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Linear optimal gains Gopt(ω) are computed for the separated boundary-layer flow past a 
two-dimensional bump in the subcritical regime. Very large values are found, making it 
possible for small-amplitude noise to be strongly amplified and to destabilize the flow. 
Next, a variational technique is used to compute the sensitivity of Gopt(ω) to steady 
control (volume force in the flow, or blowing/suction at the wall). The bump summit 
is identified as the region the most sensitive to wall control. Based on these (linear) 
sensitivity results, a simple open-loop control strategy is designed, with steady wall suction 
at the bump summit. Calculations on non-linear base flows confirm that optimal gains can 
be significantly reduced at all frequencies using this control. Finally, sensitivity analysis 
is applied to the length of the recirculation region lc and reveals that the above control 
configuration is also the most efficient to shorten the recirculation region. This suggests 
that lc is a relevant macroscopic parameter to characterize wall-bounded separated flows, 
which could be used as a proxy for energy amplification when designing steady open-loop 
control.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le gain optimal linéaire Gopt(ω) est calculé pour un écoulement de couche limite 
décollée en aval d’une bosse bidimensionnelle, en régime sous-critique. De très grandes 
valeurs sont obtenues. Un bruit de faible amplitude peut donc être fortement amplifié 
et déstabiliser l’écoulement. Une technique variationnelle est utilisée pour calculer la 
sensibilité de Gopt(ω) à un contrôle stationnaire (force volumique dans l’écoulement, ou 
soufflage/aspiration à la paroi). Le sommet de la bosse est identifié comme la région la plus 
sensible au contrôle pariétal. À partir de ces résultats (linéaires), une stratégie simple de 
contrôle en boucle ouverte est développée, avec aspiration stationnaire au sommet de la 
bosse. Des calculs sur des champs de base non linéaires confirment que ce contrôle réduit 
significativement le gain optimal à toutes les fréquences. Enfin, l’analyse de sensibilité est 
appliquée à la longueur de la zone de recirculation lc et révèle que la configuration de 
contrôle ci-dessus est aussi la plus efficace pour raccourcir la zone de recirculation. Cela 
suggère que lc est un paramètre macroscopique pertinent pour caractériser les écoulements
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décollés près d’une paroi, qui pourrait être utilisé comme alternative à l’amplification 
d’énergie lors de l’élaboration d’un contrôle stationnaire en boucle ouverte.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Some flows undergo transition below the critical Reynolds number Rec predicted by linear stability analysis, e.g. parallel 
flows such as Couette and Hagen–Poiseuille (linearly stable for all Reynolds numbers [1]) and non-parallel configurations 
such as jets or the flow past a backward-facing step. In these flows, classical linear stability theory, which focuses on the 
long-term fate of small perturbations, predicts that all linear eigenmodes are damped for Re < Rec, but it has become 
clear in the past decades that perturbations can be amplified by non-modal mechanisms [2]. While eigenvalues are not 
relevant in this context, non-modal mechanisms are well characterized by two complementary ideas: transient growth of 
initial conditions, and asymptotic amplification of forcing. These mechanisms are a result of the non-normality of the lin-
earized Navier–Stokes operator which governs the dynamics of perturbations. For example, non-normality leads to large 
transient growth in parallel shear flows through the two-dimensional (2D) Orr mechanism and, more importantly, the 
three-dimensional (3D) lift-up effect [3]; in non-parallel flows, large transient growth is observed because of convective 
non-normality [4]. Today, transient growth is a well-established notion, and most attempts to control convectively unsta-
ble flows naturally focus on reducing the largest possible transient growth, or “optimal growth” [5], but recently optimal 
response to harmonic forcing, or “optimal gain”, has drawn increasing attention too [6–8]. Brandt et al. [9] introduced a 
method to quantify the sensitivity of the largest asymptotic amplification to steady control, and applied it to a flat plate 
boundary layer. In this study, the flow past a wall-mounted bump is considered (Section 2). This separated flow is char-
acterized by a long recirculation region, high shear, strong backflow, and exhibits large transient growth [10,11]. Optimal 
gains are computed at different frequencies (Section 3), and a sensitivity analysis is performed in order to identify re-
gions where these gains can be reduced with steady open-loop control (Section 4.1). Sensitivity analysis is also applied 
to the length of the recirculation region (Section 4.2). Comparing the two analyses suggests that the recirculation length 
could be used as a single characteristic parameter when designing steady open-loop control for separated wall-bounded 
flows.

2. Problem description

The flow past a 2D bump mounted on a flat plate is considered. The bump geometry y = yb(x) is shown in Fig. 1 and is 
the same as in Marquillie and Ehrenstein [12] and following studies [10,11,13]. The incoming flow has a Blasius boundary 
layer profile, of displacement thickness δ∗ at the reference position x = 0. The bump summit is located at x = xb = 25δ∗ , 
and the bump height is h = 2δ∗ . All quantities in the problem are made dimensionless with inlet velocity U∞ and inlet 
boundary layer displacement thickness δ∗ . The Reynolds number is defined as Re = U∞δ∗/ν , with ν the fluid kinematic 
viscosity. Previous studies using direct numerical simulations [12] and linear global stability analysis [10] reported a 2D 
critical Reynolds number Rec between 590 and 610. (See [14] for details about the 3D flow.) In this study, we focus on the 
2D flow at Reynolds number Re ≤ 580.

The fluid motion in the domain Ω is described by the state vector Q = (U, P )T (velocity and pressure fields), solution of 
the 2D incompressible Navier–Stokes equations:

∇ · U = 0, ∂tU + ∇U · U + ∇ P − Re−1∇2U = F + C in Ω

U = Uc on Γw (1)

Here, F(t) is a time-dependent volume force, aiming to model external (uncontrolled) noise. In order to alter the flow and 
modify its properties (e.g. reduce noise amplification), steady control can be applied: volume control C, or blowing/suction 
Uc at the wall. In the absence of external forcing, the steady-state base flow Qb = (Ub, Pb)

T is solution of:

∇ · Ub = 0, ∇Ub · Ub + ∇ Pb − Re−1∇2Ub = C in Ω

Ub = Uc on Γw (2)

All steady-state base flows Qb, with or without control, are computed with an iterative Newton method, convergence 
being reached when the residual is smaller than 10−12 in L2 norm. A 2D triangulation of the computational domain Ω
(0 ≤ x ≤ 400, yb ≤ y ≤ 50) is generated with the finite element software FreeFem++ (http :/ /www.freefem .org), and Eqs. (2)
are solved in their variational formulation, with the following boundary conditions: Blasius profile Ub = (UBlasius, 0)T at the 
inlet, blowing/suction Ub = Uc or no-slip condition Ub = 0 at the wall, symmetry condition ∂y Ub = V b = 0 at the top border, 
and outflow condition −Pbn +Re−1∇Ub ·n = 0 at the outlet, with n the outward unit normal vector. P2 and P1 Taylor–Hood 
elements are used for spatial discretization of velocity and pressure, respectively.

http://www.freefem.org
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Fig. 1. (Color online.) Sketch of the flow configuration: bump geometry y = yb(x), inlet velocity profile (U , V ) = (UBlasius, 0), time-dependent forcing F(t), 
steady volume control C and steady wall control Uc.

Fig. 2. (a) Optimal linear gain at Re = 300, 400, 500 and 580. (b) Variation of the maximal optimal gain with Reynolds number.

3. Response to external forcing: optimal gain

The concept of harmonic response is useful to study noise amplification. Assuming that the base flow is subject to a 
time-dependent volume forcing F(t) of small amplitude, the dynamics of the perturbations q′ = Q − Qb are governed by the 
linearized Navier–Stokes equations

∇ · u′ = 0, ∂tu′ + ∇u′ · Ub + ∇Ub · u′ + ∇p′ − Re−1∇2u′ = F (3)

with u′ = 0 at the wall. In this linear setting it is sufficient to consider harmonic forcing: F(t) = f eiωt . In the subcritical 
regime, Qb is stable and the asymptotic response is harmonic at the same frequency: q′(t) = q eiωt . Therefore, each Fourier 
component satisfies:

∇ · u = 0, iωu + ∇u · Ub + ∇Ub · u + ∇p − Re−1∇2u = f (4)

The amplitude of perturbations is measured in terms of kinetic energy 
∫
Ω

|u|2 dΩ = ‖u‖2
2, with ‖ ·‖2 the L2 norm induced by 

the 2D Hermitian inner product (a | b) = ∫
Ω

a∗ ·b dΩ . The forcing amplitude is measured in a similar way: ‖f‖2
2 = ∫

Ω
|f|2 dΩ . 

For given frequency ω and forcing f, the asymptotic energy amplification is the gain G(ω) = ‖u‖2/‖f‖2. In particular, the 
optimal forcing fopt and optimal response qopt lead to the largest energy amplification, or optimal gain:

Gopt(ω) = max
f

‖u‖2

‖f‖2
≡ ‖uopt‖2

‖fopt‖2
(5)

In this study, optimal gains are computed using the same procedure as Garnaud et al. [8]. The linear dynamical system (4)
is spatially discretized (with the same mesh and the same elements as for base flow calculation), and G2

opt(ω) is recast as 
the leading eigenvalue of a Hermitian eigenvalue problem, solved with an implicitly restarted Arnoldi method.

Fig. 2 shows the optimal gain Gopt(ω) and the maximum optimal gain maxω(Gopt(ω)). The corresponding frequency 
ωmax increases between 0.15 and 0.25, while the maximal optimal gain increases exponentially with Re and reaches values 
larger than 108 at Re = 580. This is in agreement with observations for other separated flows, for example pressure-induced 
recirculation bubbles [7]. These large gain values suggest that an incoming noise of low amplitude might be significantly 
amplified through linear mechanisms, enough to reach order one and possibly modify the base flow, or even completely 
destabilize the overall flow behavior. The largest values of optimal gain are obtained for frequencies corresponding to the 
most unstable global eigenvalues near critical conditions (0.15 � ω � 0.30 in [10]). Fig. 3 shows the spatial structure of the 
optimal forcing and optimal response at Re = 580. The optimal forcing is located near the summit of the bump and at the 
beginning of the shear layer, with structures tilted against the base flow. It exhibits a layer-like structure in the y direction, 
and these layers become thinner as ω increases. The optimal response has a wave packet-like structure in the x direction, 
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Fig. 3. (Color online.) Optimal forcing (left) and optimal response (right) at Re = 580 for different frequencies ω. The real part of the streamwise component 
is represented. The dashed line shows the base flow separating streamline.

whose wavelength decreases with ω. The location of the optimal response moves upstream with ω; at most amplified 
frequencies the optimal response is located just around the reattachment point, and its spatial structure is reminiscent of 
that of the most unstable global eigenmodes [10].

4. Sensitivity analysis

In this section we apply sensitivity analysis to optimal gain Gopt and recirculation length lc. This variational technique, 
formulated in a Lagrangian framework, enables to obtain at low computational cost the gradient of Gopt and lc with respect 
to steady forcing. Based on these gradients, we identify the most sensitive regions and design an efficient open-loop control.

4.1. Sensitivity and control of optimal gain

Following Brandt et al. [9], we evaluate the linear sensitivity of optimal gain with respect to control. Considering the 
small variation of G2

opt(ω) resulting from a small-amplitude volume force δC in the domain and small-amplitude wall 
blowing/suction δUc at the wall, the sensitivities to these two types of control are defined as δG2

opt = (∇CG2
opt | δC) +

〈∇Uc G2
opt | δUc〉, where 〈a | b〉 = ∫

Γw
a∗ · b dΓ denotes the one-dimensional Hermitian inner product at the wall. Using a 

Lagrangian that includes the definition of the optimal gain yields:

∇CG2
opt = U†, ∇Uc G2

opt = −P †n − Re−1∇U† · n (6)

where the adjoint base flow Q† = (U†, P †)T is solution of the linear, non-homogeneous system

∇ · U† = 0, −∇U† · Ub + ∇UT
b · U† − ∇P † − Re−1∇2U† = ∇UG2

opt (7)

and ∇UG2
opt = 2G2

optReal(−∇uH
opt · fopt + ∇fopt · u∗

opt) is the sensitivity of G2
opt to base flow modification (with the normal-

ization condition ‖fopt‖2 = 1). For each frequency ω, fopt and uopt are computed with the method described in Section 3, 
and the sensitivity to base flow modification ∇UG2

opt is calculated. Then, the variational formulation of (7) is discretized and 
solved (with the same mesh and elements as for base flow calculation), with boundary conditions U† = 0 at the inlet and 
at the wall, ∂y U † = V † = 0 at the top border, and P †n + Re−1∇U† · n + U†(Ub · n) = 0 at the outlet. Finally, sensitivities to 
control are evaluated according to (6).

Inspection of the sensitivity of G2
opt to volume control (not shown here) reveals that the optimal gain is the most sensi-

tive in the shear layer, but the spatial structure and the sign of ∇CG2
opt change greatly with frequency ω. This makes difficult 
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Fig. 4. Sensitivity of optimal gain and recirculation length to wall blowing/suction (Re = 580). Arrows are in the direction of positive sensitivity, i.e. control 
along the arrows increases Gopt(ω) and lc . Numbers on the right show the L∞ norm of the rescaled sensitivity field ∇Uc G2

opt/G2
opt .

Fig. 5. (Color online.) Effect of wall suction at the bump summit (Re = 580). (a) Reduction of optimal gain with flow rate W = −0.010, −0.035, −0.100. 
(b) Decrease of recirculation length: prediction from sensitivity analysis (SA, solid line), and actual values computed from non-linear base flows (NL, circles).

the design of an efficient open-loop control based on steady volume able to simultaneously reduce Gopt at all frequencies 
of interest. Figs. 4(a)–(f) show the sensitivity to wall control ∇Uc G2

opt(ω). Numbers on the right correspond to the L∞ norm 
of the rescaled sensitivity field ∇Uc G2

opt/G2
opt; they show that the relative control authority is larger at frequencies of large 

optimal gain. Arrows point in the direction of positive sensitivity, i.e. actuation along the arrows would increase Gopt . The 
optimal gain is essentially sensitive to control in the normal direction, and the sensitivity is maximal at the summit of the 
bump for all frequencies. Moreover, at the bump summit ∇Uc G2

opt is oriented toward the fluid domain at all frequencies, 
indicating that normal wall suction would reduce Gopt, whereas in other locations the orientation changes with ω. This sug-
gests designing the following open-loop control: no actuation in the domain, C = 0, and vertical wall suction Uc = (0, Uc)

T

at the bump summit x = xb. In the following, we use the Gaussian profile Uc(x, yb(x)) = W exp(−(x − xb)
2/σ 2

c )/(σc
√

π) of 
flow rate W . Fig. 5(a) shows the actual optimal gain calculated from non-linear base flows controlled with different suction 
flow rates. It confirms the efficiency of the control strategy proposed above: reasonably small control flow rates achieve 
a significant reduction of Gopt at all frequencies, thereby potentially increasing the level of forcing (perturbation) that the 
flow can withstand without being destabilized.

4.2. Sensitivity and control of recirculation length

The sensitivity of recirculation length can be derived using a similar technique. Details are given in [15]. Writing the 
variation of lc resulting from small-amplitude steady control as δlc = (∇Clc | δC) + 〈∇Uc lc | δUc〉, sensitivities are obtained 
as:

∇Clc = U†, ∇Uc lc = −P †n − Re−1∇U† · n (8)
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where the adjoint base flow Q† = (U†, P †)T is solution of the linear, non-homogeneous system

∇ · U† = 0, −∇U† · Ub + ∇UT
b · U† − ∇P † − Re−1∇2U† = ∇Ulc (9)

and ∇Ulc = ((−∂xy U |x=xr,y=0)
−1δ(xr, 0)∂y, 0)T is the sensitivity of lc to base flow modification. Here we assume that Re is 

large enough, so that the reattachment point xr = (xr, yb(xr)) is located downstream of the bump, where yb(xr) = 0 and the 
wall is horizontal. As indicated by the Dirac delta δ(xr, 0), this sensitivity field ∇Ulc is localized at the reattachment point: 
at first order, the recirculation length variation only depends on the variation of wall shear stress at this point. Boundary 
conditions are the same for (9) and (7).

Fig. 5(b) compares the recirculation length obtained from sensitivity analysis and controlled non-linear base flows; the 
agreement at small amplitude is excellent. Fig. 4(g) shows the sensitivity of lc to wall forcing at Re = 580. The recircu-
lation length is mostly sensitive to actuation in the normal direction, and control authority is the largest at the bump 
summit. More specifically, the most efficient way to reduce lc is to use wall suction at the bump summit. This is ex-
actly the control configuration which was found to reduce the most optimal gain Gopt(ω) at all frequencies of interest 
(Section 4.1). This could be expected, since reducing the recirculation length reduces the potential for instability. It is 
known that lc increases with Re in subcritical separated flows [16,17,12,13]. A longer recirculation region implies more 
backward velocity and more shear, which tends to destabilize the flow from a local stability viewpoint; in addition, a longer 
shear layer means that perturbations are amplified over a longer distance while advected downstream. Therefore, since 
wall normal suction shortens the recirculation region, it seems natural that it mitigates the amplification of perturbations. 
This confirms that lc is a relevant macroscopic quantity to characterize wall-bounded separated flows, and suggests that 
it could be used as a proxy for energy amplification when designing open-loop steady control. This would simplify the 
use of sensitivity analysis by suppressing the need to compute optimal gain and to repeat the analysis at several frequen-
cies.

5. Conclusions

Linear optimal gains Gopt(ω) were computed in the subcritical separated boundary-layer flow past a two-dimensional 
bump. Very large optimal gain values were found, confirming the strong non-normal character already observed with large 
transient growth [10,11] and the potential for large noise amplification. Sensitivity analysis applied to Gopt(ω) identified the 
bump summit as the region the most sensitive to wall control. Calculations on non-linear base flows confirmed that Gopt(ω)

is significantly reduced at all frequencies using a simple open-loop control with steady wall suction at the bump sum-
mit. Sensitivity analysis applied to the recirculation length lc revealed that the above control is also the most efficient to 
shorten lc. This suggests that lc is a relevant macroscopic parameter to characterize wall-bounded separated flows, which 
might be used as a proxy for energy amplification, thereby simplifying the design of steady open-loop control. The above 
conclusion is supported by additional results. We recently performed direct numerical simulations which showed that wall 
suction at the bump summit was able: i) in the subcritical regime, to delay the transition induced by small-amplitude 
stochastic noise; ii) in the supercritical regime, to suppress self-sustained large-scale oscillations [18]. Flow restabilization 
in the supercritical regime was confirmed by a linear global stability analysis.
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