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The mechanical properties of bone tissue depend on its hierarchical structure spanning
many length scales, from the organ down to the nanoscale. Multiscale models allow
estimating bone mechanical properties at the macroscale based on information on bone
organization and composition at the lower scales. However, the reliability of these
estimates can be questioned in view of the many uncertainties affecting the information
which they are based on. In this paper, a new methodology is proposed, coupling
probabilistic modeling and micromechanical homogenization to estimate the material
properties of bone while taking into account the uncertainties on the bone micro- and
nanostructure. Elastic coefficients of bone solid matrix are computed using a three-
scale micromechanical homogenization method. A probabilistic model of the uncertain
parameters allows propagating the uncertainties affecting their actual values into the
estimated material properties of bone. The probability density functions of the random
variables are constructed using the Maximum Entropy principle. Numerical simulations are
used to show the relevance of this approach.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les propriétés mécaniques du tissu osseux dépendent de sa structure hiérarchisée, de
l’échelle de l’organe à celle de ses constituants élémentaires (nano-échelle). En se basant
sur la connaissance de la morphologie, de l’organisation et des propriétés mécaniques de
ces derniers, des modèles multi-échelles permettent d’estimer les propriétés mécaniques
d’ensemble du tissu osseux. Cependant, ces informations sont souvent partielles ou
incertaines, rendant peu fiables lesdites estimations. Dans cet article, nous proposons
une stratégie originale permettant de prendre en compte ces difficultés de façon efficace.
Plus précisément, un modèle multi-échelles du tissu osseux basé sur la théorie de
la micromécanique des milieux continus est associé à un traitement probabiliste de
certaines des variables du modèle (notamment, les propriétés mécaniques des constituants
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élémentaires du tissu osseux). Le modèle multi-échelle permet de prendre en compte la
microarchitecture et l’organisation du tissu osseux aux petites échelles pour estimer les
coefficients élastiques de l’ultrastructure osseuse (la matrice solide du tissu osseux). Les
incertitudes sur les variables d’entrée sont prises en compte en construisant des lois de
probabilités pertinentes basées sur le principe du maximum d’entropie. Quelques résultats
numériques sont montrés pour étayer l’intérêt de cette approche.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Bone is a biocomposite material showing several levels of microstructural organization [1]. In mature bone, two types
of tissues can be distinguished: cortical tissue—a dense material forming the outer shell of bones—, and trabecular tissue—
a spongy material located inside the bone. Both cortical and trabecular tissues are porous materials. Pores in cortical bones
are pseudo-cylindrical canals (Havers’ and Volkmann’s canals), whereas, in trabecular bone, pores are irregularly shaped cav-
ities. Despite the very different pore morphology, the solid matrix of both cortical and trabecular tissues, hereafter referred
to as bone ultrastructure, is nearly the same. Bone ultrastructure is an assembly of mineralized collagen fibrils (MCF). MCF
are bunches of collagen molecules embedded in a mineral-rich matrix. This latter is made of hydroxyapatite mineral and
constitutional water.

Understanding bone mechanical properties requires accounting for its hierarchical structure down to the lowest levels
of this hierarchy [2,3]. Multiscale modeling and simulation turns out to be a powerful tool for explaining bone mechanical
properties while accounting for its inner organization.

Several authors studied bone focusing on several levels of its hierarchical structure by means of multiscale modeling
approaches [4–7]. Modeling studies rely on the experimental characterization of bone microstructure obtained through dif-
ferent experimental techniques (ultrasounds, X-ray microtomography (micro-CT), X-ray synchrotron radiation, etc.) aiming at
relating the available clinically relevant information to bone mechanical properties. Several experimental studies highlighted
the relevance of porosity and mineralization in determining the mechanical properties of bone and the associated fracture
risk [8–15]. Recently, the heterogeneous distribution of bone elastic coefficients in the inferior human femoral neck was
described using a continuum micromechanics model based on 3D mappings of porosity and Tissue Mineral Density (TMD)
obtained through high-resolution synchrotron radiation [16,17,7].

A critical point for clinical application of biomechanical models of bone is the incomplete knowledge of patient-specific
information on bone microstructure. Techniques such as ultrasounds and micro-CT, commonly used in in vivo measurements,
can hardly inspect bone microstructure at the sub-micrometric scale. Moreover, the information which is actually made
available by the different experimental techniques is affected by the resolution and parameterization of the experimental
setup. Furthermore, some of the uncertain parameters may be not directly available from experimental measures but have
to be deduced by introducing additional empirical relationships. All these issues may affect the accuracy of the modeling
parameters used to estimate bone mechanical properties, questioning the reliability of the model predictions.

Uncertainties on the modeling parameters increase with zooming down into the nanostructure of bone. Current experi-
mental techniques cannot provide accurate information about the morphology, spatial arrangement and mechanical behavior
of bone constituents. Not surprisingly, modeling assumptions at the nanoscale may be very different. For instance, bone
nanostructure has been described as either a mineral-rich matrix embedding collagen molecules [4,5,16] or as a collagen
matrix with mineral inclusions [18–22].

We propose to cope with these experimental limitations by developing a novel multiscale model of bone taking into
account the uncertainties on bone nanostructure. A multiscale model will make the global elastic behavior of bone emerge
by combining models developed at each relevant scale of bone microstructure. A probabilistic model will allow accounting
for the uncertainties about the patient-specific microstructure and to propagate them up to the organ scale. In this very
first study, we will focus only on the uncertainties affecting the elastic properties of bone constituents.

Similar approaches have been used to model effective mechanical properties of materials with random microstructure
(see for instance [23,24]). Nevertheless, to the best of our knowledge, this is the very first contribution to develop a stochas-
tic modeling of bone.

In order to construct the probabilistic model of bone, we combined a multiscale model based on continuum microme-
chanics [25,26] with a probabilistic representation of the uncertain parameters of the model, based on the Maximum
Entropy principle [27,28]. The paper is organized as follows. The multiscale model of bone based on the continuum mi-
cromechanics theory is resumed in Section 2. The probabilistic model of the uncertain parameters is described in Section 3.
The numerical procedure and some numerical results are presented in Section 4 to highlight the features of this approach.
Eventually, the conclusions of this study are drawn in Section 5 opening the way to further research.
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Fig. 1. (Color online.) Two-step homogenization to compute the effective elastic properties of bone ultrastructure. Bone ultrastructure is the solid matrix of
bone tissue, surrounding the Haversian and Volkmann canals.

2. Mean continuum micromechanics model of bone ultrastructure

In view of our target application, we will refer only to elasticity problems. Hereafter, micromechanical homogenization
will refer to the homogenization strategy based on the theory of continuum micromechanics. Continuum micromechanics
allow estimating the effective elastic properties of a material with microstructure based on the knowledge of the nature and
arrangement of its constituent phases [26,25,29]. Estimates of the homogenized elasticity tensor chom of a material with
microstructure of matrix-inclusion type are obtained based on the solution of the matrix-inclusion problem provided by Es-
helby in the 1950s [30] and further extensions [31]. The estimated homogenized elasticity tensor chom is thus provided by:

chom =
∑

r

fr cr : (i + p0
r : (cr − c0)

)−1 :
(∑

s

f s
(
i + p0

s : (cs − c0)
)−1

)−1

(1)

where fr is the volume fraction of phase r (
∑

r fr = 1), i is the 4th-order symmetric identity tensor, cr is the elasticity
tensor of phase r, c0 is the elasticity tensor of the “effective matrix” (hereafter referred to by sub/superscript “0”) where
the phases are embedded, and p0

r is the so-called Hill tensor of phase/inclusion r embedded in the effective matrix. The
Hill tensor accounts for the characteristic shape of the inclusions constituting the phase r in the effective matrix. The choice
of c0, i.e. of the effective matrix, leads to different estimates of chom. Among others, two estimates are relevant to our
context. The Mori–Tanaka (MT) estimate [25] applies when an actual “matrix” phase can be identified. Thus, the effective
matrix is the actual matrix phase (c0 = cmatrix). The Self-Consistent (SC) estimate [25] is well suited when no actual matrix
can be identified, but the microstructure is rather made of interpenetrating phases. In this case, the effective matrix is
assumed to be the homogenized material itself (c0 = chom). Hereafter, cMT

hom and cSC
hom will refer to the MT and SC estimates

of chom, respectively. Note that Eq. (1) can be rewritten as:

g(chom; f , w) = 0 (2)

which can be solved for chom based on the sets of the volume fractions and of independent elastic coefficients of the phases,
noted f and w , respectively.

2.1. Application to bone ultrastructure

Bone is a multiscale material basically constituted of collagen, minerals, and water. (Other bone constituents, such as
non-collagenous organic molecules, are here disregarded.) A detailed representation of the hierarchical organization of bone
and of its description in the scope of continuum micromechanics can be found in [4]. We will concern ourselves with esti-
mating the elastic properties of bone ultrastructure. Following the “Concept I” of [32], we will consider three relevant scales,
see Fig. 1. First, at the scale of a few millimeters (scale of the tissue), bone ultrastructure constitutes the solid matrix of
bone tissue surrounding the Haversian and Volkmann canals (schematically depicted on the right of Fig. 1 by white, elon-
gated pores). Second, at the scale of a few tens of micrometers (scale of the ultrastructure), bone ultrastructure is seen as
an assembly of mineralized collagen fibrils, where collagen molecules (300 nm long) are embedded in a mineral-rich matrix
referred to as mineral foam. Eventually, at the scale of few hundred nanometers (scale of the mineral foam), the mineral
foam is seen as a highly disordered mixture of hydroxyapatite minerals and constitutional water particles. This representa-
tion of the hierarchical organization of bone requires two homogenization steps to compute the effective properties of bone
ultrastructure. First, the effective elastic properties of the mineral foam will be computed as a mixture of mineral and water
(step I). Then, the effective elastic properties of the ultrastructure will be computed considering collagen inclusions in the
mineral foam (step II).
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2.1.1. Step I: effective elasticity tensor of the mineral foam
At the scale of a few hundred nanometers (Fig. 1, on the left), highly disordered hydroxyapatite crystals interpenetrated

by water-filled spaces form a mineral foam. The disordered structure observable at this scale [33] motivates the use of
a Self-Consistent scheme to estimate the homogenized tensor of the mineral foam (cfoam). Both mineral and water were
modeled as spherical particles with isotropic elastic behavior. The elastic tensor of the mineral was parameterized by its
Young modulus yHA and its Poisson coefficient vHA. The elastic tensor of the water was parameterized by its bulk modulus
kw (shear modulus gw = 0). The corresponding mixture is isotropic. Thus, Eq. (2) becomes:

gI(cfoam; f I, w I) = 0 (3)

where f I ≡ f foam
HA is the volume fraction of the mineral in the foam and the vector w I collects the elastic parameters of

the constituent phases: w I = (yHA, vHA,kw). Eq. (3), encoding a Self-Consistent solution scheme, turns out to be an implicit
function of cfoam which has to be computed iteratively. Note that cfoam can be parameterized by the Young modulus yfoam
and the Poisson coefficient v foam of the mineral foam.

2.1.2. Step II: effective elasticity tensor of the ultrastructure
At the scale of several micrometers (Fig. 1, in the middle), collagen molecules are embedded into the mineral foam. The

elongated form of collagen molecules and the contiguity of the mineral phase leads to the use of a Mori–Tanaka scheme
to estimate the homogenized elastic tensor of the ultrastructure (cultra). Thus, the matrix phase is the (isotropic) mineral
foam described in step I and the collagen is modeled as cylindrical inclusions. For the sake of simplicity, the collagen was
considered as an isotropic material whose elastic tensor was parameterized by the Young modulus ycol and the Poisson
coefficient vcol. The mixture obtained is transversely isotropic. Thus, Eq. (2) becomes:

gII(cultra; f II, w II) = 0 (4)

where f II ≡ f ultra
col is the volume fraction of the collagen in the ultrastructure and the vector w II collects the independent

elastic parameters of the collagen and of the mineral foam: w II = (ycol, vcol, yfoam, v foam). In particular, yfoam and v foam
are extracted from the tensor cfoam computed in step I. Eq. (4), encoding a Mori–Tanaka solution scheme, can be explicitly
solved for cultra.

3. Probabilistic multiscale model of bone

3.1. Probabilistic model of the uncertain parameters of the multiscale bone model

Using deterministic models, such as the mean continuum micromechanics model of bone ultrastructure, assumes that
the mechanical properties of the constituents at the microscale are well identified. This requires some experimental mea-
surements at the microscale which can be tricky to be carried out. Consequently, most of the time, information concerning
the elastic properties at the microscale is uncertain. There exist several approaches in order to take into account such
uncertainties among which the theory of probability [34–37] has proved, during last decades, its efficiency and its robust-
ness. In the framework of a parametric probabilistic approach, uncertainties on the constituents at the microscale are taken
into account by modeling the uncertain elastic properties by random variables or by random fields. The uncertainties on a
generic parameter x of the model (Young modulus, Poisson coefficient, etc.) is modeled in substituting x by a real-valued
random variable X . Hereinafter, it is assumed that the probability law of X is defined by a probability density function
x �→ p X (x) on R. The construction of the probability law of the random variables must be carefully carried out because the
probability distributions embed statistical information that must be in accordance with the properties of the mathematical
operators of the boundary value problems involving X and with the values of any given statistical quantities of X [38,39].
Any arbitrary construction of the probabilistic model of X would result in a non-correct probabilistic model of the random
effective elastic tensors. In this paper, the construction of a probabilistic model is carried out in using the MaxEnt princi-
ple [40,41,27,28,42,43]. Hereinafter, we assume that uncertainties only concern a few elastic properties of the mechanical
model introduced in Section 2.1. Concerning the collagen and the mineral, the Young moduli and the Poisson coefficients
are uncertain. Concerning the water, bulk modulus is uncertain. In the following sections, the probability density functions
of the random variables modeling these uncertain parameters are presented.

3.1.1. Probabilistic model of the Young moduli and the bulk modulus
For all r ∈ {col,HA}, the uncertain Young modulus yr is modeled by a random variable Yr with probability density

function pYr . The uncertain bulk modulus kw of water is modeled by a random variable Kw with probability density function
pKw . Let X be either Yr or Kw. The available information is the following: (i) the support of X is SX = [0,+∞[; (ii) the
mean value of X is mX ; (iii) the ellipticity property of the elasticity tensor implies that E(1/X2) < +∞ (see [44]) where E(·)
is the mathematical expectation operator. It can be shown that the MaxEnt principle with the constraints of information
(i)–(iii) yields

p X (x) = 1[0,+∞[(x) c X x(1−(δX )2)/(δX )2
exp

(
− x

2

)
, with c X = mX (δX )−

(δX )2

2 /Γ
(
(δX )−2) (5)
mX (δX )
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where x �→ Γ (x) is the Gamma function. Note that p X depends on the mean value mX and on the dispersion δX = σX/mX

of X , with σ 2
X the variance of X .

3.1.2. Probabilistic model of the Poisson ratios
For all r ∈ {col,HA}, the uncertain Poisson ratio vr is modeled by a random variable Vr with a probability density

function pVr . The available information is: (i) the support SVr = ]−1,1/2[; (ii) the mean value mVr ; (iii) the integrability
condition E((1 − Vr)

2/(1 + Vr)
2(1 − 2 Vr)

2) < +∞. Information (iii) follows from requiring the second-order moments of
the wave velocities to be finite [45]. Then, use of the MaxEnt principle with the constraints of information (i)–(iii) yields:

pVr (x) = 1]−1,1/2[(x)exp

(
−λ0 − λ1x − λ2

(1 − x)2

(1 + x)2(1 − 2x)2

)
(6)

where parameters λ0, λ1 and λ2 are obtained by solving the following system of equations:

1/2∫
−1

x exp

(
−λ0 − λ1 x − λ2

(1 − x)2

(1 + x)2(1 − 2 x)2

)
dx = mVr (7)

1/2∫
−1

x2 exp

(
−λ0 − λ1x − λ2

(1 − x)2

(1 + x)2(1 − 2 x)2

)
dx = (mVr )

2(δVr )
2 + (mVr )

2 (8)

1/2∫
−1

exp

(
−λ0 − λ1x − λ2

(1 − x)2

(1 + x)2(1 − 2x)2

)
dx = 1 (9)

Note that the values of λ0, λ1 and λ2 depend on the mean value mVr and the dispersion coefficient δVr of Vr .

3.2. Probabilistic multiscale model of bone

The probabilistic multiscale bone model is constructed by substituting the vectors of parameters w I = (yHA, vHA,kw)

and w II = (ycol, vcol, yfoam, v foam) by the random vectors W I = (YHA, V HA, Kw) and W II = (Ycol, V col, Y foam, V foam) in Eq. (3)
(homogenization step I) and Eq. (4) (homogenization step II), respectively. Then we have:

gI(Cfoam; f I, W I) = 0 and gII(Cultra; f II, W II) = 0 (10)

Since W I and W II are random variables, tensors Cfoam and Cultra turn out to be random variables as well.
The Monte Carlo numerical method is used in order to solve the system of stochastic equations of Eq. (10). First, for each

statistically independent realizations W I(a1), . . . , W I(aN ), statistically independent realizations Cfoam(a1), . . . ,Cfoam(aN ) of
random tensor Cfoam are calculated by solving the N following equations successively:

gI
(
Cfoam(a1); f I, W I(a1)

) = 0 . . . gI
(
Cfoam(aN); f I, W I(aN)

) = 0 (11)

Then, statistically independent realizations Cultra(a1), . . . , Cultra(aN ) of random tensor Cultra are calculated by solving the N
following equations successively

gII
(
Cultra(a1); f II, W II(a1)

) = 0 . . . gII
(
Cultra(aN); f II, W II(aN)

) = 0 (12)

Statistics on Cfoam and Cultra are then estimated as the corresponding statistics of Cfoam(a1), . . . ,Cfoam(aN ) and
Cultra(a1), . . . , Cultra(aN ).

The solution algorithm, implemented in Matlab code, is schematically depicted in Fig. 2.

4. Numerical results and discussion

The Monte Carlo numerical simulation has been carried out for mean values of the parameters given in [19]. Three differ-
ent values of the dispersion coefficients of the random variables (assumed to be the same for each one) were used, namely
0.05, 0.1, and 0.2. Volume fractions are free parameters (f.p.s) of the model. Values typical of mature, fully mineralized bone
were chosen, namely f I ≡ f foam

HA = 0.9 and f II ≡ f ultra
col = 0.5. All the numerical simulations were performed using a custom

Matlab code.
For N = 104 statistically independent realizations and with dispersion coefficients equal to δ = 0.2 (for each random

variable), the relative error between the mean values of the statistically independent realizations and the mean values of
the random variable was lower than 0.1% for any random variable (but V col, for which this error was 0.2%). Moreover,
the relative error between the dispersion of the realizations and the dispersion of the random variables was lower than
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Fig. 2. (Color online.) Algorithm used for solving the stochastic multiscale model.

Fig. 3. Statistically independent realizations (on the top), mean values (in the middle) and dispersion coefficient (on the bottom) of the axial modulus of
bone ultrastructure in the direction of the osteonal axis (on the left) and in the isotropy plane (on the right) as a function of the number of realizations.
Green, blue, and red markers and lines correspond to a dispersion δ = 0.05,0.1, and 0.2, respectively, of the uncertain parameters. See text for details on
the other input data. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

1.0% for each random variable (but YHA, for which this error was 1.3%). Then, the statistically independent realizations
Cfoam(a1), . . . ,Cfoam(aN ) and Cultra(a1), . . . , Cultra(aN ) were constructed using the multiscale procedure described in Sec-
tion 2. In Fig. 3, results concerning the axial modulus of bone ultrastructure in the direction of the osteonal axis (Y ultra

3 ,
on the left) and in the transverse isotropy plane (Y ultra

1 , on the right) are shown. Results obtained for the other elastic
coefficients show a similar trend (data not shown). Throughout Fig. 3, green, blue, and red markers and lines refer to
δ = 0.05,0.1, and 0.2, respectively.

The probability density functions Y ultra
3 and Y ultra

1 are estimated and shown on the top row of Fig. 3. Black markers
refer to the values yultra and yultra of the axial modulus of bone ultrastructure in the direction of the osteonal axis and in
3 1
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the isotropy plane, respectively, calculated by using the mean continuum micromechanics model. Statistically independent
realizations of Y ultra

3 and Y ultra
1 are distributed around their corresponding mean values irrespective of their dispersion

coefficient δ, spreading out as δ increases. Note that positiveness of the axial elastic moduli follows from the probabilistic
model constructed in the previous section. Relevant statistics of these distributions are shown in the central and bottom
rows of Fig. 3. In the central row of Fig. 3, estimates of the mean values of the statistically independent realizations of
Y ultra

3 and Y ultra
1 (colored solid lines) are shown as a function of the number of realizations. The values yultra

3 and yultra
1 ,

calculated by the mean continuum micromechanics model, are depicted by black dashed lines. In the bottom row of Fig. 3,
the dispersion coefficients of the statistical realizations of Y ultra

3 and Y ultra
1 (colored solid lines) are shown as a function of

the number of realizations. Dispersion coefficients of the uncertain parameters are depicted by colored dashed lines. Two
effects are remarkable. First, it can be observed that yultra

3 and yultra
1 are a good approximation of the mean values of Y ultra

3
and Y ultra

1 . Second, the dispersions coefficients of Y ultra
3 and Y ultra

1 are not equal to the values of the dispersion coefficients
of the uncertain parameters. Interestingly, the dispersion coefficients of both Y ultra

3 and Y ultra
1 are smaller than those of the

random variables modeling the uncertain parameters. Therefore, the statistical fluctuations of the elastic coefficients of bone are
smaller than those of its elementary constituents. We repeated the same calculations for several values of the volume fractions
and obtained always the same trend. This proves the generality of the above conclusions.

5. Conclusions

Lack of patient-specific data and uncertainties affecting available in vivo and in vitro information in bone, especially
at the small scales of its hierarchical structure, may question the reliability of results provided by multiscale models that
use these data to estimate upper-scale properties of bone. The probabilistic multiscale model proposed in this paper aims
at overcoming these difficulties by estimating bone mechanical properties based on a few available data while preserving
robustness of modeling. Suitable probabilistic models for the uncertain parameters are built based on the information that is
actually available (of either experimental or theoretical nature). Therefore, uncertainties affecting the modeling parameters
at the lower scales of bone hierarchy are propagated at the upper scale, ending up with numerically computed probability
density functions of the elastic moduli of bone. Inspection of these results brings out two aspects. First, it is suggested that
the mean model provides good approximations of the mean values of the elastic properties of bone. Moreover, the statistical
fluctuations of the latter are smaller than those of the uncertain parameters, suggesting that the effects of the uncertainties
decrease when calculating the effective properties of bone.

The proposed stochastic multiscale modeling approach also allows computing confidence intervals or bounds. Other
methods exist to compute bounds on the effective parameters. For instance, the use of the Worst Scenario approach would
allow calculating a deterministic value of the effective parameters bounds, whenever these bounds do exist, in carrying out
an adapted interval analysis for each parameter of the mean model. Nevertheless, such a method does not allow propagating
the uncertainties from the lower scale to the upper scales. This is why a probabilistic approach has been used to construct
the probability density function, or the statistics, related to the effective parameters, including the random bounds.

To conclude, a few remarks on the scope and limitations of the proposed modeling strategy are in order. Effectiveness of
continuum micromechanics in modeling bone elastic properties has been proved by Hellmich and co-workers using inde-
pendent sets of experiments (see, e.g., [32]). The basic requirement of multiscale modeling is the so-called scale-separation
principle. This requirement is fulfilled by the three scales considered in this study, see Fig. 1. Besides that, numerical results
are affected by the modeling assumptions at the different scales. The key ingredients of the model are the relative amount,
shape, and elastic behavior of the constituent phases (collagen, mineral, and water). On the one hand, elastic coefficients
were modeled as random variables. Indeed, elastic coefficients are actually effective parameters representing both the elas-
ticity of the constituent phases and the interactions between them. Randomness in their values accounts for the imperfect
knowledge of the effective elastic behavior of bone constituents at the nanoscale which is affected by size effects, cross-link
density, phase-to-phase imperfect adhesion, and so forth. That being the case, the effective elastic coefficients are actually
uncertain parameters of the model and were therefore treated as random variables. On the other hand, relative amount
and shape of constituent phases were treated as free parameters. Volume fractions of bone constituents are supposed to be
known through experimental measurements. Although morphological information on collagen is well acknowledged (step II,
Section 2.1.2), current experimental techniques do not allow one to retrieve accurate information about the morphology
of mineral and water particle in the mineral foam (step I, Section 2.1.1) which were therefore modeled as spherical par-
ticles. Aiming at patient specific modeling, modeling of both amount and morphology of bone constituents needs to be
improved. In a forthcoming work, we will develop a stochastic treatment of the amount and shape parameterization of
bone constituents in order to take into account the incomplete, patient-specific information available through current in
vivo devices.

A last issue concerns the validity of continuum modeling of the mineral foam (step I, Section 2.1.1). Indeed, continuum
mechanics may break down at length scales lower than about a hundred nanometers (the characteristic length of the RVE
of the mineral foam, see Fig. 1) and molecular modeling should be used instead. However, the wealth of information needed
by molecular modeling approaches is completely missing at the current state of knowledge. Continuum mechanics somehow
filters out most of these nanoscopic details and is likely to provide a reasonable accurate modeling of the system.
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