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In this work, we show that the well-known Rowe’s stress-dilatancy relation can be readily
recovered from a micromechanical analysis of an assembly of rigid particles as a purely
dissipative system in the case of a regular packing. When the analysis is extended to a
random packing, one can explicitly incorporate the dependence of fabric, density and stress
level on dilatancy, a basic aspect of geomaterial behaviour. The resulting microstructurally
based stress dilatancy relation can be easily implemented as a non-associated flow rule
in any standard elastoplastic model. Some numerical simulations of stress-dilatancy with
initial fabric as a controlling variable are presented to illustrate the developed model.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On démontre dans cet article la loi de dilatance de Rowe à partir d’une analyse
micromécanique sur un assemblage régulier de particules rigides purement dissipatif. Dans
le cas d’un assemblage aléatoire de particules, on peut faire apparaître dans l’écriture de la
dilatance l’effet de la texture, de la densité et du niveau de contrainte, une caractéristique
importante des géomatériaux. La loi de dilatance issue d’une analyse micromécanique entre
dans un modèle élastoplastique par l’intermédiare d’une règle d’écoulement plastique non
associée. Les différents aspects du modèle sont illustrés sur plusieurs exemples démontrant
l’effet de la texture initiale sur la dilatance.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The shear strength of non-cohesive granular soils is strongly influenced by the phenomenon of dilatancy first revealed
by Reynolds [1] far back in 1885, and later framed within the stress-dilatancy theory worked out by Rowe [2]. However,
the term dilatancy is usually loosely defined as shear induced volumetric expansion without any due reference to its mi-
cromechanical origin. In fact, upon shearing, any ensuing volumetric expansion arises from geometrical constraints imposed
by the grain rearrangement against applied stresses, even in the absence of interparticle friction, see for instance [3].
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Because of the intrinsic coupling between particle arrangement and volume change through important micro-kinematics
such as relative sliding and rolling of particles, dilatancy and fabric are intimately linked, and as such, control material
strength. This important theoretical issue has led to the systematic effort of working out continuum plasticity formulations
derived from micromechanics in order to incorporate some level of particulate microstructure. There are several papers in
the literature following this line of study. Among these, we recall C.S. Chang’s numerous important contributions to the
micromechanical analysis of granular materials, including homogenization approaches, through a series of publications such
as among others: [4–6]. In the case of plasticity of granular materials, we recall the work by Chang and Hicher [7] in which
the authors develop a plasticity model with embedded microstructural information. Their technique uses phenomenological
plasticity to describe the complex interacting mechanisms such as rotation and sliding at the particle level, and thereafter
upscale the analysis to the continuum level through homogenization.

The present work adopts an alternative approach based on a micromechanical representation of stress-dilatancy in an
ensemble of rigid particles. The micromechanically developed stress-dilatancy relation then enters any standard elastoplas-
ticity model as a flow rule. One merit of this approach is that the formulation naturally gives rise to non-associative plastic
yield and flow, as well as plastic strain softening material properties that are intrinsically a function of microstructure.

To set the stage, we show that a simple micromechanical model based on an assembly of rigid particles as a purely
dissipative material leads to the well-known Rowe’s stress-dilatancy relation for the case of a regular assembly. When the
formulation is extended to a random packing, one can explicitly incorporate one of the basic properties of geomaterials, i.e.
the dependence of dilatancy on fabric, density and stress levels.

2. Microstructural analysis of stress dilatancy

We herein briefly recall the stress-dilatancy theory as a prelude to subsequent developments. In soil mechanics, the
dilatancy behaviour of granular soils is usually described within Rowe’s stress-dilatancy theory (Rowe, [2]). By minimizing
the ratio of the rate of work done on an assembly of particles by the major principal stress to the rate of work done by the
minor principal stress, Rowe arrived at his celebrated dilatancy equation, i.e.

σ1

σ3
= K D; K = tan2(45◦ + ϕμ

); D = 1 − dε
p
v

dε
p
1

(1)

where ϕμ = interparticle friction angle, dε
p
v = increment of plastic volumetric strain, dε

p
1 = increment of axial plastic strain,

whereas σ1 and σ3 are applied major and minor principal stresses respectively. Eq. (1) indicates that the dilatancy term D
is simply a linear function of the applied stress ratio through the interparticle friction angle. However, in comparison with
experimental observations, it is clear that dilatancy is also a function of fabric, density of packing and stress level during
loading history. These dependencies vitiate the predictive capability of Rowe’s’ stress-dilatancy model Eq. (1). As such,
there have been since many works on stress-dilatancy towards addressing the above-mentioned shortcomings, among many
others, see [8–10].

As for dealing with fabric changes during the dilatant phase of sand deformation, Dafalias and Manzari [11] used a
bounding surface plasticity framework with the plastic modulus degrading with fabric. Other approaches which are still
macroscopic in nature focus on capturing detailed particle mechanics such as the double sliding model [12]. Since fabric
operates directly on the way dilatancy is manifested during loading history until material failure, Wan and Guo [13–15],
and Guo and Wan [16] follow a procedure in which fabric is explicitly embedded into a stress-dilatancy relationship via
micromechanical analysis. It is this latter approach that will be presented here from both a micromechanical and physical
vantage point. Hence, the starting point is the identification of micro- and macro-variables followed by the writing of the
conservation of energy at both scales. As such, a stress dilatancy relationship involving microstructural variables such as
fabric can be derived.

3. Preliminaries — micro–macro relationships

Consider a REV of volume V containing an assembly of rigid particles represented by a network of branch vectors �
linking centres of two contacting particles. While the connectivity of particles is represented by a so-called graph of branch
vectors that describes the granular structure of the REV, it is also essential to describe the relationship between local (micro)
and global (macro) variables by using a homogenization or an averaging technique.

As such, following the above-mentioned procedure, we can easily derive, for N contacts in the given REV, the well-known
relation between Cauchy stress (σ ) and contact force (f), as originally introduced by Love [17], i.e.

σ = 1

V

N∑
f ⊗ � (2)

The inverse relationship can be obtained by a linear projection rule where the local variable is extracted as a projection
of the global field along the branch vector characterizing the contact between two particles [18], i.e.

f = σ · F−1 · �; F = 1
N∑

� ⊗ � (3)

V
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where F is a second order tensor that describes the distribution of branch vectors, a characteristic of the granular structure
of the medium, i.e. its fabric.

Defining a nominal stress σ ∗ = σ · F−1 (Cauchy stress factored with fabric), we anticipate that the contact force vector
f between two particles can be obtained as a projection of the nominal stress along the local branch vector � as conveyed
in Eq. (3). Here, the nominal stress σ ∗ can be interpreted as a global measure of internal forces between particles together
with a representation of their interconnectivity.

Similarly, considering the conservation of energy at both scales and following a minimization of the error due to the
linear projection assumption [18,6], strains (ε) can be determined from local variables such as relative displacements (�u),
i.e.

�u = ε · � or ε = 1

V

N∑
�u · F−1 · � (4)

We note that the kinematic localization in Eq. (4) refers to an affine projection that may be restrictive, especially when
the meso-structure intervenes. Having established the link between macro- and micro-statical variables, we now examine
sliding at the particle contact scale where tangential ( ft) and normal forces ( fn) act against interparticle friction angle ϕμ .
Relative sliding will be initiated as soon as the tangential contact force ft reaches its limiting value, i.e. when ft = fn tanϕμ .

In general, for a given contact of orientation n, the tangential and normal contact forces can be defined as:

fn = f · n; ft = f · t; f = σ · F−1 · � (5)

where the unit vector t is contained in the plane of contact such that:

t · n = 0; t · t = 1; n · n = 1 (6)

As such, the direction of local sliding contained in the tangential plane follows as:

ft

fn
= f · t

f · n
= tanϕμ ⇒ f · (t − μn) = 0 (7)

where μ = tanϕμ is the coefficient of friction between two particles. If we express the vector f as a linear combination of
directions n and t, and applying the orthogonality condition in Eq. (7), we obtain:

f = fn(μt + n); fn = ‖f‖ cosϕμ (8)

4. Stress-dilatancy through a purely dissipative formulation

The essential idea is to express the energies at the two scales in order to eventually recover an analytical expression that
describes stress-dilatancy in terms of microstructural parameters. More precisely, the work input to deform the material
within an increment of strain is transferred down to the particle level, and noting Eqs. (3) and (4), we get:

σ · ε̇ = 1

V

N∑
f · �u̇ = 1

V

N∑(
σ · F−1 · �) · (ε̇ · �) (9)

If a distinction is made between the number of contacts that slide (Ns) and those which remain intact (N s̄), and noting
Eq. (8), Eq. (9) can be re-written as:

σ · ε̇ = (
F̄ + σ · F−1 · ¯̄F) · ε̇ (10)

with

F̄ = 1

V

Ns∑[
fn(μt + n)

] ⊗ � and ¯̄F = 1

V

Ns̄∑
� ⊗ � (11)

The tensor F̄ represents a stress quantity that arises from particle contacts which slide according to a certain statistical

distribution. On the other hand, the tensor ¯̄F refers to the fabric tensor, except that it is calculated based on the network
of contacts that do not slide. Therefore, we can ideally define two networks of particle connectivity, namely a strong and
a weak one [19] that would develop during deformation history. Any force chains showing magnitudes of above- and
below-average forces would constitute a strong and weak network respectively.

5. Two-dimensional case

Without any loss in generality, we consider a simple 2-D example in which Eq. (10) indeed reduces to Rowe’s stress-
dilatancy [2]. Consider a REV subjected to a biaxial state of stress (σ1, σ2) as illustrated in Fig. 1. During the course of
loading, some particles will slide, while others will remain intact. When a plastic limit state is reached, a saw-tooth failure
surface AB develops which can be smoothened into a mean plane in which sliding occurs along the resultant of all local
slip directions occurring at particle contacts. The energy dissipated in the REV at failure is thus equal to the sum of all local
frictional dissipation occurring between particles on the failure surface.



R. Wan, P. Guo / C. R. Mecanique 342 (2014) 198–207 201
Fig. 1. (Color online.) Notion of failure surface: local and global sliding in a REV.

Fig. 2. (Color online.) Failure surface in the case of a regular packing.

5.1. Case of a regular assembly of particles

Upon further expanding Eq. (10), we arrive at three terms:

σ · ε̇ = 1

V

Ns∑
μ fnt · ε̇ · � + 1

V

Ns∑
fnn · ε̇ · � + 1

V

N s̄∑(
σ · F−1 · �) · (ε̇ · �) (12)

When the plastic limit state is reached, the first term of the right-hand side of Eq. (12) pertains to the energy dissipated
at sliding contacts that concentrate mainly along the failure surface AB. The second term refers to the work done by contact
forces normal to AB, while the last term arises from the homogenization process and relates to the work done by non-sliding
contacts outside AB. Before examining the case of a random microstructure, let us consider a regular packing in which the
global failure surface coincides with the local interparticle sliding directions, see Fig. 2.

As such, by choosing an elementary volume adjacent to the failure surface AB with stresses acting on each face of the
element, each term in Eq. (12) can be written explicitly as:

1

V

Ns∑
μ fnt · ε̇ · � = 1

V

Ns∑
ft�u̇t ≡ σtnε̇tn

1
Ns∑

fnn · ε̇ · � = 1
Ns∑

fn�u̇n ≡ σnnε̇nn

V V
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1

V

Ns̄∑(
σ · F−1 · �) · (ε̇ · �) = (σ · ε̇)internal ≡ σttε̇tt (13)

Herein, the plastic dissipation is restricted to the sliding plane AB, where only relative tangential displacement (�u̇t)

occurs, while the associated normal component is zero. Thus,

σ · ε̇ = σttε̇tt + σtnε̇tn

=
(

σ1 + σ2

2
+ σ1 − σ2

2
sinϕμ

)(
ε̇1 + ε̇2

2
+ ε̇1 − ε̇2

2
sinϕμ

)

+
(

σ1 − σ2

2
cosϕμ

)(
ε̇1 − ε̇2

2
cosϕμ

)
(14)

since the operative friction angle on plane AB is equal to ϕμ . Generally speaking, this friction angle should be denoted as
ϕf which is a characteristic of the local particle arrangement and does not coincide with ϕμ . This will be demonstrated
analytically through micromechanical calculations in later sections of this paper.

Finally, noting σ · ε̇ = σ1ε̇1 + σ2ε̇2, and advocating the Mohr–Coulomb failure criterion together with the introduction
of a dilatancy angle ψ such that sin ψ = −(ε̇1 + ε̇2)/(ε̇1 − ε̇2), we finally obtain the well-known Rowe’s stress-dilatancy
relation in 2-D:

sinψ = − (ε̇1/ε̇2 + 1)

(ε̇1/ε̇2 − 1)
= sinϕm − sinϕμ

1 − sinϕm sinϕμ
(15)

where the mobilized friction ϕm is determined from sinϕm = (σ1 − σ2)/(σ1 + σ2).
It is interesting to note that Rowe [2] had originally pointed out that the friction angle ϕμ appearing in Eq. (15) refers

to a dense packing and should be replaced with ϕcv, the friction angle at critical state, for a loose packing. By extension to
an arbitrary particle packing, we can intuitively replace ϕμ in Eq. (15) with the characteristic friction angle ϕf . This will be
formally demonstrated next.

5.2. Case of a random particle packing

Let us consider the case of a random particle assembly for which the failure plane develops along the mean direction β̄

defined as the resultant of all local particle sliding directions, see Fig. 1. The summation of all contact forces in the failure
plane gives the resultant force vector with the ratio of the normal to tangential component equal to tan(ϕf + β̄). Hence, the
characteristic friction angle ϕf can be determined. The latter angle necessarily varies with the topology of the failure plane,
the stress level, as well as the number of sliding contacting particles that eventually lose contact. If all particles were to
slide along the same direction, we would recover the regular packing case for which ϕf = ϕμ .

Consider a given contact (k) with the tangent plane oriented at an angle β(k) with the vertical. The contact will not slide
as long as the ratio μ

(k)

mob of tangential over normal force remains less than μ = tanϕμ . Thus, noting Eq. (3), we get:

μ
(k)

mob = f (k)
1 cosβ(k) − f (k)

2 sinβ(k)

f (k)
1 sinβ(k) + f (k)

2 cosβ(k)
= σ11 F −1

11 l(k)
1 cosβ(k) − σ22 F −1

22 l(k)
2 sinβ(k)

σ11 F −1
11 l(k)

1 sinβ(k) + σ22 F −1
22 l(k)

2 cosβ(k)
(16)

If we further consider that the branch vectors are collinear with the normal to the contact plane, then l(k)
1 = sin β and

l(k)
2 = cosβ . By defining a nominal stress σ ∗ = σ · F−1 which accounts for fabric, let us introduce a nominal friction angle

such that sin ϕ̄∗
m = (σ ∗

11 − σ ∗
22)/(σ

∗
11 + σ ∗

22). Thus, reorganizing Eq. (16), we get:

μ
(k)

mob = sin ϕ̄∗
m sin 2β(k)

1 − sin ϕ̄∗
m cos 2β(k)

(17)

Next, we can determine all orientations β(k) of local contact planes that will potentially slide by applying the slip
condition μ

(k)

mob > μ to Eq. (17). As such, we find a range of sliding angles β(k) bounded by βmin and βmax whose values are
given by:

βmin = 1

2
sin−1

(
sinϕμ

sin ϕ̄∗
m

)
− ϕμ

2
; βmax = π

2
− 1

2
sin−1

(
sinϕμ

sin ϕ̄∗
m

)
− ϕμ

2
(18)

Under deviatoric loading, the nominal friction angle ϕ̄∗
m is gradually mobilized until it reaches a value ϕμ when a failure

plane emerges in the direction β = π/4 − ϕμ/2, which coincides with the classic Coulomb’s solution. For values of ϕ̄∗
m

larger than ϕμ when more particles slide with respect to each other, the difference δβ between βmin and βmax is reduced,
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Fig. 3. (Color online.) Evolution of contacts from initial state to peak for rods of oval cross-section (data after Oda et al. [20] and Konishi et al. [21]).

Fig. 4. (Color online.) Directional distribution of sliding contacts at various shear stresses (data after Alonso-Marroquin et al. [23]).

i.e.

δβ = βmax − βmin = π

2
− 1

2
sin−1

(
sinϕμ

sin ϕ̄∗
m

)
(19)

In fact, δβ varies between zero (when sliding is initiated) and (π/2−ϕμ) (when sin ϕ̄∗
m reaches its maximum value of 1).

There are both experimental and numerical supports for the validity of Eq. (19). For instance, Oda et al. [20] and Konishi
et al. [21] observed in a series of biaxial compression tests on assemblies of oval cross-sectional rods that the evolution of
contacts with relative sliding and rolling was limited over a certain range of orientations with 0 � β � (π/2 −ϕμ) as shown
in Fig. 3. More experimental evidence which confirms that relative particle sliding occurs at 0 � β � (π/2 −ϕμ) can also be
found in Calvetti et al. [22]. We also note that, within the framework of discrete element simulations of biaxial compression
tests, the same range of sliding contact orientations as in the above is confirmed.

Fig. 4 shows the directional distribution of the sliding contacts at different shear stress levels (Alonso-Marroquin et
al. [23]) where the range of sliding contact orientation increases with shearing and βmax gradually approaches (π/2 − ϕμ).

In keeping with Eq. (19), it is convenient to consider a mean direction for sliding defined as:

β̄ = 1

2
(βmax + βmin) = π

4
− ϕμ

2
(20)

to define the macroscopic failure plane. On such a plane oriented at an angle β̄ with the major principal stress direction,
we can systematically define a nominal or characteristic friction angle ϕf by integrating local slips along all contact planes
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Fig. 5. Distribution of contacts with respect to principal stress directions.

contained between orientations βmin and βmax. In particular, we consider a distribution of contact normals (n) with a classic
probability density function p(n) (Rothenburg and Bathurst [24]) from a Fourier series, i.e.

p(n) = 1 + 
 cos 2(β − β0) (21)

where β is the angle that the contact plane between two particles makes with the major principal stress direction, see
Fig. 5. The direction of major contacts normals is given by β0, while the parameter 
 represents the degree of anisotropy
of the particle packing.

By applying the distribution represented in Eq. (21) to all contacts satisfying the slip condition ( f (k)
1 / f (k)

2 ) =
tan(ϕμ + β(k)), and integrating between βmin and βmax, we get:

μf = tanϕf � 1

δβ

δβ/2∫
−δβ/2

tan(ϕμ + β)
[
1 + 
 cos 2(β − β0)

]
dβ

= 1

δβ

ln
cos(ϕμ − δβ/2)

cos(ϕμ + δβ/2)
+ 


6

[
tan

(
ϕμ + δβ

2

)
cos(δβ − 2β0)

+ tan

(
ϕμ − δβ

2

)
cos(δβ + 2β0) + 4 tanϕμ cos 2β0

]
(22)

It is noted that the friction angle ϕf reaches its minimum and maximum value when δβ = 0 and δβ = π/2 − ϕμ respec-
tively, i.e.

tanϕfmin = lim
δβ→0

tanϕf � (1 + 
 cos 2β0) tanϕμ (23)

tanϕfmax � 1
π
2 − ϕμ

ln
cos(π

4 − 3ϕμ

2 )

cos(π
4 + ϕμ

2 )
+ ξ sin 2β0 + 2(ξ sinϕμ + 1) tanϕμ cos 2β0

3

 (24)

where ξ = cos2 ϕμ/(sinϕμ + cos 2ϕμ).
We next link the anisotropy parameter 
 to the fabric tensor F defined by Satake [25] as:

Fij = 1

2π

2π∫
0

p(n)nin j dβ (25)

and noting Eq. (21),

F11 − F22

F11 + F22
= 1

2

 cos 2β0; F12 = F21 = 1

4

 sin 2β0 (26)

The fabric tensor is generally non-coaxial with the stress tensor. The direction of major principal fabric makes an angle
of β0 with the minor principal stress (σ2). Hence, the components of the major fabric tensor are given as:

F1 − F2 = 1

 ; F1 + F2 = 1 (27)
F1 + F2 2
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Fig. 6. Dilatancy response of sand as a function of initial fabric as computed from enriched stress-dilatancy equation.

Finally, inserting Eqs. (26), (27) into (23) and making some approximations, we get:

sinϕfmin � F22

F11
sinϕμ (28)

In general, ϕf tends to its limiting value ϕcv when plastic deviatoric strains γ p develop at the critical state. Furthermore,
noticing Eq. (28) which shows a dependence on fabric, we can put forward a phenomenological evolution law for ϕf such
as:

sinϕf = X F22/F11 + γ p

a + γ p sinϕcv (29)

where X and a are constants. We can further incorporate the influence of density (void ratio) by adding a void ratio
dependent factor, i.e.

sinϕf = X F22/F11 + γ p

a + γ p

(
e

ecr

)nf

sinϕcv (30)

where nf is an exponent and ecr is the void ratio at critical state.
Thus, by means of the substitution ϕμ → ϕf into Eq. (15) which far back in this contribution referred to the original

Rowe’s stress-dilatancy relation, Eq. (30) enriches the original stress dilatancy relation in that it now accounts for additional
dependencies such as fabric (F22/F11), density (e), and the stress level (ecr depends on the mean stress p).

Accordingly, as proposed in Wan et al. [26], it is possible to further generalize the stress-dilatancy equation to a three-
dimensional case as:

sinψm = sinϕm − sinϕf

1 − sinϕm sinϕf
; sinϕf = αf + γ p

α0 + γ p

(
e

ecr

)nf

sinϕcv (31)

where ψm is the mobilized dilatancy angle, ϕm is the mobilized friction angle as a function of stresses, α0 is a constant,
and the fabric dependency is provided through αf given by:

αf = χ

(
1

p
F : σ

)−1

sinϕcv (32)

with χ being a proportionality constant. The relation in Eq. (31) with embedded fabric, stress and density levels enters in
any standard elastoplastic model as a plasticity flow rule.

6. Stress dilatancy as a function of initial fabric

As an illustration of the capabilities of the enriched stress-dilatancy relation, some numerical simulations obtained within
the framework of an elastoplastic model are herein presented. The interested reader is directed to a series of publications
[8,9,13–15] in which Eq. (31) was implemented into an elastoplastic model with various degrees of complexity.

Fig. 6 depicts the computed dilatancy response of Ottawa sand starting with the same initial density and confining stress
(e0 = 0,65, σ3 = 200 kPa), but with a different initial fabric for each triaxial compression test. The initial fabric is described
by the principal fabric components (F1 and F 3) of the fabric tensor as well as its principal directions (θ in Fig. 6). The
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Fig. 7. Influence of initial fabric (bedding plane orientation) on the stress-volumetric response.

principal fabric ratio Ω = F1/F3 is introduced to refer to the degree of initial anisotropy, while the angle θ corresponds
to the major direction of orientations of interparticle contact planes in space. In fact, the angle θ is closely linked to the
bedding angle of the particles during sample preparation. Different sample preparation methods lead to different initial
fabrics, hence, justifying this study as different stress strain responses and strength characteristics of sand will be observed
accordingly. Fig. 6 displays different characteristic dilatancy curves in the space as a function of. It is noted that, in contrast
to the above, Rowe’s equation (Eq. (1)) gives a straight line in the same space (R, D), irrespective of the initial density,
confining stress and fabric. In fact this non-uniqueness in the characteristic dilatancy curve with respect to operative state
variables is essential in describing the correct behaviour of sand, especially in the cyclic loading regime, as previously
demonstrated in Wan and Guo [14].

In line with the various stress-dilatancy responses displayed by the model for different initial fabric, but with the same
initial void ratio, the corresponding stress and volumetric strain responses are shown in Fig. 7. The influence of fabric is
clearly demonstrated since a wide range of material response is obtained. For example, for a vertical bedding plane that is
parallel to the direction of major principal stress, both the peak strength and shear dilation responses are subdued. In fact,
a vertical bedding plane signifies that there are more contact normals oriented horizontally than in other directions, so that
the specimen appears to be weaker in the vertical direction. Hence, there is a high potential for volume changes to occur.

If on the contrary, the bedding plane is set to be horizontal, i.e. most contact normals are oriented in the vertical direc-
tion, then the material appears to be overly strong with higher stiffness and higher peak strength, hence more producing
volume dilation. The stress-volumetric trends shown in Fig. 7 concur well with experimental observations [27] where the
bedding plane in a triaxial test on sand was varied while keeping the same initial void ratio.

7. Conclusions

The present study shows that Rowe’s stress-dilatancy relation can be generalized to include the effect of fabric, stress and
density levels by investigating a two-dimensional granular assembly with random packing. This is accomplished by working
out rigorously the local sliding planes through principles of the micromechanics of granular media. The stress-dilatancy
equation that is developed in this work enters any continuum plasticity model as a non-associated flow rule with plastic
softening governed by fabric, stress and density levels. Some of the numerical simulations presented in this paper illustrate
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how initial fabric influences the stress-volumetric response of sand as observed in laboratory experiments. The predictive
capabilities of this enriched stress-dilatancy relation provides only part of a larger picture of the general topic of failure in
granular materials involving nonlinear material behaviour and stability such as strain localization and diffuse failure. The
ingredients of the model have been seen to provide mathematical sources of material instability as demonstrated in recent
publications, see Wan et al. [26,28].
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