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Instability of flexible tubes conducting fluid, or “garden hose instability”, is a phenomenon
both familiar from everyday life and important for applications, which has been actively
studied. However, previous works did not consider one of the most crucial physical effects
— the dynamical change of the cross-section. We show how to consistently address this
issue by coupling the geometrically exact rod dynamics with the fluid motion via the use
of a constrained Hamilton’s variational principle. We find strong effect of this dynamics on
stability, and derive a variety of exact nonlinear solutions of traveling-wave type.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’instabilité des tuyaux souples avec écoulement interne, ou « instabilité du tuyau
d’arrosage », est un phénomène commun, étudié de longue date, et qui a d’importantes
applications. Cependant, les travaux antérieurs ne tiennent pas compte d’un effet crucial :
la dynamique de la section transversale du tube. Nous montrons comment l’inclure dans
la dynamique en utilisant un principe de Hamilton avec contrainte, couplant la dynamique
d’une tige géométriquement exacte et celle de l’écoulement interne. Nous prouvons
que cela affecte l’instabilité et calculons une classe de solutions exactes de type ondes
progressives.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The phenomenon of instability of a tube carrying a fluid, also known as “garden hose instability”, has been an object of
active research because of its familiarity from everyday life, the fundamental questions it poses, and its practical importance.
A theory of this phenomenon incorporating the dynamics of the combined motion of the tube and the fluid was developed
starting from the 1950s [1,3]. The continuous theory consequently derived in [14] started a steady and active stream of
studies in the area, with large portion of the contributions coming from Païdoussis and collaborators. We refer the reader to
the reviews and monographs [17,20,21,8,15] for details and references. The instability theory by Païdoussis et al. combines
the linearized balance of inertia, centrifugal, Coriolis, and elastic forces due to Euler’s beam-like deformations in a single
equation, assuming that the velocity in the tube is constant. In addition, a connection with the so-called follower-force
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approach, and some lively criticism of the latter, is available in [9]. While this theory had shown good agreement with
experiment on some levels [20,11,5], there are several reasons for improvement. For example, that theory, having divergent
velocities of disturbances for the short-wavelength limit, is difficult to use for the prediction of long-term dynamics in the
unstable regime. In addition, while nonlinear generalizations of the model have been considered [22,21,19,13], it is difficult
to consistently extend this approach to include fully nonlinear motion (twist and bend) in three dimensions. Finally, it is
difficult to extend this theory to consistently take into account the dynamical change of the cross-section, as we will show
below. Some of these drawbacks were addressed in the recent work [2], extending the Kirchhoff rod theory to incorporate
the fluid motion inside the tube, and thus being able to predict full 3D motion in linear and weakly nonlinear regime for
the case of a constant cross-section.

The change of the cross-section caused by the deformations of the tube is the key point of this study. Indeed, the flow of
water in a real-life flexible tube can be severely limited or even completely stopped by a sharp bend in the tube. While it
is possible to consider a prescribed changing cross-section along the tube in the generalization of Kirchhoff’s approach, the
description of the dynamical change of the cross-section has so far been elusive. Previous works have considered the effects
of tube narrowing due to stretching [22,21,19,13]. However, the velocity change accommodating the variation of area was
considered in the quasi-static approximation for the fluid conservation law, whereas we derive the full evolution equation
for velocity. The constriction creates an extra pressure-like term, and this pressure works to undo the bend to its natural
position, thus coupling deformation and fluid flow. As it turns out, this effect has an important implication for the instability
and, additionally, allows for new nonlinear solutions of traveling-wave type that do not exist for a constant cross-section.

2. Cross-sectional dynamics in fluid conducting tubes

To describe the tube dynamics, we shall use the framework of geometrically exact rod theory [23] which is equivalent
to the Kirchhoff rod theory for purely elastic rods. The configuration of the tube deforming in space is defined by: (i) the
position of its line of centroids by means of the map (s, t) �→ r(s, t) ∈ R3, and (ii) the orientation of cross-sections at points
r(s, t). The orientation is defined by using a moving orthonormal basis di(s, t), i = 1,2,3. One possible choice would be
to assume that d1,2 are attached to the tube’s cross-section (assumed to be a compact set of R2 with smooth boundary,
usually a disk) and the third one normal to that cross-section, but not necessarily parallel to rs . However, other choices of
di are possible. The physics, selected by the elastic part of the Lagrangian, selects this basis, defined up to a rigid transform
in SO(3) in symmetry-reduced variables. However, for the physically relevant cases, the moving basis is then described by
an orthogonal transformation Λ(s, t) ∈ SO(3) such that di(s, t) = Λ(s, t)Ei , where Ei , i = 1,2,3 is a fixed material frame.
Note that s is a parameter along the tube and is not necessarily the arc length. The variation of the orientation of the cross-
section, i.e. the relative bend or twist, induces a change of the cross-sectional area, i.e., the area of the section of the tube
perpendicular to the local centerline in the current configuration. The interior of the tube is filled with an incompressible,
inviscid fluid, and we shall approximate the fluid motion by a pure one-dimensional movement from the initial position of
the fluid particle S to its current position at time t denoted as s = φ(S, t). The fluid is thus moving along the tube with
the relative velocity u = φt ◦ φ−1. The velocity of the rod in space is vr = ∂t r and the velocity of fluid is v f = ∂t r + u∂sr,
as follows from time differentiating the position of the rod and a fluid particle at s. The physical variables describing the
evolution of the rod are the local angular and linear velocities in the rod’s frame, ω = Λ−1∂tΛ and γ = Λ−1∂t r, and the
corresponding deformations Ω = Λ−1∂sΛ (Darboux vector) and Γ = Λ−1∂sr. These variables satisfy the compatibility con-
straints that come from equality of cross-derivatives in s and t as:

∂tΩ = ω × Ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω × γ (1)

In order to incorporate the dynamic change of the cross-section, we assume that the cross-section A is defined by a given
instantaneous tube configuration, i.e. is determined by Λ, Λ′ and r′ . Due to the SO(3) invariance of the system, we can posit
a function A = A(Ω,Γ ) which we consider arbitrary, but given. The dependence on Ω comes from the local frame rotating
when the tube bends. The dependence on Γ comes from the change of cross-section due to stretching. That assumption
will break down for the case of a tube with very flexible and easily stretchable walls. If μ is a typical additional pressure
generated by the change of A (see below), R is the typical radius of the tube, E is Young’s modulus of the tube material, and
h the thickness of the wall, then the typical additional deformation is δR ∼ μR2/Eh. For the assumption of A to depend
only on the deformations to be valid, and not to be dependent on other variables, we need δR 	 R , i.e. h 
 μR/E . For
example, for a rubber tube with R = 1 cm and μ ∼ 1 atm, the approximation is valid if h � 10−3 cm. For comparison, latex
balloons and garden hoses have walls ∼10 and ∼100 times thicker.

With this physical approximation in mind and assuming that the fluid inside the tube is incompressible (in 3D), the
volume conservation along the tube reads:

Q t + (Q u)s = 0, Q := A(Ω,Γ )|Γ | (2)

where the extra factor of |Γ | appears since s is not assumed to be the arc length. If A = A(s) is independent of t , and
|Γ | = const, (2) reduces to the conservation law u A = const. This is the equation for velocity used in [22,21,19,13]; however,
that approach is inexact as it neglects the time variation of A and stretch Γ . In addition, setting u ∼ 1/A(Ω) in the
Lagrangian directly leads to badly posed problems needing an artificial regularization, even in 2D. Recall that the local
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velocity of the fluid u(s, t) is measured with respect to the tube. We shall derive all the formulas for an arbitrary dependence
of the Lagrangian � on the variables (ω,γ ,Ω,Γ , u); however, for the purpose of this paper, we shall use:

�(ω,γ ,Ω,Γ , u) = 1

2

∫ (
α|γ |2 + 〈Iω,ω〉 − 〈JΩ,Ω〉 + ρ A(Ω,Γ )|γ + Γ u|2 − λ|Γ − χ |2)|Γ |ds (3)

where I is the local tensor of inertia, α is the linear mass of the tube, ρ is the density of the fluid, and linear elasticity is
assumed through the tensor J and stretch coefficient λ. Here, Ei is the system of coordinate associated with the material
point, with χ = E3 pointing along the axis of the tube. More complex elasticity models can be easily incorporated through
the general formulas derived below; the key physics in the Lagrangian enters through the kinetic energy of the fluid, i.e. the
term proportional to |γ + Γ u|2.

Theorem 1. The complete equations of motion for flexible tubes conducting fluid are
⎧⎪⎪⎨
⎪⎪⎩

Dt
δ�

δω
+ γ × δ�

δγ
+ Ds

(
δ�

δΩ
− ∂ Q

∂Ω
μ

)
+ Γ ×

(
δ�

δΓ
− ∂ Q

∂Γ
μ

)
= 0

Dt
δ�

δγ
+ Ds

(
δ�

δΓ
− ∂ Q

∂Γ
μ

)
= 0, mt + (mu − μ)s = 0, m := 1

Q

δ�

δu

(4)

together with (1) and (2), where Dt := ∂t + ω× and Ds := ∂s + Ω× are the full (material) derivatives.

Proof. The equations of motion are obtained by utilizing the critical action principle:

δ

∫ [
�(ω,γ ,Ω,Γ , u) − μ

(
Q (Ω,Γ ) − (

Q 0 ◦ ϕ−1)∂sϕ
−1)] ds dt = 0 (5)

in which (2) is imposed with the help of a Lagrange multiplier μ(t, s) and with respect to the constrained variations [16,10]:

δω = ∂tΣ + ω × Σ, δγ = ∂tψ + γ × Σ + ω × ψ, δu = ηt + uηs − ηus

δΩ = ∂sΣ + Ω × Σ, δΓ = ∂sψ + Γ × Σ + Ω × ψ (6)

where Σ = Λ−1δΛ, Ψ = Λ−1δr, and η = δφ ◦ φ−1 are free variations. The expression of the constrained variations follows
from the definition of the variables ω,γ ,Ω,Γ , u in terms of the Lagrangian variables Λ, r, φ. The minus sign in (5) is
chosen so that μ(s, t) is proportional to the pressure, and not to the negative of pressure. �

Eqs. (1), (2), (4) form a closed system of equations for the tube with moving fluid inside, with the terms proportional
to μ describing the effect of the cross-sectional dynamics. Eqs. (4) are valid for an arbitrary function A(Ω,Γ ) and arbitrary
Lagrangians. The precise law A = A(Ω,Γ ) depends on the material of the tube and its properties. For unstretchable tubes
like garden hoses, it is reasonable to put A = A(Ω) and, for small Ω , it is natural to posit A(Ω) = A0 − 1

2 Ω T
KΩ , where

K is a symmetric positive definite matrix. We shall additionally assume that this matrix is diagonal K = (K1, K2, K3) for
simplicity. The fact that the area can only decrease with bend and twist can be understood by considering the cross-section
to be an ellipse with a given perimeter; a simple geometric consideration shows that the area of this ellipse decreases when
the ellipse is deformed away from a circle.

Remark 2. In this paper, we focus on tubes of infinite length. The case of a tube of finite length 0 < s < L deserves further
important discussions especially concerning the boundary conditions at the free extremity of the tube, that will reported in
a future work.

Remark 3. In the equations of motion (4), the motion of elastic material is given by the left-invariant quantities (ω,γ ,Ω,Γ ),
since elasticity laws are formulated in the internal body frame. On the contrary, the motion of the fluid is expressed using
the right-invariant quantity u = φt ◦ φ−1, since the motion is formulated with respect to the (moving) tube. Thus, Eqs. (4)
form a mixed system that is neither left nor right invariant.

It is also important to note the effect of viscosity in these considerations. It is common in the works on the subject to
neglect the friction effects in the fluid. Indeed, for a R = 1 cm tube conducting water at U = 1 m/s with the kinematic
viscosity ν = 0.01 cm2/s, the Reynolds number is of the order of Re = RU/ν = 104 
 1. Thus, the inviscid approximation is
justified. For a tube that keeps the elliptical cross-section during dynamics it is possible to incorporate friction in this theory
as the friction term coming from the viscous forces, see [18]. This adds a force in the fluid part of the equation depending
on (Ω,Γ ) and U , and an equal and opposite term acting on the tube’s walls. In this paper, we shall concentrate on the
inviscid theory only; the viscous effects will be considered elsewhere.

In addition to the constriction due to the change of wall geometry, for viscous flows, the curvature of the channel’s
centerline further affects the flow through Dean’s effect [6,7,4], characterized by the parameter D = 2RκRe2, with R being
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the radius of the tube, κ the typical curvature and Re is the Reynolds number. Recent studies have also assessed non-steady
and non-helical flows [12]. For our case, D ∼ 106–108 is so large that no consistent theory is available, although recent
studies for smaller, but still high values of D [24] show that for steady flows, appearance of recirculating vortices makes the
available cross-section smaller, so the fluid can flow only through a narrow area near the wall.

3. Reduction of motion to two dimensions and linear stability analysis

Let us assume that the tube’s motion only occurs in two dimensions, e.g., in the (E1,E3) plane, with χ = E3. In this case,
we can define the local inclination of the tube by the angle φ(s, t). Then, Λ = exp(φE2) and (ω,Ω) = (φ̇, φ′)E2. Denoting
K := K2, the appropriate eigenvalue of K, we will simply use A(Ω) = A0 − KΩ2/2. Using (3), Eqs. (4) become:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
Iφt |Γ |)t − (

(B K + J )φs|Γ |)s + λΓ × χ |Γ | = 0

Dt
δ�

δγ
+ Ds

(
δ�

δΓ
− Q

Γ

|Γ |2 μ

)
= 0, B := 1

2
ρ|γ + Γ u|2 − μ

∂tm + ∂s(mu − μ) = 0, m := 1

Q

δ�

δu
= ρΓ · (γ + Γ u)

(7)

Instability analysis. While the focus of this paper is on the fully nonlinear dynamics, it is interesting to compare with the
linear theory [14,20] to connect to the previous literature. In this paper, for simplicity, we assume that the rod is of infinite
length, as the consideration of linear stability of finite rod must follow a more involved procedure, which will be done in
future work. For now, let us consider the straight equilibrium r0(s, t) = (s,0,0), Λ0(s, t) = I, u(s, t) = u0, μ0(s, t) = 0, and
posit deformations of the form rε(s, t) = (s + εv(s, t),0, εw(s, t)), where Λε(t, s) is the rotation with the angle εφ1(s, t)
about the axis E2. A straightforward calculation shows that v satisfies the wave equation α∂2

t v − λ∂2
s v = 0, so the motion

along the tube is always neutrally stable. The transversal disturbances w(s, t) satisfy:

D1 · D2 w + λ2∂2
s w = 0, D1 := I∂2

t − (
ρu2

0 K/2 + J
)
∂2

s + λ

D2 := (α + ρ A0)∂
2
t + (

3/2ρ A0u2
0 − λ

)
∂2

s + 2ρ A0u0∂
2
ts (8)

The dispersion relation is then obtained by assuming the wave form w(s, t) = W ei(ks−mt) and reducing (8) to an alge-
braic equation D(m(k),k) = 0. Because of the assumption of infinite rod, all k are real, for a finite rod the solution to the
boundary-value problem leads to complex k. We can obtain this dispersion relation from (8) by ∂t → −im, ∂x → ik and
w → 1. Eq. (8) is the analogue of the linear equation considered in [14,20], which in our notation reads:

(α + ρ A0)wtt + ρ A0u2
0 wss + 2ρ A0u0 wst + J wssss = 0 (9)

It has several similarities and discrepancies, that are important to point out. With no fluid inside, (9) reduces to the Euler
beam equation, which has infinite speed of disturbances propagation for k → ∞. In contrast, Eq. (8) reduces to the Timo-
shenko beam equation, which is consistent for all k. For a finite system, 0 < s < L, (9) predicts a critical u0 that depends
on the boundary conditions. Our theory gives similar results, except for the case of “strong instability” for all k > 0 when
u0 > U∗ , as explained below. In addition, the stability is strongly altered when the pipe’s cross-section is allowed to change,
i.e., K > 0, which is the key point of this paper.

Theorem 4. For an infinite tube, the straight configuration is always unstable. There are two cases.

1. For 0 < u0 < U∗ , there is k∗ such that for any 0 < k < k∗ , there is at least one unstable branch m(k), i.e., Im(m(k)) > 0, where:

k2∗ = (α + ρ A0)κu2
0

J + 1
2 K u2

0

, κ = 3

2

ρ A0

ρ A0 + α
−

(
ρ A0

ρ A0 + α

)2

> 0 (10)

2. For u0 > U∗ , there is at least one branch of m(k) that is unstable for all k > 0.

Proof. We start by rewriting the dispersion relation implicitly (after some considerable algebra) as:

k2(g) = F (g)

G1(g)G2(g)
, where

F (g) = 2λ
(
2(α + ρ A0)g2 − 4ρ A0u0 g + 3ρ A0u2

0

)
G1(g) = 2αg2 − 2λ + 2ρ A0 g2 − 4ρ A0 gu0 + 3ρ A0u2

0
G2(g) = 2I g2 − (

2 J + Kρu2
0

) (11)

For any real k > 0, the stable solution will have four real roots g = g(k) as given by (11). If these roots are real, the system
is stable. The roots are real if and only if the line k2 = const intersects the graph of (11) in four distinct points. One can see,
however, from analyzing explicit formula (11) that for k < k∗ only two solutions exist. The minimum of the function k2(g)

is found analytically, giving (10). For large values of u0, the equation has only two real roots for any k > 0, so at least one
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Fig. 1. Left: Nonlinear traveling waves: circles (left) and circular arcs (right). Top figure: geometric shape of the tube; bottom figure: φ(x). Right: Three scaled
solutions from (14) (solid black lines) for different M (practically indistinguishable) and M → 0 limit (dashed line).

Fig. 1. Gauche : Ondes progressives non linéaires : cerles (gauche), arcs circulaires (droite). Figure du haut : configuration spatiale du tube : figure du bas
φ(x). Droite : Trois solutions normalisées de (14) (courbes noires continues) pour différents valeurs de M (pratiquement indiscernables) et pour la limite
M → 0 (courbe en pointillés).

branch of dispersion relation has Im(m(k)) > 0 (another one will be complex conjugate to that one). The change from two
to four roots happens exactly at u0 = U∗ above. �

Note that an infinitely long system is unstable, but the instability of a finite system typically occurs if L is sufficiently
large, k∗ � 2π/L. A quick estimate shows that for K = 0, this estimate is close to the critical value found in [14]. In future
work, we will extend that analysis to our system. It is important to emphasize that the important new effect is the change
of stability as given by (11), due to cross-sectional dynamics when K > 0. If K is large, then k∗L will remain small for all
u0, and the instability will happen through the second case of Theorem 4.

4. Fully nonlinear solutions: traveling waves

In what follows, we derive and analyze exact solutions of (7) of traveling-wave type. Here and below, we will assume
inviscid flow for simplicity. If we posit that all variables depend on x = s − ct , then ∂t = −c∂x and ∂s = ∂x . We have the
relationships between temporal and spatial variables as γ = −cΓ , ω = −cΩ , and correspondingly, Eqs. (1) are satisfied
automatically. This allows us to eliminate Ω and γ in all equations, keeping only φ and Γ as variables. Conservation of
mass — the fourth equation of (7) — integrates once and gives Q (u − c) = G = const, where G is the volume flux of the
fluid. The fluid momentum equation (third equation of (7)) also integrates once, using the boundary conditions μ → 0 as
x → ±∞ gives μ = ρG2(A(φx)

−2 − A−2
0 ) > 0, so the pressure increases due to deformations. The balances of angular and

linear momenta from (7) become, respectively:

((
Ic2 − (B K + J )

)
φx|Γ |)x + λΓ × χ |Γ | = 0, where B(φx) = ρG2

(
1

A2
0

− 1

2A(φx)2

)
(12)

Γ

2|Γ |
(

c2 Iφ2
x + 3ρ

G2

A(φx)
− Jφ2

x − λ|Γ − χ |2
)

+ 3

2
αc2Γ |Γ | − λ(Γ − χ)|Γ | − μQ Γ |Γ |−2

= M(cosφ,− sin φ)T (13)

Here, M is an integration constant having the dimension of energy, and the physical meaning of the absolute value of
the momentum flux. Eq. (13) is an algebraic equation for Γ for given values of φ and φx . Given the constants (M, G),
Eqs. (12)–(13) form a closed algebraic-differential system. Let us now find the solutions of these equations for arbitrary M .

Lemma 5 (M = 0 case). Eq. (13) with M = 0 only has weak solutions for φ(x), which are piecewise linear functions in x, consisting of
φx(x) = 0 and φx(x) = p = const defined from B(p)K = Ic2 − J , with B(p) given by (12).

Proof. When M = 0 in (13), we see that Γ must be parallel to χ . Multiplying this equation by an arbitrary test function
v(x), integrating from x = −∞ to +∞ and performing one integration by parts, we get

∫ ∞
−∞(Ic2 −(B(φx)K + J ))φx|Γ |vx = 0,

where we have used φ → 0 as x → ∞. Since v(x) is arbitrary, all the weak solutions are given by φx = 0 or φx = p = const,
with p satisfying B(p)K = Ic2 − J . �

Note that the solution with φ′(x) = p = const forms a circular arc. These solutions can be put together in arbitrary
combinations, the simplest one being a propagating circle connecting to two straight lines as illustrated in the left part of
Fig. 1. Once φ(x) is determined, Γ (x) = Γ (x)χ is computed from the algebraic equation (13).

If M �= 0 in (13), further exact analytical progress is difficult. While it is possible to solve the system as differential-
algebraic equations, we make the physical assumption that due to high stretch resistance of the rod, i.e. λ 
 1, the
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stretching is small. Using the asymptotic expansion of Γ in 1/λ around χ , and inserting it in (13), we obtain that
Γ · E1 = λ−1M sin φ + o(λ−1). Thus, Eq. (12) (up to order o(λ−1)) becomes:

((
Ic2 − (

B(φx)K + J
))

φx
)

x − M sin φ = 0 (14)

It is possible to find exact solutions of (14) in quadratures. We do not present this solution here, but plot several scaled
solutions (see below) on the right-hand part of Fig. 1. As it turns out, there is a universal shape describing these solutions
after proper scaling with a high accuracy for arbitrary M �= 0.

Assume that M > 0; if M < 0, the change φ → φ + π reverses the direction of the flow and reflects the solution about
the x-axis, changing M → |M| > 0. In the limit M → 0, when the loop becomes very large and the change of φ(x) is slow,
under rescaling x → X/

√
M , φx → √

MφX → 0 and B(φx) → B(0) = B0, so (14) assumes the limiting form with M = 1 and
A = A0. To illustrate this, the right-hand part of Fig. 1 shows the collapse of scaled spatial solutions of (14) to a single
shape, well approximated by the universal solution shown with a dashed line.

It is worth noting that when the cross-section of the tube is constant, i.e. K = 0, the only solutions with M = 0 are
φ = 0. The solutions with M �= 0 preserve their loop-like appearance and scaling, but are different from those discussed
here. Traveling solutions for the inextensible and unshearable rod can be found as well, giving exactly (14). Thus, the
solutions in the limit of λ → ∞ converge to those of inextensible and unshearable rod, as expected.

We shall also mention that a simple physical model can be constructed as an elastic chain of heavy rigid tubes with the
fluid velocities depending on the relative orientation between the neighboring tubes. Even for two links, such a model shows
a highly non-trivial behavior, overcoming the stabilizing effects of gravity and elasticity. These models will be described in
more details in our future work.
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