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This paper discusses the notion of failure in a granular assembly by examining the
key microstructural mechanisms which are most likely to trigger the nucleation and
propagation of instabilities within a granular material. For this purpose, the key variable
to predict the occurrence of failure, known as second-order work, is expressed from
variables on the grain scale. The local behaviour incidents (where contacts may open
or slide), compared to the global response of the assembly, are analysed by two
approaches. First, numerical computations made by a discrete element model confirm
the microscopic definition of the second-order work. Secondly, a micromechanical model,
based on a homogenization procedure, relating the macroscopic behaviour to microscopic
ingredients, namely contact planes, points to a close link between the occurrence of failure
on the macroscopic scale as well as on the contact planes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is of vital importance to geotechnical practice to understand the modes of failure in granular materials. The practical
question is how a granular system such as a foundation or a talus in a state of mechanical equilibrium can continue to
withstand the external loads acting at the boundary and in the bulk of a system in response to a perturbation in the
loading conditions or in the system characteristics, e.g., weakening of a material strength parameter. The perturbations may
have different origins, such as seismic loading or accumulation of grains by sedimentation, which can act as extra loads
on the structure, and various environmental disturbances with a weathering effect on the material, such as grain damage
by weathering or contact lubrication, loss of grains by erosion leading to a looser state of the grain assembly. In general,
both types of perturbation may be treated in a common framework by normalizing the external loads with the appropriate
strength parameters of the system.

The system is stable if small stress increments δσi j are accommodated by small deformations δεi j at every point of the
system, so that the new equilibrium state is close to the undisturbed state. The grain-scale process underlying this transition
between two consecutive equilibrium states is generally stochastic due to disorder and unilateral contacts between grains,
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but if the stress and strain variations have a finite average value, a tangent constitutive tensor Dijkl = δσi j/δεkl can be
defined from their ratio in the macroscopic limit. Hence, the existence and uniqueness of this tensor defines tautologically
a quasistatic path as opposed to a dynamic (unstable) evolution, irrespective of the nature of deformations.

In a conservative system (elastic deformations only), the stresses derive from a potential function ψ (σi j = dψ/dεi j)

so that a stable equilibrium state, corresponding to a local minimum of ψ , is characterized by the positive definiteness
of the constitutive tensor, i.e. Dijklδεi jδεkl > 0. This is no more and no less than the expression of the second-order work
W2 = Dijklδεklδεi j = δσi jδεi j , whose positivity was first shown by Hill to be a sufficient condition for stability, including the
case of irreversible deformations [1]. In this generalization from conservative to dissipative materials, failure may occur only
if the second-order work vanishes or becomes negative along a loading path.

It is essential to note that the second-order criterion by itself does not provide a sufficient condition for failure. But when
W2 vanishes along a loading path, the material may become unstable with a bifurcation from a quasistatic regime towards
a dynamic regime. By definition, the second-order work vanishes at the plastic threshold, but it may also vanish below
the plastic threshold in granular materials as a result of the asymmetry of the constitutive tensor, reflecting the fact that
the direction of shear strain is independent of the yield surface (given by the internal angle of friction). As a consequence,
the potential energy stored in the granular configuration by dilation may in principal transform spontaneously to shear
deformation so that the material may keep deforming without further energy input. In contrast to localized structures
appearing prior to failure in the form of shear zones or compaction bands at the plastic threshold, the failure appearing in
the bifurcation domain below the plastic threshold is homogeneous or diffuse, in close analogy with liquefaction where the
instability fully spreads to the bulk as a consequence of load transfer from the contact network to the pore liquid [2].

In a granular material, the stresses and strains are functions of the contact force and grain displacements, respectively.
Hence, the second-order work and failure criteria, very briefly sketched above, may be based on the granular microme-
chanics. In this respect and quite fundamentally, a grain-scale expression of the second-order work becomes a powerful
concept that may be applied in order to investigate physical origins of failure, the influence of material parameters, as well
as the nucleation and propagation of instabilities inside a granular material. This is a challenging issue regarding the uni-
lateral contact interactions allowing for rearrangements of the contact network and the dynamic heterogeneities induced by
excluded-volume effects [3,4].

In this paper, we present a micromechanical approach with the aim of identifying the relevant microscopic variables
contributing to the second-order work in a representative volume element, on the one hand, and to illustrate its applicability
both in discrete-element simulations and in models inspired by granular micromechanics. The theoretical background is first
introduced in Section 2 with a particular accent put on the link between the second-order work and the increase of kinetic
energy. A microscopic expression of the second-order work is then derived in Section 3 from very general considerations
and compared to numerical data obtained by discrete-element simulations in Section 4. Finally, a micromechanical model
is presented in Section 5 as an example of the development of instability when an explicit expression of the constitutive
tensor is given. The most salient results of this work will be summarized and discussed in Section 6.

2. Theoretical background

What is failure in a material? How can this concept be defined, prior to any analytical investigation? The different
answers to these basic questions are perhaps the reason why we witness a diversity of approaches to describe failure in
geomechanics. The leading idea proposed in a series of papers [5,6] is that when failure occurs for a given material, a class
of perturbations takes place which cause an increase in the kinetic energy of a body. If we assume that the body was
in a state of equilibrium just before failure, then we witness a transition from a static regime toward a dynamical regime
associated with inertial mechanisms. For this reason, the equilibrium state is reputed to be unstable. Therefore, when failure
occurs within a material, it is reasonable to analyse how the kinetic energy of the system may evolve. For this purpose, the
following equation plays a central role by relating the increase in kinetic energy Ec(t + δt) − Ec(t) to the competition
between internal mechanisms involving the constitutive behaviour of the material (W2), and the boundary loading (B2)
involving only the external domain [7]:

Ec(t + δt) − Ec(t) = 1

2
(B2 − W2) (1)

The term B2 is computed from the displacements and forces acting on the boundary of the system, whereas the term
W2 corresponds to the second-order work that is expressed through a Lagrangian formalism as [1]:

W2 =
∫
V 0

δΠi jδFij dV 0 (2)

where V 0 is the volume of the system, Π denotes the Piola–Kirchoff stress tensor of the first type, and Fij is the general
term of the displacement gradient tensor. The second-order work is therefore associated with the incremental evolution
(δΠi j, δFij), where both incremental quantities δFij and δΠi j are related through the constitutive equation.

On the basis of assuming small deformations and of disregarding geometrical aspects [7,8], the literature has commonly
admitted that the second-order work can be expressed in Eulerian conditions as:
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W2 =
∫
V 0

δσi jδεi j dV 0 (3)

where σ denotes the Cauchy stress tensor, and ε is the strain tensor in small deformation conditions. Both incremental
quantities δεi j and δσi j are related through the (Eulerian) constitutive equation.

Basically, according to Eq. (1), the kinetic energy of the system can adopt strictly positive values if W2 < B2. It can be
shown that this situation is likely to appear along various loading paths as soon as a generalized limit state is reached [6].
In such a case, W2 = 0 and the kinetic energy will increase, if B2 is negative.

The expression (3) has been considered by many authors who checked whether the second-order work can vanish
and take negative values. It was shown, by considering different constitutive models [9–11], different discrete element
methods [12,13], or experimental approaches [14,15], that the second-order work can vanish well before the plastic limit is
reached. As highlighted in Eq. (2), the definition of the second-order work intrinsically involves the constitutive behaviour
of the system, so that the vanishing of the second-order work depends upon specific material properties, such as the initial
porosity.

For materials and loading history experiencing a vanishing of the second-order work, it has been shown that the second-
order work has negative values along specific (stress or strain) loading directions contained within a cone [9,10,16–18].
These directions specify which loading controls could be inclined to lead the system to failure.

A major challenge that remains is to understand the underpinning micromechanical mechanisms that govern the vanish-
ing of the second-order work. To continue work along this line, it is worthwhile to construct a link between the microscopic
(involving the particle scale) and the macroscopic (involving the specimen, or the system scale) domains. This is the purpose
of the next section, where a basic relationship is inferred between the macroscopic second-order work (Eq. (2)) and a dual
term (microscopic second-order work) computed from local variables.

3. An attempt to bridge both micro and macro worlds

The second-order work, as defined in Eq. (2) or in Eq. (3), is a macroscopic term related to a system or a material
point. In the specific case of granular materials, it would be of interest to express the second-order work with microscopic
variables, taking into account the microstructure of the material. To this purpose, a granular assembly composed of N grains
‘p’, with 1 � p � N , is being considered. No specific restriction is imposed upon the shape of the grains. The mass of each
grain ‘p’ is denoted mp . At a given time t , each grain ‘p’ is in contact with np other grains ‘q’ = ‘pk ’, with k = 1, . . . ,np ,
and the total number of contacts at this time t within the assembly is denoted Nc. Boundary particles, belonging to the

boundary ∂V , are distinguished from the internal particles belonging to the inner volume
�

V = V − ∂V strictly inside the
boundary.

The system is assumed to be in equilibrium at a given time t under a prescribed external loading. Depending on the type
of loading control, each grain ‘p’ belonging to the boundary ∂V of the volume is subjected to a displacement (kinematic
control) or to an external force f̄ ext,p (static control), possibly nil on given parts of ∂V .

The Eulerian Love–Weber formula expresses the macroscopic stress tensor within a specimen of volume V , in equilibrium
under the external forces f̄ ext,p applied to the boundary particles ‘p’ of position x̄p [8,19–22]:

σi j = 1

V

Nc∑
c=1

f c
i lcj + 1

V

∑
p∈V

f p
i xp

j (4)

where l̄c is the branch vector relating the centres of contacting particles, f̄ p denotes the resultant force applied to the
particle ‘p’, and f̄ c is the contact force existing between adjoining particles.

When the micro inertial effects are negligible, or when all particles are in equilibrium, the second term, 1
V

∑
p∈V f p

i xp
j ,

can be omitted. When internal dynamic effects exist with local unbalance, this term should be taken into account.
In the Eulerian formulation given in Eq. (4), the contact forces, the branch vectors, the location of each particle, and

the volume of the specimen are likely to evolve over a given loading history from an initial configuration C0( f̄ c
0 , l̄c0, x̄c

0, V 0).
Referring to this initial configuration, the Lagrangian stress tensor reads:

Πi j = 1

V 0

∑
p,q

f c
i lc0, j + 1

V 0

∑
p∈V 0

f p
i xp

0, j (5)

The tensor Π , as a Lagrangian stress tensor, is computed from the current forces with respect to the fixed, initial config-
uration. Thus, the differentiation of Eq. (5) reads:

δΠi j = 1

V 0

∑
p,q

δ f c
i lc0, j + 1

V 0

∑
δ f p

i xp
0, j (6)
p∈V 0
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By considering that at time t both initial and current configurations coincide (updated Lagrangian configuration), l̄c = l̄c0,

x̄p = x̄p
0 , F = I , V = V 0 and J = 1, and Eq. (6) can be expressed as:

δΠi j = 1

V

∑
p,q

δ f c
i lcj + 1

V

∑
p∈V

δ f p
i xp

j (7)

Thus, as W2 = V δΠi jδFij , the following relation holds:

W2 =
∑
p,q

δ f c
i δlci +

∑
p∈V

δ f p
i δxp

i + 1

2

∑
p,q

f c
i

(
δ2lci − δ2 Fijl

c
j

) + 1

2

∑
p∈V

δ f p
i

(
δ2xp

i − δ2 Fij x
p
j

)
(8)

This expression can be transformed by replacing the summation over all the contacts with a summation over the parti-
cles. By doing so, we obtain:

∑
p,q

f c
i δ2lci = 1

2

N∑
p=1

N∑
q=1

f p,q
i δ2lq,p

i (9)

where f̄ p,q denotes the force applied by the particle ‘p’ onto the particle ‘q’, and l̄q,p the vector branch from the particle ‘q’
to the particle ‘p’. When no contact exists between particles ‘p’ and ‘q’, then f̄ p,q is nil.

Then, taking into account that lq,p
i = xp

i − xq
i and f p,q

i = − f q,p
i , Eq. (9) can be expressed as:

∑
p,q

f c
i δ2lci = −

∑
p∈V

((∑
q∈V

f q,p
i

)
δ2xp

i

)
(10)

Given an internal particle ‘p’,
∑

q∈V f̄ q,p represents the resultant force f̄ p applied by the adjoining particles to the

particle ‘p’. For a boundary particle ‘p’, f̄ p = ∑
q∈V f̄ q,p + f̄ ext,p . Thus, Eq. (10) becomes:

∑
p,q

f c
i δ2lci = −

∑
p∈V

f p
i δ2xp

i +
∑

p∈∂V

f ext,p
i δ2xp

i (11)

Similarly,∑
p,q

f c
i δ2 Fijl

c
j = −

∑
p∈V

f p
i δ2 Fijx

p
j +

∑
p∈∂V

f ext,p
i δ2 Fij x

p
j (12)

It follows that:∑
p,q

f c
i

(
δ2lci − δ2 Fijl

c
j

) +
∑
p∈V

f p
i

(
δ2xp

i − δ2 Fij x
p
j

) =
∑

p∈∂V

f ext,p
i

(
δ2xp

i − δ2 Fijx
p
j

)
(13)

Eq. (8) reads therefore:

W2 =
∑
p,q

δ f c
i δlci +

∑
p∈V

δ f p
i δxp

i + 1

2

∑
p∈∂V

f ext,p
i

(
δ2xp

i − δ2 Fij x
p
j

)
(14)

Assuming that the loading directs macro-homogeneous strain and stress fields within the specimen in the spirit of
Hill [23], the incremental displacement δū of a material point of position X̄ belonging to the boundary ∂V of the volume is
a homogeneous function of degree one with respect to the position X̄ , so that:

δui = δxi = ∂(δui)

∂ X j
X j = δFij X j and δ2ui = δ2xi = δ2 Fij X j (15)

When both initial and current configurations coincide, X̄ = x̄, and:

δxi = δFijx j and δ2xi = δ2 Fijx j (16)

Thus, Eq. (14) simplifies into:

W2 =
∑
p,q

δ f c
i δlci +

∑
p∈V

δ f p
i δxp

i (17)

Eq. (17) shows that the micromechanical expression of the second-order work is the combination of two terms. The first
term W m

2 = ∑
p,q wc

2, with wc
2 = δ f c

i δlci can be related to the local second-order work
∑

p,q δ f c
i δuc

i [7], and embeds the
intricate link between both the contact force network and the geometrical distribution of branches between grains.
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Fig. 1. Deviatoric stress in terms of the axial strain at 200 kPa of confining pressure.

The second term
∑

p∈V δ f p
i δxp

i of Eq. (17) introduces the incremental unbalanced force δ f̄ p applied to each particle ‘p’.
When inertial effects are negligible, the contribution of this term becomes negligible as well. But when particles become
highly rearranged inside the plastic regime (sliding between particles, contact opening and contact creation), this term is
likely to be no longer negligible.

Finally, Eq. (17) constitutes the micromechanical expression of the second-order work, giving rise to possible microstruc-
tural investigation of the vanishing of the second-order work; basically a necessary condition for failure to occur [5,6,
16].

4. Numerical investigation from a discrete element method

The analytic development detailed in the previous section, shows that the macroscopic second-order work can be ex-
pressed in terms of two microstructural quantities

∑
p,q δ f c

i δlci and
∑

p∈V δ f p
i δxp

i (Eq. (17)) depending on both the contact
forces and the geometrical positions of the particles in a grain assembly.

On the basis of this analytical result, it would be interesting to examine numerically how far the microscopic second-
order work, as defined in Eq. (17), can match the macroscopic second-order work by using the discrete element method.

In this section, we will turn our attention toward the numerical validation of the balance between the left- and right-
hand terms of Eq. (17).

4.1. Numerical model

Numerical simulations were conducted using software ‘Yade’ [24] based on the discrete element method [25] and with
a three-dimensional loosely compacted assembly of particles (porosity is around 0.43).

In the normal direction to the tangential contact plane, the contact constitutive relation is linear elastic and the force
is by assumption linearly related to the particle overlap through the constant stiffness. In the tangential direction, the
constitutive relation is linear elastic–perfectly plastic. The normal and tangential contact stiffness values are denoted by kn

and kt , respectively. The friction is incorporated at the contact level by the Coulomb friction law | f c
t | � μ| f c

n |, where f c
n

and f c
t are the normal and tangential components of the force at contact c, respectively. When this threshold is reached,

the tangential relative motion is regarded as sliding with a friction force μ| f c
n | directed opposite to the tangential relative

velocity. Moreover, only compressive normal forces are allowed, since for tensile normal forces, the contact is considered to
split open for cohesionless materials.

The considered specimen has a cubical shape and is composed of 10,000 spherical particles with radii ranging from 2 to
18 mm, enclosed within six rigid frictionless walls.

The parameters in the contact constitutive relation are selected such that kn/Ds = 356 (MPa) and kt/kn = 0.42, where Ds

is the mean diameter of the two particles in contact. The interparticle friction coefficient μ is set to 0.7. A damping coeffi-
cient λa = 0.05 for Cundall’s non-viscous damping [26] was used in all discrete element simulations.

The assembly was compacted from an initially sparse arrangement of particles to an isotropic state by increasing particle
sizes until the isotropic pressure σ3 = 200 kPa is reached. It was then subjected to an axisymmetric drained triaxial com-
pression. The evolution of both the deviatoric stress q = σ1 − σ3 and the volume variation 
V /V versus the axial strain ε1
are shown in Figs. 1 and 2, respectively.
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Fig. 2. Volume variation in terms of the axial strain at 200 kPa of confining pressure.

Fig. 3. Circular diagrams of the second-order work in the Rendulic strain increment plane.

As expected for loose materials, the deviatoric stress increases continuously (positive hardening regime) toward a limit
plateau at which q ∼ 200 kPa, and a mainly contractant volumetric behaviour is observed.

4.2. Computation of second-order work from macroscopic variables

In this section, the second-order work is computed from macroscopic variables and for different strain loading directions.
For this objective, strain probes (as first introduced by Gudehus [27]) were performed in the Rendulic plane of strain
increments (i.e. the axisymmetric plane of strain increments). Strain probes consist of a series of strain loading increments

ε̄, all applied to the granular assembly from the same initial stress–strain state arbitrarily chosen. The strain loading
increments fall on a circle of radius ‖
ε̄‖ in the Rendulic strain plane. Therefore, each strain loading increment is defined
by its direction αε (varying here from 0◦ to 360◦ with a step of 10◦) and its norm ‖
ε̄‖ (set here equal to 5 × 10−5 and
applied over 5 × 103 time steps).

Once the response vector 
σ̄ is computed for each strain loading increment, the macroscopic normalized second-order
work can be computed as W2 = 
ε̄ · 
σ̄/‖
ε̄‖ · ‖
σ̄‖ [28], for all directions αε investigated.

Fig. 3 shows examples of circular diagrams of second-order work, plotted from different initial deviatoric stress ratios
defined by η = q

p , where p is the mean pressure in the specimen.
To make these representations easily legible, a constant K = 0.5 has been added to the computed value of W2. Conse-

quently, when W2 is negative, the plot is inside the dashed circle of radius r = K , whereas the plot is outside the dashed
circle for positive values of W2.
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Fig. 4. Comparison between macroscopic and microscopic second-order works.

The cone of instability, gathering the incremental strain directions along which the second-order work takes negative
values, is obtained in the second quadrant, defined by (−√

2
ε3,
ε1) of the axisymmetric strain increment plane for the
initial deviatoric stress ratio η = 0.48.

4.3. Computation of second-order work from microscopic variables

The second-order work can also be computed according to Eq. (17) from contact forces ( f̄ c), position vector of particles
(x̄p ) and unbalanced forces f̄ p acting on each particle p.

To determine the first scalar product δ f c
i δlci of Eq. (17), the increment δ f̄ c is computed as the incremental change

of the contact force experienced by the considered contact during a strain probing in direction αε . The branch vector
increment δl̄c is deduced from the displacement, during the same strain probing, of the particles p and q involved in the
contact: δl̄c = (δx̄p − δx̄q). When a contact opens, the scalar product δ f c

i δlci does not contribute to the summation. In the
same way, the second scalar product δ f p

i δxp
i is calculated for each particle from increments δ f̄ p and δx̄p computed over

the strain probing in direction αε .
Finally, to compute, for a direction αε , the value of the second-order work from microscopic variables, scalar products

are summed up over all the contacts in the specimen for the first term
∑

p,q δ f c
i δlci and over all particles in the specimen

for the second term
∑

p∈V δ f p
i δxp

i .
Fig. 4 shows the change of the second-order work (not normalized) from both macroscopic and microscopic variables at

η = 0.48 in terms of the direction of the strain loading increment αε .
The second-order works from both macroscopic and microscopic variables are compared and the two representative

curves fit substantially very well.
In the plastic tensorial zone1 corresponding to αε ∈ [60,240◦] (the zone in light grey in the figure), fluctuations of

second-order work computed from microscopic variables around the macroscopic one can be observed for some directions
of strain probes.

In this zone, the inertial effects (taken into account in the computation of the second term
∑

p∈V δ f p
i δxp

i ) are sup-
posed to become more significant since the rearrangement of particles intensifies due to the opening and/or the creation
of contacts. Since only initial (at the equilibrium state just before applying strain probes) and final (at the equilibrium state
immediately after strain probes are applied) stress strain states are used to compute the second-order work, not all open-
ings or creations of contacts experienced during the strain probes can be taken into account, especially when they occur
successively (and more than once) for a given pair of particles during a strain probe. This lack of information may result in
a non-correspondence between the second-order work from micro- and macro-variables in some directions αε in the plastic
tensorial zone, as shown in Fig. 4. In the elastic tensorial zone, this fluctuation hardly persists and is negligible.

Based on the analysis above, a discrete element solution is shown to be in good agreement with the micromechanical
formalism of the second-order work.

1 The plastic tensorial zone groups all directions where corresponding total responses to strain increment loading probes have a predominant plastic
component compared to the elastic component.
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Fig. 5. Local coordinates.

The main conclusion that has to be emphasized is that the macroscopic second-order work can be quite well approxi-
mated by the term

∑
p,q δ f c

i δlci . Even within the plastic tensorial zone, the contribution of the second term
∑

p∈V δ f p
i δxp

i
(that takes inertial effects into account) remains small with respect to the first term

∑
p,q δ f c

i δlci . The term
∑

p,q δ f c
i δlci

introduces microstructural variables, hence drawing a bridge between the micro and macro scales. This is particularly con-
venient when using micromechanical models, as the one considered in the next section, because such models introduce
explicitly the microscopic scale (related to the contacts between grains). The micromechanical models can therefore be used
to investigate the extent to which and just how the vanishing of the terms δ f c

i δlci , along certain contact direction, may
affect the sign of the macroscopic second-order work.

5. Illustration from a micromechanically-based model

Homogenization techniques for granular materials have been developed in the first place to predict their elastic prop-
erties [29–34]. More recently, the same techniques have been applied for modelling non-reversible behaviour [35,36]. The
basic idea for most of these models is to consider the granular medium as a collection of tangent planes at the contact
points between grains, interacting with each other. This approach requires writing the contact law along these tangent
planes and developing homogenization operators in order to integrate all these contacts at the scale of the representa-
tive elementary volume. Two techniques have been considered. The kinematic approach is based on a localization operator
which provides a relationship between intergranular contact displacements and the assembly strain and a homogenization
operator which relates the average stress of the granular assembly to a mean field of particle contact forces (see for ex-
ample [37]). The static approach is based on an inverse technique consisting of a localization operator relating the macro
stresses to the local contact forces and a homogenization operator relating the grain displacements to the macro strains.
Both approaches relate local forces and displacements through a constitutive law at the contact level. The microstructural
model developed by Chang and Hicher [38] is based on a static approach presented in the following section.

5.1. The microstructural model

In this model, a granular material is regarded as a collection of particles. The deformation of a representative volume
of the material is generated by mobilizing contact particles in all orientations. Thus, the stress–strain relationship can
be derived as an average of the mobilization behaviour of local contact planes in all orientations. For a contact plane in
the αth orientation, the local forces f α

i and the local movements dα
i can be denoted as follows: f α

i = { f α
n , f α

s , f α
t } and

dα
i = {dα

n ,dα
s ,dα

t }, where the subscripts n, s, and t represent the components in the three directions of the local coordinate
system. The direction normal to the plane is denoted as n; the other two orthogonal directions, s and t , are tangential to
the plane (Fig. 5).

The forces and movements at the contact planes of all orientations are suitably superimposed to obtain the macroscopic
stress strain tensors. The macroscopic stiffness tensor is obtained on the condition that the rate of energy dissipation
expressed in terms of the macro stress and strain must be equivalent to that expressed in terms of micro forces and
movements. Under such a formulation, it has usually been assumed that the microstructure is statically constrained, which
means that the forces on each contact plane are assumed to balance the resolved components of the macroscopic stress
tensor.

5.1.1. Micro–macro relationship
The stress–strain relationship for an assembly can be determined by integrating the behaviour of interparticle contacts

in all orientations. In the integration process, a micro–macro relationship is required. Following the Love–Weber approach
(Eq. (4)), and assuming that only small deformations occur (so that both Eulerian and Lagrangian formulations coincide),
the incremental stress increment can be obtained by the contact forces and branch vectors for all contacts, as follows:

δσi j = 1

V

N∑
δ f α

j lαi (18)

α=1
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The mean force on the contact plane of each orientation is

δ f α
j = V A−1

ik δσi j (19)

where the fabric tensor is defined as:

Aik =
N∑

α=1

lαi lαk (20)

Using the principle of energy balance, which states that the work done in a representative volume element is equal to
the work done on all inter-cluster planes within the element [39], we obtain the following relation:

σi jδεi j = 1

V

N∑
α=1

f α
j δlαi (21)

From Eqs. (19) and (21), we derive the relation between the global strain and interparticle displacement:

δεi j = A−1
ik

N∑
α=1

lαk δlαj (22)

5.1.2. Stress–strain relationship
From the above equations, the following relationship between stress increment and strain increment can be obtained:

δεi j = Cijmpδσmp (23)

where Cijmp = A−1
ik A−1

mn V
∑N

α=1(k
ep
jp)−1lαk lαn .

When the contact number N is sufficiently large in an isotropic packing, the summation of the compliance tensor in
Eq. (23) and the summation of the fabric tensor in Eq. (21) can be written in integral form, given by

Cijmp = A−1
ik A−1

mn
N V

2π

π/2∫
0

2π∫
0

kep
jp(γ ,β)−1lk(γ ,β)ln(γ ,β) sinγ dγ dβ (24)

and

Aik = N

2π

π/2∫
0

2π∫
0

li(γ ,β)lk(γ ,β) sinγ dγ dβ (25)

The integration of Eqs. (24) and (25) in a spherical coordinate can be carried out numerically by using Gauss integration
points over the surface of the sphere [38].

5.1.3. Inter-particle behaviour
Elastic stiffness: The contact stiffness of a contact plane α includes normal stiffness, kα

n , and shear stiffness, kα
t . The

elastic stiffness tensor is defined by:

f α
i = kαe

i j dαe
j (26)

which can be related to the contact normal and shear stiffness kn and kt , respectively:

kαe
i j = kα

n nα
i nα

j + kα
t

(
sαi sαj + tαi tαj

)
(27)

The value of the stiffness for two elastic spheres can be estimated from Hertz–Mindlin’s formulation [40]. For sand
grains, a revised form was adopted [31], given by:

kn = kn0

(
fn

G gl2

)n

; kt = kt0

(
fn

G gl2

)n

(28)

where G g is the elastic modulus for the grains, fn is the contact force in normal direction, l is the branch length between
two particles, kn0, kt0 and n are material constants.

Plastic yield function: The yield function is assumed to be of the Mohr–Coulomb type, defined in a contact–force space
(e.g. fn, f s, ft ):

F ( f i, κ) = T − fnκ
(

p) = 0 (29)
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where κ(
p) is a hardening/softening parameter. The shear force fr and the rate of plastic sliding 
p are defined as:

δ fr =
√

(δ f s)2 + (δ ft)2 and 
p =
√(

δdp
s
)2 + (

δdp
t

)2
(30)

The hardening function is defined by a hyperbolic curve in κ–
p plane, which involves two material constants: φp and
kp0.

κ = kp0 tanφp
p

| fn| tanφp + kp0
p
(31)

Plastic flow rule: The plastic sliding often occurs along the tangential direction of the contact plane with an upward or
downward movement, thus, shear-induced dilation/contraction takes place. The dilatancy effect can be described by:

δdp
n


p
=

(
tanφ0 − fr

fn

)
D (32)

where D is a dimensionless material constant which controls the dilation amount during shearing. D takes positive values,
meaning that dilation occurs when fr/ fn becomes bigger than tan φ0. The material constant φ0 can be considered in most
cases equal to the interparticle friction angle φμ . This equation can be derived by assuming that the dissipation work for a
contact plane due to both normal and shear plastic movements ( fnδdp

n + fr

p D) is equal to the energy loss due to friction

( fn tan φ0

p D) at the contact. On the yield surface, under a loading condition, the shear plastic flow is determined by

a normality rule applied to the yield function. However, the plastic flow in the direction normal to the contact plane is
governed by the stress–dilatancy equation in Eq. (32). Thus, the flow rule is non-associated.

Influence of assembly void ratio: The resistance against sliding in a contact plane is dependent on the degree of inter-
locking by neighbouring particles. The resistance can be related to the packing void ratio by:

tanφp =
(

ec

e

)m

tanφμ (33)

where m is a material constant [41] and ec corresponds to the critical void ratio for a given state of stress. For dense packing,
ec/e is greater than 1 and, therefore, the apparent interparticle friction angle φp is greater than the internal friction angle
φμ . When the packing structure dilates, the degree of interlocking and the apparent friction angle is reduced, which results
in a strain-softening phenomenon. For loose packing, the apparent friction angle φp is smaller than the internal friction
angle φμ and increases during the material contraction.

The critical void ratio ec is a function of the mean stress applied to the overall assembly and can be written as follows:

ec = Γ − λ log
(

p′) or ec = eref − λ log

(
p′

pref

)
(34)

where Γ and λ are two material constants, p′ is the mean stress of the packing, and (eref, pref) is a reference point on the
critical state line.

5.1.4. Elasto-plastic relationship
With the elements discussed above, the incremental force-displacement relationship of the interparticle contact can be

obtained. Including both elastic and plastic behaviours, this relationship is given by:

δ f α
i = kαp

i j δdα
j (35)

and [
δ fn

δ fr

]
=

[
Knn Knr

Krn Krr

][
δdn

δdr

]
(36)

with δdr = √
(δds)2 + (δdt)2. Detailed expression of the elasto-plastic stiffness tensor can be derived from the yield function

and the flow rule (see [18]). We obtain the following expressions for the components of the constitutive matrix K at the
local scale:

Knn =
(

kn0 + k2
n0

B0

(
tanφp − fr

fn

)
D

fr

fn

)(
fn

fref

)n

(37)

Knr = −kn0

(
kn0

(
tanφp − fr

)
DkrR

)(
fn

)n

(38)

B0 fn fref
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Fig. 6. Evolution of Krr with obliquity for different values of the material parameters.

Krn = kn0

(
krRkn0

B0

fr

fn

)(
fn

fref

)n

(39)

Krr = kn0

(
krR − k2

rRkn0

B0

)(
fn

fref

)n

(40)

with

B0 = kpRkn0(tanφp − fr
fn

)2

tan2 φp
+ krRkn0 − kn0

(
tanφp − fr

fn

)
fr

fn
D (41)

where krR and kpR are the elastic and plastic ratios between tangential and normal stiffness, respectively.

5.2. Failure modes

The instability conditions at the contact level can be analysed from the constitutive matrix K shown in Eq. (36) in

a contact plane. The following two modes of failure are observed regarding matrix K .

– Plastic limit condition (Mode 1)
This mode is related to the singularity of the elasto-plastic tangential stiffness matrix. From Eqs. (37)–(41), it can be
shown that when fr/ fn = tan φp , the plastic modulus kp approaches zero and B0 = krRkn0, which leads to the vanishing

of Knr and Krr . Thus, the determinant of K equals zero. In this case, the system bifurcates with the occurrence of
unlimited displacement rates, which is considered as the onset of localization. The condition of fr/ fn = tan φp is the
“limit locus”, no shear force can exist beyond this locus.

– Divergence failure mode (Mode 2)
As seen in Section 2, this mode is related to the loss of positiveness of the second-order work, and (depending upon the
loading conditions applied) can give rise to an abrupt increase in kinetic energy. The corresponding mechanical state is
reputed unstable.

The local expression of the second-order work is:

W2 = δ fnδdn + δ frδdr = Knn(δdn)
2 + (Knr + Krn)δdnδdt + Krr(δdr)

2 (42)

It can be shown from Eqs. (37)–(41) that the value of Krr may become zero before the limit locus is reached. When
Krr = 0, the second-order work could become zero under certain combinations of incremental displacements, such as
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Table 1
Model parameters for fine Hostun sand.

eref pref (Mpa) λ φμ (◦) φ0 (◦) m D

1 0.01 0.2 30 30 1 1

Fig. 7. Second-order work and stress–strain curves for undrained triaxial test on loose Hostun sand.

δdn = 0. Under this condition, Krr = 0, but the value of Knr is not zero. Thus, the determinant K may still remain posi-
tive and the rate of displacement is limited in the mode 2 failure. Note that in the case of D = 0 (associated flow rule), the

condition of zero second-order work would occur simultaneously with the singularity of matrix K .
It is worth emphasizing that the mode 2 failure is dependent on the direction of the loading increment. For this reason,

a mechanical state associated with a negative value of the second-order work is said in the sequel to be potentially instable
[5,6,16]. Moreover, the failure described here is related to one contact plane, which is a sub-system of the micromechanical
model. This is perfectly in line with the basic concept of the multiscale approach presented in Sections 3 and 4. Hence, the
occurrence of failure is investigated on the contact plane scale in what follows.

The likelihood of Krr = 0 is evaluated based on a set of typical parameters for Hostun sand [38,42,43], kpR = 1, krR = 0.5,
D = 1, kn0 = 15 N/mm and tanφμ = 0.65. For simplicity, it is assumed that tan φp is constant and independent of the
material density (i.e., tan φp = tanφμ). The computed values of Krr is plotted in Figs. 6 against the normalized obliquity
defined as fr/ fn tan φ. Figs. 6(a, b, c, d) show the influences of the chosen values of D = 1–3, kn0 = 10–20 N/mm, kpR =
0.5–2, and krR = 0.1–1. For all cases, the value of Krr becomes negative before the normalized obliquity reaches 1. Thus, it
is clear that, for a typical range of parameters, the value of Krr is likely to become zero before the obliquity reaches the
plastic limit locus, and, as a consequence, the mode 2 failure is likely to prevail.

A local vanishing of the microscopic second-order work acting on the contact plane scale does not necessarily imply the
vanishing of the macroscopic second-order work on the whole specimen scale. However, in some cases, the local failure
along several contact planes will coalesce and result in a global instability of the overall system, which will be discussed in
the following section.

5.3. Global and local behaviours

Fig. 7 presents a numerical simulation of an undrained triaxial test on loose Hostun sand with an initial confining stress
σ3c = 300 kPa [11]. The value of kt0/kn0 is commonly about 0.4, corresponding to a Poisson’s ratio for Hostun sand ν = 0.2
and the exponent n = 0.5. From drained triaxial test results, we were able to derive the values of the two parameters
corresponding to the position of the critical state in the e–p′ plane: λ = 0.2 and pref = 0.01 MPa for eref = emax = 1, and
the value m = 1 was determined from the test results. The values of kp0 are assumed to be same as those of the elastic
stiffness kp0 = kn . The set of parameters for fine Hostun sand is presented in Table 1.

The second-order work in the case of axisymmetric loading can be written:

W2 = δqδε1 + δσ ′
3δεv (43)

For undrained conditions (δεv = 0), the second-order work becomes reduced to W2 = δqδε1. Since the axial strain
increases continuously, δε1 is always positive and the second-order work can become non-positive if and only if δq < 0 (i.e.,
decrease in q). Therefore, a potential instability appears at the deviatoric stress peak.

In order to gain insight into the material behaviour at the interparticle level, we selected several contact planes oriented
in six different directions indicated by the branch vectors, as shown in Fig. 8. The six directions are defined by the angle γ
between the vector n perpendicular to the contact plane and the vertical axis.
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Fig. 8. Orientations of the inter-particle contact planes selected in the analysis.

Fig. 9. Local stress paths in inter-particle contact planes.

For more direct comparison between the local and the overall stress–strain behaviour, we retained the following vari-
ables, local strain and local stress, instead of interparticle force and interparticle displacement. For this purpose, we define in
each contact plane a local normal stress σα = f α

n Nl/3V and a local shear stress τα = f α
r Nl/3V , where l is the branch length

and N/V is the total number of contacts per unit volume. The corresponding local normal strain is defined as εα = dα
n /l

and the local shear strain is defined as γ α = dα
r /l.

The local stress paths in the six selected contact planes are plotted in Fig. 9. It is of interest to know whether all contact
planes experience a potential instability at once. In order to answer this question, we computed the second-order work for
each individual plane. Note that in an undrained test, the overall volume change is zero, but the local normal strain does
not need to remain constant (δεα 	= 0). Thus, the second-order work for the αth contact plane, expressed in terms of local
stress and local strain, is given by:

W α
2 = δσαδεα + δταδγ α (44)

The second-order work for the six contact planes is plotted in Fig. 10. It can be seen that only part of the contact
planes experience a potential instability, and this potential instability on each plane occurs at different times, some before
the global potential instability and some afterwards (see the solid circle in Fig. 10 showing the onset of global instability).
For the two less-inclined contact planes at 17.9◦ and 28.3◦ , the second-order work is always positive; therefore, these two
planes remain stable during the entire undrained triaxial test. For the four more-inclined contact planes oriented between
45◦ and 72◦ , the second-order work displays negative values, but does not become negative simultaneously in each plane.
A potential instability occurs first in the two contact planes with inclination angles 45◦ and 54.7◦ . Then, the number of
potentially instable interparticle planes continues to increase, while the assembly remains stable. After a few additional
load steps, a potential instability occurs subsequently in the contact planes with inclination angles of 70.4◦ and 72◦ .

The global potential instability occurs only after several contact planes (inclined at 45◦–54.7◦) start to become potentially
unstable. Even though several of the inter-particle planes are still stable at this time, the unstable condition of these planes
is severe enough for the overall assembly to experience potential instability. This can be seen by the vanishing of the global
second-order work at this point. The second-order work for the overall assembly is equal to the summation of the local
second-order work for all planes:

d2W =
∑
α

d2 wα = 1

V

∑
α

d f α
i dδα

i = 3

N

∑
α

(
dσα dεα + dτα dγ α

)
(45)

Thus, the global potential instability occurs at the condition of zero sum of all the local second-order works. After this
point, the overall stress–strain response shows a decrease of the deviatoric stress and, progressively, more inter-particle
contact planes become potentially instable.

On the other hand, the material can fail in mode 1 under specific loading conditions, when the plastic limit locus is
reached. It can be noted from Eq. (41) that the singularity of a contact stiffness matrix kα

i j would simultaneously cause the
singularity of the overall stiffness matrix of the assembly Cijkl . Therefore, the global failure (of mode 1) of the assembly will
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Fig. 10. Second-order work in inter-particle contact planes. The solid dot indicates the instability state of the whole assembly.

occur as soon as one local plane has failed in mode 1. This result has been confirmed by numerical simulations of drained
triaxial tests [18].

6. Concluding remarks

It is well-known that failure is generally accompanied by a burst of kinetic energy. In this paper, we have shown the
link between second-order work and kinetic energy, which explains the fundamental reason why the second-order work
is regarded as the proper failure criterion. Indeed, when its value, at least in one loading direction, becomes negative,
a necessary condition of failure is in place.

For granular materials, considered as discrete or continuous materials, depending on the scale of analysis, the second-
order work is expressed (i) at the grain scale as a function of intergranular forces and displacements, and (ii) at the
representative elementary volume scale as a function of the macroscopic stress and strain tensors. The link between both
these expressions is demonstrated analytically and discussed in Section 3. Let it be emphasized that an inertial micro term
takes into account the local avalanches, which occur at grain scale during the macroscopic plastic strain development. It
shows that this analytical discrete analysis is quite detailed and complete for describing a granular assembly.

Up to now, two different approaches have been developed to take into account the discrete nature of granular media:
(i) a numerical approach using discrete element methods, and (ii) a constitutive modelling approach, using micromechanical
models. These two approaches have been used in this study to confirm the validity of the second-order work as a failure
criterion.

The numerical simulations made by the discrete element method allowed us to examine the directional character of
the macroscopic second-order work, depending on the loading direction. We found some “instability cones”, the locus of
all unstable directions, which agreed with the theory. The previously established analytical link between the local discrete
second-order work and the global macroscopic second-order work has been validated and discussed in a detailed manner.

The micromechanical modelling shows two different failure modes: mode 1 obtained by the plastic limit condition
(singularity of the elasto-plastic matrix) and corresponding to a localized failure; mode 2 described by the second-order
work criterion (loss of positive definitiveness of the elasto-plastic matrix) and corresponding to a diffuse failure.

Finally, isochoric (“undrained”) triaxial compressions were analysed by the micromechanical model, leading to a discus-
sion on the link between locally unstable planes (defined from the model) and global instability.
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