papers [12] and [13], Levi, Ene and Sanchez-Palencia
also considered boundary effects. They distinguished the case when the pressure gradient on the side of the porous medium
is normal to the porous surface or not. In the latter case, using a specific boundary layer approach, it was found that the
pressure is continuous across the interface. In the former case, they deduced that the velocity is continuous in normal
direction and the pressure is constant on the interface. However, in these papers, no body force was considered, and some
additional assumptions on the pressure apply.
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