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According to the symmetries of the matter, the number of coefficients needed to define
a tensorial relation varies. It is well known that in linear elasticity the number of generic
coefficients varies from 21, for a complete anisotropic material, to 2, in case of isotropy.
In a previous contribution, we provided analytical expressions that give the number of
generic anisotropic coefficients in any anisotropic system for an even-order tensor. In the
present note, we aim at extending the previous results to the case of odd-order tensors.
As an illustration, the dimension of any anisotropic system for third-order piezoelectricity
tensors and of the fifth-order coupling tensors of Mindlin’s strain-gradient elasticity are
determined.
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r é s u m é

En fonction des symétries qu’un milieu possède, le nombre de coefficients génériques
nécessaire à la définition d’une loi tensorielle varie. Dans le contexte de l’élasticité linéaire,
si le milieu ne presente aucune symétrie, 21 coefficients élastiques sont génériquement
nécessaires, tandis que, dans le cas de l’isotropie, ce nombre se réduit à 2. Dans une
précédente note, nous avions dérivé des formules analytiques donnant, dans le cas
d’un tenseur pair, le nombre de coefficients génériques nécessaire pour chaque type
d’anisotropie. Le but de cette nouvelle contribution est de compléter ces formules, en
les étendant au cas des tenseurs impairs. En guise d’illustration, nous calculerons, pour
l’ensemble des systèmes d’anisotropie possibles, la dimension des tenseurs piezoélectriques
(ordre 3) ainsi que des tenseurs de couplage de la théorie de l’élasticité à gradient (ordre 5).
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1. Introduction

In the multiphysical modeling of anisotropic behaviors [1], it is interesting to have prior information on the general char-
acteristics of the sought model. The knowledge, for a given material anisotropy, of the number of independent coefficients
in the tensorial law is interesting since, for example, it determines the number of elementary tests one needs to perform in
a micro–macro homogenization procedure [2]. These results are also important to develop strategies for the experimental
identification of constitutive laws [3,4]. If, in the case of classical elasticity, these results are well known [5,6], their exten-
sion to other situations is not straightforward. However, due to a growing interest in the modeling of size and non-local
effects in materials and structures, the need for generalized continuum theories becomes evident [7–9]. This note, following
a path already developed in some previous contributions [10–12], aims at providing some tools that can help the modeling
of these non-conventional behaviors.

In the present paper, and following a previous one [12] in which only even-order tensors were considered, we provide
analytical formulas that give the generic dimension of any anisotropic odd-order tensor.1 To avoid any misunderstanding, it
is worth noting that the present method does not solve the symmetry classification for a physical tensor, but only provides
a way to compute, once the classification has been done, the number of generic coefficients for each anisotropic system.
The solution of the classification problem can be found in the following references [23,25]. As an illustration, the obtained
formula is applied to the space of third-order piezoelectric tensors [13,14], and to the fifth-order coupling tensor of Mindlin’s
strain-gradient elasticity [16].

This note is organized as follows. In Section 2, basic definitions about symmetries are summed up (see, e.g., [6] for
an extended discussion). The decompositions of a tensor space into orthogonal elementary components and the notion of
G-invariant space are developed in Section 3, and our main formula is provided there. Finally, physical illustrations are
proposed in Section 4.

2. Physical and material symmetries

Hereafter E3 will be the 3D Euclidean physical space. Let G be a closed subgroup of O(3), the orthogonal group in 3D,
that is the group of isometries of E3. Let us define a material M as an open subset of E3. The set of operations Q ∈ O(3)

leaving M invariant is defined as

GM = {
Q ∈ O(3), Q �M = M

}
where � stands for the Q action upon M. This set, denoted GM , is known as the material symmetry group. Now consider
a physical property P defined on M, the set of operations leaving P invariant is the physical symmetry group

GP = {
Q ∈ O(3), Q �P = P

}
P is described, in the present paper, by an nth-order tensor T(n) ∈ T

(n) . In that case the action � of O(3) on T(n) is defined
by the Rayleigh product:

� : O(3) ×T
(n) → T

(n) : (Q,T(n)
) �→ Q � T(n) := Q i1 j1 . . . Q in jn T (n)

j1... jn
(1)

The material and the physical symmetry groups are related by the mean of Curie–Neumann’s principle [17]:

GM ⊆ GP

meaning that each operation leaving the material invariant leaves the physical property invariant. Nevertheless, as shown
for tensorial properties using Hermann’s theorems [11], physical properties can be more symmetrical than the material.

In E3 GP is conjugate to an O(3)-closed subgroup [6,17]. Classification of O(3)-closed subgroups is a classical result that
can be found in many references, e.g. [18]:

Lemma 2.1. Every closed subgroup of O(3) is conjugate to precisely one group of the following list, which has been divided into three
classes:

(i) closed subgroups of SO(3): 1, Zn, Dn, T , O, I , SO(2), O(2), SO(3);
(ii) K̃ := K ⊕ Zc

2 , where K is a closed subgroup of SO(3) and Zc
2 = {1,−1};

(iii) C closed subgroups not containing −1 and not contained in SO(3):

Z−
2n (n � 1), Dv

n (n � 2), Dh
2n (n � 2), O− or O(2)−

Let us now give a brief description of these different subgroups:

1 For a given group G ∈ O(3), by generic G-invariant tensors we mean tensors that only satisfy G-invariance and no other constraint. This is the case of
almost all G-invariant tensors.
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Type-I subgroups Among SO(3)-closed subgroups, we can distinguish:

Planar groups: {1,Zn,Dn,SO(2),O(2)}, which are O(2)-closed subgroups;
Exceptional groups: {T ,O,I,SO(3)}, which are the rotation groups of chiral Platonic polyhedrons completed by the rota-

tion group of the sphere.

Let us detail first the set of planar subgroups. We fix a base (i; j;k) of R3, and denote by Q(v; θ) ∈ SO(3) the rotation about
v ∈ R

3, with angle θ ∈ [0;2π) we have:

• 1, the identity;
• Zn (n � 2), the cyclic group of order n, generated by the n-fold rotation Q(k; θ = 2π

n ), which is the symmetry group of
a chiral polygon;

• Dn (n � 2), the dihedral group of order 2n generated by Zn and Q(i;π), which is the symmetry group of a regular
polygon;

• SO(2), the subgroup of rotations Q(k; θ) with θ ∈ [0;2π); it is the symmetry group of an oriented cone;
• O(2), the subgroup generated by SO(2) and Q(i;π); it is the symmetry group of a twisted cylinder.

The classes of exceptional subgroups are: T the tetrahedral rotation group of order 12 that fixes a tetrahedron, O the
octahedral rotation group of order 24 that fixes an octahedron (or a cube), and I the rotation group of order 60 that fixes
an icosahedron (or a dodecahedron).

Type-II subgroups Type-II subgroups are of the form K̃ := K ⊕ Zc
2, where K is a closed subgroup of SO(3). Therefore, we

directly know the collection of type-II subgroups.

Type-III subgroups The construction of type-III subgroups is more involved, and a description of their structure is provided
in [18]. As for type-I subgroups, we can introduce subgroups of type III. Let σu ∈ O(3) denote the reflection through the
plane normal to the u axis.

• Z−
2 the order 2 reflection group generated by σi;

• Z−
2n (n � 2) the group of order 2n, generated by the 2n-fold rotoreflection Q(k; θ = π

n ) · σk;
• Dh

2n (n � 2) the prismatic group of order 4n generated by Z−
2n and Q(i,π). When n is odd it is the symmetry group of a

regular prism, and when n is even it is the symmetry group of a regular antiprism;
• Dv

n (n � 2) the pyramidal group of order 2n generated by Zn and σi , which is the symmetry group of a regular pyramid;
• O(2)− is the limit group of Dv

n for continuous relation; it is therefore generated by Q(k; θ) and σi . It is the symmetry
group of a cone;

• O− , which is an achiral tetrahedral symmetry of order 24. This group has the same rotation axes as T , but with six
mirror planes, each through two 3-fold axes.

In order to have a better physical understanding of these subgroups, we reported in Appendix A the tables making corre-
spondences between group notations and the classical crystallographic ones (Hermann–Mauguin, Schoenflies).

To study the symmetry classes of a tensor, we need to decompose it into O(3)-elementary parts.

3. Structure of tensor spaces

3.1. Harmonic decomposition

The O(3)-invariant decomposition of a tensor is known as harmonic decomposition; it is a higher-dimensional analogue
of the Fourier decomposition. It allows us to decompose any finite-order tensor into a sum of irreducible ones [19,20].
Formally, this decomposition can be written as:

Tn =
∑
k,τ

D(n)k,τ

where tensors D(n)k,τ are components of the irreducible decomposition, k denotes the order of the harmonic tensor em-
bedded in D(n) and τ separates same order terms. This decomposition establishes an isomorphism between T

n and a direct
sum of harmonic tensor spaces H

k [6]:

T
n ∼=

⊕
H

k,τ
k,τ
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but, as explained in [21], this decomposition may not be unique. Grouping together irreducible spaces of the same order,
one obtains the O(3)-isotypic decomposition of a representation which is unique [22]:

T
n ∼=

n⊕
k=0

αkH
k (2)

where αk is the multiplicity of the irreducible space H
k in the decomposition and n is the order of the highest-order

irreducible space of the decomposition. Hk is the space of kth-order harmonic tensors, that is the space of totally symmetric,
traceless tensors of order k. It is a vector space of dimension 2k + 1 in R

3. The series {αk} is a function of the order and of
the intrinsic symmetries of the tensor space. Various methods exist to compute this family [10,19,20].

Before closing this rather short introduction, it is important to note that in the decomposition of an even-order (respec-
tively odd-order) tensor, odd-order (respectively even-order) components are pseudo-tensors,2 i.e. they change sign if the
space orientation is reversed.

3.2. Dimension of G-invariant harmonic spaces

Let G be any subgroup of O(3). The set of tensors T ∈ T which are fixed by G:

FixT(G) := {T ∈ T | g.T = T for all g ∈ G} ,

is called the fixed point set.3 It is the biggest linear subspace of T that contains G-invariant tensors. Elements of FixT(G) only
defined in terms of G-invariance without any further constraint will be referred to as generic. Since non-generic elements
constitute a null set, they will not be considered here.

It is worth noting that the dimension of type-II invariant subspaces is always 0. And for O(3)-subgroups of types I and III,
we have the following results4 concerning harmonic tensor spaces.

Type-I subgroups5

dimFix
Hk (Zp) = 2

⌊
k

p

⌋
+ 1; dimFix

Hk (Dp) =
{ � k

p 	 + 1 for k even

� k
p 	 for k odd

dimFix
Hk (T ) = 2

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1; dimFix

Hk (O) =
⌊

k

4

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

dimFix
Hk (I) =

⌊
k

5

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

Type-III subgroups

dimFix
Hk

(
Z−

2p

) = 2

⌊
k + p

2p

⌋
; dimFix

Hk

(
Dv

p

) =
{ � k

p 	 if k = 2n

� k
p 	 + 1 if k = 2n + 1

dimFix
Hk

(
Dh

2p

) =
⌊

k + p

2p

⌋
; dimFix

Hk

(
SO(2)−

) =
{

0 k = 2n
1 k = 2n + 1

dimFix
Hk

(
O−) =

⌊
k

3

⌋
−

⌊
k

4

⌋

These elementary results, combined with the knowledge of the isotypic decomposition of a tensor space (2), allow us
to determine the dimension of any G-invariant tensor subspaces. Analytical expressions are constructed according to that
procedure.

3.3. G-invariant tensor subspaces

Applying this process, the following formulas are obtained:

2 The related tensors are multiplied by the Levi–Civita symbol εi jk .
3 As G as an action on the space T, there is a homeomorphism ψ from G to GL(T). Hence the notation g.T should be understood as a classical shortcut

to the more rigorous one ψ(g).T.
4 More details can be found in [12,21].
5 The formulas for type-I subgroup have already been provided in [12]. They are summed-up here for the sake of completeness.
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Type-I subgroups

• Zp-invariance

dimFixT(Zp) = 2
n∑

k=0

αk

⌊
k

p

⌋
+

n∑
k=0

αk

When p > k, we obtain � k
p 	 = 0 and so βoth = ∑n

k=0 αk is the number of oriented transverse hemitropic coefficients.
βoth is the dimension of a SO(2)-invariant tensor.

• Dp-invariance

dimFixT(Dp) =
n∑

k=0

αk

⌊
k

p

⌋
+

� n
2 	∑

k=0

α2k

When p > k, we obtain � k
p 	 = 0 and so βtti = ∑n

k=0 αk is the number of twisted transverse isotropic coefficients. βtti is
the dimension of an O(2)-invariant tensor.

• T , O and I-invariance

dimFixT(T ) =
n∑

k=0

αk

(
2

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)
; dimFixT(O) =

n∑
k=0

αk

(⌊
k

4

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)

dimFixT(I) =
n∑

k=0

αk

(⌊
k

5

⌋
+

⌊
k

3

⌋
+

⌊
k

2

⌋
− k + 1

)

Type-III subgroups

• Z−
2p-invariance

dimFixT
(
Z−

2p

) = 2
n∑

k=0

αk

⌊
k + p

2p

⌋

When p > k, we obtain � k+p
2p 	 = 0 and therefore the tensor is null. In such a case, the tensor is obviously O(3)-invariant.

• Dh
2p-invariance

dimFixT
(
Dh

2p

) =
n∑

k=0

αk

⌊
k + p

2p

⌋
= 1

2
dimFixT

(
Z−

2p

)

When p > k, we obtain � k+p
2p 	 = 0 and therefore the tensor is null. In such a case, the tensor is obviously O(3)-invariant.

• Dv
p-invariance

dimFixT
(
Dv

p

) =
n∑

k=0

αk

⌊
k

p

⌋
+

� n−1
2 	∑

k=0

α2k+1

When p > k, we obtain � k
p 	 = 0 and so βth = ∑� n−1

2 	
k=0 α2k+1 is the number of non-oriented transverse hemitropic coef-

ficients. βth is the dimension of an O(2)−-invariant tensor.
• O−-invariance

dimFixT
(
O−) =

n∑
k=0

αk

(⌊
k

3

⌋
−

⌊
k

4

⌋)

4. Physical results

In order to illustrate the practical interest of these formulas, two examples will be considered: the third-order tensor of
piezoelectricity and the fifth-order coupling tensor of Mindlin’s strain gradient elasticity.
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4.1. Piezoelectricity

Let us consider Piez the vector space of piezoelectricity tensors, its elements are symmetric under the permutation of
their two first indices: P(i j)k , where (..) stands for the minor symmetry. It has been shown [13,14] that this vector space is
isomorphic to:

Piez ∼= 2H1 ⊕H
�2 ⊕H

3

where the � notation indicates a pseudo-tensor. And so Piez is defined by the following {αk} family: {0,2,1,1}. As deter-
mined in [13,14,23], the space of piezoelectric tensors can be divided into the following anisotropic systems:

[Piez] = {[1], [Z2], [Z3],
[
Dv

2

]
,
[
Dv

3

]
,
[
Z−

2

]
,
[
Z−

4

]
, [D2], [D3],

[
Dh

4

]
,
[
Dh

6

]
,
[
SO(2)

]
,
[
O(2)

]
,
[
O(2)−

]
,
[
O−]}

Straightforward applications of our formula give

• Type-I subgroups

[Piez] [1] [Z2] [Z3] [SO(2)] [D2] [D3] [O(2)]
dim 18 8 6 4 3 2 1

• Type-III subgroups

[Piez] [Z−
2 ] [Z−

4 ] [Dv
2 ] [Dv

3 ] [O−(2)] [Dh
4] [Dh

6] [O−]
dim 10 4 5 4 3 2 1 1

where the number of coefficients for each physical symmetry class has been determined.6 These results are obviously in
agreement with those in the literature [13–15].

4.2. Mindlin strain-gradient elasticity

Let us consider ElaM the vector space of the coupling tensors in Mindlin strain gradient elasticity. It is the vector space
of fifth-order tensors endowed with the following index symmetries [16]: M(i j)(kl)m . It has been shown [11] that this vector
space decomposed as follows:

ElaM ∼= H
�0 ⊕ 6H1 ⊕ 5H�2 ⊕ 5H3 ⊕ 2H�4 ⊕H

5

and so ElaM is defined by the following {αk} family: {1,6,5,5,2,1}. As determined in [23], the space ElaM can be divided
into the following anisotropic systems:

[ElaM] = {[1], [Z2], . . . , [Z5],
[
Dv

2

]
, . . . ,

[
Dv

5

]
,
[
Z−

2

]
, . . . ,

[
Z−

8

]
, [D2], . . . , [D5],[

Dh
4

]
, . . . ,

[
Dh

10

]
,
[
SO(2)

]
,
[
O(2)

]
,
[
O(2)−

]
, [T ], [O−]

, [O], [SO(3)
]
,
[
O(3)

]}
Therefore ElaM is divided into 28 symmetry classes.7 This large number of symmetry classes has to be compared with the
eight symmetry classes of classical elasticity [6], and the 17 symmetry classes of second-order elasticity [24,25]. Straightfor-
ward applications of our formula now give:

• type-I subgroups

[ElaM] [1] [Z2] [Z3] [Z4] [Z5] [SO(2)] [D2] [D3] [D4] [D5] [O(2)] [T ] [O] [SO(3)]
dim 108 52 36 26 22 20 24 16 11 9 8 8 3 1

• type-III subgroups

[ElaM] [Z−
2 ] [Z−

4 ] [Z−
6 ] [Z−

8 ] [Dv
2 ] [Dv

3 ] [Dv
4 ] [Dv

5 ] [O−(2)] [Dh
4] [Dh

6] [Dh
8] [Dh

10] [O−]
dim 56 26 16 6 28 20 15 13 12 13 8 3 1 5

6 A precise definition of symmetry classes can be found in the following references [6,23,25].
7 Or 29, if the class [O(3)] of null tensors is taken into account. But this point is only a question of convention.
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5. Conclusion

In this note, analytical formulas giving the dimension of a subspace left fixed under O(3)-subgroup action have been
provided and applied to the symmetry classes of some physical tensor spaces. To be applied, the only things that have
to be known are the O(3)-isotypic decomposition of the studied tensor space, and the symmetry classes of the tensors
spaces. Using the method proposed in [11,20], this decomposition is easily obtained, and the determination of the symmetry
classes is completely solved in [23,25]. We believe that these simple formulas can be of great help to develop, for example,
higher-order constitutive laws [8,26] and to design micro–macro homogenization procedure for anisotropic materials [2].

Appendix A. Dictionary between group notations and crystallographic systems

A.1. O(3) type-I closed subgroups

Hermann–Mauguin Schonflies Group

1 C1 1
2 C2 Z2
222 D2 D2
3 C3 Z3
32 D3 D3
4 C4 Z4
422 D4 D4
6 C6 Z6
622 D6 D6
∞ C∞ SO(2)

∞2 D∞ O(2)

23 T T
432 O O
532 I I
∞∞ SO(3)

A.2. O(3) type-II closed subgroups

Hermann–Mauguin Schonflies Group

1̄ Ci Zc
2

2/m C2h Z2 ⊕ Zc
2

mmm D2h D2 ⊕ Zc
2

3̄ S6, C3i Z3 ⊕ Zc
2

3̄m D3d D3 ⊕ Zc
2

4/m C4h Z4 ⊕ Zc
2

4/mmm D4h D4 ⊕ Zc
2

6/m C6h Z6 ⊕ Zc
2

6/mmm D6h D6 ⊕ Zc
2

m3̄ Th T ⊕ Zc
2

m3̄m Oh O ⊕ Zc
2

5̄3̄m Ih I ⊕ Zc
2∞/m C∞h SO(2) ⊕ Zc

2∞/mm D∞h O(2) ⊕ Zc
2∞/m∞/m O(3)

A.3. O(3) type-III closed subgroups

Hermann–Mauguin Schonflies Group

m Cs Z−
2

2mm C2v Dv
2

3m C3v Dv
3

4̄ S4 Z−
4

4mm C4v Dv
4

4̄2m D2d Dh
4

6̄ C3h Z−
6

6mm C6v Dv
6

6̄2m D3h Dh
6

4̄3m Td O−
∞m C∞v O(2)−
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