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The evaporation of drops in a sound field has been the subject of numerous studies
aimed at determining its role in combustion instability. The models generally assume local
equilibrium evaporation at the interface. We determine here the conditions of validity of
this assumption, without calling into question other a priori assumptions of the classical
model, in particular spherically symmetric quasi-steady evolution in the gas phase and
liquid phase thermal unsteadiness with pure heat conduction.
Another possible phenomenon concerns the differential recoil of the vapor. In the case of
rapid evaporation, a pressure difference appears between both sides of the interface, even if
the latter is plane. This pressure difference, usually neglected, is proportional to the square
of speed and the resulting force is oriented toward the denser fluid, i.e. the liquid. A very
fast evaporation may even cause local deformation, i.e. Hickman instability. The stability
condition concerning this phenomenon has also been determined.
This study was co-funded by CNES (French Space Agency) and ONERA and was performed
in the framework of CNES–ONERA French Research & Technology activities on the high-
frequency combustion stability of liquid–propellant rocket engines.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The evaporation of drops in an acoustic field has been the subject of many studies aimed at determining its role in
combustion instability. The models generally assume local evaporation equilibrium at the interface. We want to determine
here the conditions of validity of this assumption, without questioning the other a priori assumptions of the classical model,
in particular: spherical symmetry, quasi-stationary evolution in the gas phase and thermal unsteadiness of the liquid phase
with pure heat conduction [1,2].

The local evaporation equilibrium is characterized by the equality of chemical potentials of the constituent of the drop in
liquid and vapor phases,

μFL = μFV (1)
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Nomenclature

a,b, c constant coefficients
A, B thermodynamic coefficients in the transfer

function
BM, BT Spalding parameters for mass and temperature
cp specific heat at constant pressure
C combustion chamber level
d droplet diameter
Da Damköhler parameter
E(u, θ) function E(u, θ) = 1 − (1 + i)

√
3u/2θ coth[(1 +

i)
√

3u/2θ ]
g thermodynamic potential per unit mass, grav-

itational acceleration
G gas phase
h liquid height
H container height
Hi Hickman number
k heat conductivity
l latent heat per unit mass
L liquid phase; phenomenological coefficient for

near-equilibrium evaporation–condensation
M mass
M molar mass
ṁ unit mass flow rate
Ṁ mass flow rate for an evaporating droplet
N response factor N = ᾱ�(Z)
�N unit normal at a point of an interface; quantity

�∇ · �N being the average normal curvature
p thermodynamic pressure
psat saturation pressure
qT coefficient equal to τT/6πτ̃T
r gas constant per unit mass r = R/M
r̄s mean radius of the fed droplet
R universal gas constant
S interface level; cross section area
T temperature in K
u reduced pulsation: u = 3ωτ̄v
V speed
�v fluid velocity
�w interfacial velocity
We Weber number: We = ρ(V G − V L)

2/σ

x, y, z Cartesian coordinates
Z transfer function of the fed oscillating droplet
α,αv,αc evaporation–condensation, vaporization, con-

densation coefficients respectively
ᾱ coefficient of the transfer function of the fed

oscillating droplet
−βL thermal gradient in a liquid boundary layer
δ thickness of a boundary layer (δ for the vapor

side, δL for the liquid one)
λ heat conductivity
η(x, y, t) function describing a disturbed surface z =

η(x, y, t), the reference value being zero
κ heat diffusivity
μ dynamic viscosity; thermodynamic potential

per mole μ =Mg
μ j chemical potential of species j
ν quantity equal to: (1 + i)

√
3u/2θ

��Π tensor of viscous pressures
θ ratio τ̄v/τ̃T
Θ reduced temperature
ρ,ρL gas and liquid densities
σ surface tension
τ characteristic time; τvap for evaporation–

condensation; τmec mechanical time
τexcit period of an oscillating disturbance
τT, τ̃T characteristic times for heat diffusion respec-

tively in the gas, τT = δ2/κ and in the liquid,
τ̃T = r̄2

S/κL
τ̄v mean residence time of the injected liquid for

a fed drop; equal to the lifetime τlife of the
free droplet

ω pulsation of an oscillating wave
ξ reduced radius ξ = r/r̄s

ζT reduced variable ζT = Ṁcp/4πkr
∗ reference conditions
− the liquid side of the interface
+ the vapor side of the interface
// tangentially to the interface
⊥ normally to the interface

In the case of local evaporation non-equilibrium, the equality of chemical potentials is no more guaranteed and the mass
flow rate of vaporization is a function of their difference. According to Bond and Struchtrup [3], in the case of a pure
substance, the rate of evaporation can be written:

ṁ =
(

M
2π R

)1/2(
αv

psat

(T S)1/2
− αc

p+

(T +)1/2

)
(2)

with two different coefficients αv,αc, respectively for evaporation and condensation, M the molar mass, R the universal
gas constant, psat the saturation vapor pressure at the temperature T − = TS of the liquid surface, T +, p+ corresponding to
the gas. Coefficient values αv,αc become equal when one tends towards equilibrium: αv = αc = α.

Another phenomenon can occur during very fast evaporation, changing the shape of the liquid–vapor interface. It is
called the vapor recoil (see Appendix A.1). It can be explained by the momentum balance at the interface and results in a
force acting towards the densest fluid, i.e. the liquid.

The case of vacuum evaporation, which results in surface deformation, has been particularly studied by Palmer [4], who
found the stability limit of the phenomenon. This is the Hickman instability [5] (see Appendix A.2).
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Fig. 1. Closed and constant volume isothermal evaporation vessel.

We study here the evaporation of drops in a combustion chamber that is disturbed by high frequency acoustic fluctua-
tions (at frequencies from 250 Hz to 20 000 Hz). Indeed, it is important to characterize the regime of evaporation in order
to properly model the evaporation and combustion instability phenomena.

Our goal is to predict the existence of out-of-equilibrium evaporation. We do not intend to introduce immediately this
disequilibrium into the equations to solve them. Indeed, the local evaporation disequilibrium may considerably complicate
the numerical resolution. It is however important to find a criterion of occurrence. For this purpose, we will compare the
characteristic times and length scales.

The relaxation of evaporation from a non-equilibrium state depends on the mechanical and thermodynamic evolution of
the fluids. One has to compare a characteristic time of this evolution to the characteristic time of evaporation; the resulting
comparison will lead to a near-equilibrium criterion through a Damköhler number. So the local evaporation non-equilibrium
can be characterized, in quasi-stationary mode, by the Damköhler parameter of local evaporation defined by the ratio of a
mechanical time τmec to a vaporization time τvap.

The instability of recoil involves also the previous characteristic times, but the resulting expression of the Hickman
number also depends on a reference flow rate and on its temporal derivative. We will study this instability assuming local
evaporation equilibrium and will assume that the Palmer’s results remain valid with this hypothesis and also for spherical
drops in the reference state.

In order to determine evaporation quantities of a flat layer, we will use on the one hand a specific simple model and on
the other hand quantities related to the evaporation of a drop, and put to good use our knowledge of the Heidmann model
concerning a droplet fed by a steady flow [1] (see Appendix A.3).

2. Condition of evaporation equilibrium

2.1. Characteristic time of the evaporation process

So as to determine first the characteristic time of the evaporation process at constant volume, we imagine a cylindrical
container of height H . The liquid height is h and the cross section area S (Fig. 1).3

In the case of a single coefficient α for evaporation and condensation, the flow rate per unit area is:

ṁ = α

(
M

2π R

)1/2( psat

(TS)1/2
− p+

(T +)1/2

)
(3)

Writing p+ = p, T + = T and assuming a uniform temperature, ṁ = α√
2πrT

(psat − p) with r = R/M. If p < psat, evapora-

tion occurs.
Another relationship characterizes the total mass: M = MG + ML = ρLhS + ρG(H − h)S = Cst.
Sufficiently far below the critical point, ρG � ρL, so M ≈ S(ρLh + ρG H). On the other hand, assuming an ideal gas:

ρG = p/rT .
At the evaporation–condensation equilibrium, we have: p = psat(T ),h = he, and: M ≈ S(ρLhe + psat H/rT ), from what we

deduce h ∼= he − p−psat
ρLrT H .

To study the near-equilibrium evolution, ρL = C st is assumed. Thus we can write Sṁ = − dML
dt = −ρL S dh

dt . Given the con-

servation of the total mass, we obtain the evolution equation of the liquid level, dh
dt + α

H

√
rT
2π (h − he) = 0, which provides

h = he + (h0 − he)e−t/τvap , with a relaxation time of phase change (evaporation or condensation).

3 We assume the ratio S/H2 to be sufficiently small so as to make negligible any internal fluid motions as vortices, and thus to keep the one-dimensional
behavior of the system.
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Fig. 2. (Color online.) Evolution of the reduced temperature Θ̄ = (T̄∞ − T̄ )/(T̄∞ − T̄S) as a function of the reduced radius ξ = r/r̄S for increasing values of
the Spalding parameter B = B̄T from 0.1 to 100.

τvap = H
√

2π/(α
√

rT ) (4)

To represent the case of drop evaporation, one has to replace H by a characteristic length. Assuming T = Cst, the equation
of the variable h is verified also by the variable p − psat, so that: p = psat + (p0 − psat)e−t/τvap .

2.2. Diffusion characteristic time

Some “mechanical time” has to be compared to the previous evaporation time, in order to characterize the evolution of
the system from an evaporation disequilibrium. The time of thermal diffusion plays this role; we have τméc = τT = δ2/κ
(where δ is a diffusion thickness and κ is the thermal diffusivity).

For the flat layer at rest, the thickness of thermal diffusion in the gas is: δ = H , if one assumes that the heat input comes
from the top of the container.

In the case of an evaporating droplet (Appendix A.3) of diameter d̄, supplied by a steady flow, we will estimate the thickness
of thermal diffusion in the gas, using the temperature gradient at the interface. Thermal gradients that are external to the
drop are considered as being reduced to those of the steady state.4 In quasi-stationary regime with constant physical
properties, and assuming spherical symmetry, the temperature T̄ of the gas phase is a function of the radius r only. With
ξ = r/r̄S, we obtain

T̄ = T̄S(1 + B̄T) − T̄∞
B̄T

+ 1 + B̄T

B̄T
(T̄∞ − T̄S)(1 + B̄T)

− 1
ξ

Details of the proof : The QS thermal profile in the gas phase is of the form (see Appendix A.3 and Ref. [2]): T =
aT + bTe−ζT , ζT = ¯̇Mcp/4πkr, with ¯̇M = 4π k

cp
r̄s ln(1 + B̄T), so ζT = 1

ξ
ln(1 + B̄T), i.e., T = aT + bT(1 + B̄T)

− 1
ξ . The bound-

ary conditions T̄ = T̄S at the surface of the drop and T̄ = T̄∞ at infinity provide values of the constants aT,bT, hence the
expression of T above.

We have:

−Θ̄ = T̄ − T̄∞
T̄∞ − T̄ S

= (1 + B̄T)

B̄T

[
(1 + B̄T)

−1/ξ − 1
]
, then

d(−Θ̄)

dξ
= (1 + B̄T)

ξ−1
ξ ln(1 + B̄T)

B̄Tξ2

At the droplet surface, r = r̄s , ξ = 1, so d(−Θ̄)
dξ

= ln(1+B̄T)

B̄T
.

The diffusion thickness in the gas thus writes:
(

δ

r̄S

)
= B̄T

ln(1 + B̄T)
(5)

Fig. 2 shows the evolution of the reduced temperature Θ̄ as a function of ξ = r/r̄S for different values of the Spalding
parameter5 B̄T = cp(T̄∞ − T̄S)/l̄. The same study could be made about the concentrations. One observes that the temperature
changes considerably in a region at the periphery of the droplet, whose thickness has been characterized.

4 Small high-frequency perturbations change only a little these gradients; changes become important only in unstable frequency domain corresponding
to 0 � u � uc (see Annex A.3), and if disturbances are not small. In this case we go into the nonlinear domain, which is not studied here.

5 Calculated at stabilized regime.
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Fig. 3. Configuration studied by Palmer.

2.3. Damköhler number of evaporation and condition of equilibrium

To build a global criterion for evaporation equilibrium, we define first the Damköhler number of evaporation as the ratio
or the diffusion time in the gas to the characteristic evaporation time, Da = τT/τvap = (αδ/κ)

√
rT /2π and the corresponding

condition of equilibrium is Da � 1. The quantities to be known are: the coefficient of evaporation α, the thermal diffusivity
of the gas κ , the gas temperature T , the diffusion thickness δ in the gas.

However, this condition ignores the disequilibrium caused by possible disturbances from the engine, assuming that
the equilibrium be satisfied in the non-disturbed situation. So as not to affect this equilibrium, the period of disturbance
τexcit = 2π/ω has to be much larger than the time of evaporation (τexcit � τvap). We will write this equilibrium condition
ωτT/2π � Da.

Moreover, we have to consider a third condition, taking into account the characteristic lifetime of the drop, which is equal
to the residence time τ̄v of the liquid injected into an equivalent fed drop. Indeed, reaching the equilibrium of evaporation
during the major part of droplet lifetime implies that the vaporizing time be much shorter than the lifetime (τ̄v/τvap � 1).
This equilibrium condition may be written as τT/τ̄v � Da.

All conditions of evaporation equilibrium will thus be ensured by the following global criterion,6 linking the four dimen-
sionless ratios Da, u, θ and qT = 1

6π
τT
τ̃T

:

Da � sup

(
1,qT

u

θ
,qT

6π

θ

)
(6)

3. Condition of the Hickman instability

Hickman’s instability can occur for high evaporation flow rates, e.g., for a plane layer of liquid under vacuum (see Palmer,
1976 [4], see also [6] and Appendix A.2). It is caused by local fluctuations of the recoil force. We introduce the Hickman
number:

Hi =
(

dṁ

dT

)∗ ṁ∗βLδ
2
L μ

ρLκLσ ∗

(
1

ρ
− 1

ρL

)
(7)

which represents “the ratio of the destabilizing forces of differential vapor recoil and vapor viscosity to the stabilizing action
of surface tension and thermal diffusivity” [4], with the following variables: δL the thickness of the liquid thermal boundary
layer, (−βL) the thermal gradient in the same layer, ṁ∗ the evaporation unit flow rate in the reference situation, μ the
dynamic viscosity of the gas, κL the thermal diffusivity of the liquid, σ ∗ the surface tension reference, T the temperature,
ρ the density of the gas (the evaporated liquid), ρL the liquid density. To estimate the Hickman number, we will assume
a thermal characteristic time τ defined by 1

τ = d(ln T )
dt , and consider the situation7 of Fig. 1. We have ṁ∗ = Hpsat

rT τ ( l
rT − 1),

because ML = M − psat
rT H , ṁ∗ = −dML/dt = (H/r)d(psat/T )/dt and for an ideal gas, assuming ρL � ρG, the Clapeyron

relation writes dpsat
dT

∼= lpsat
rT 2 .

Using the expression of the latent heat l = brT 2

(T −c)2 [1], we find ( dṁ
dT )∗ = H

rτ
psat
T 2 [( l

rT − 1)2 − bcT
(T −c)2 ].

6 Using the notations τ̃T = r̄2
S /κL , u = 3ωτ̄v, θ = τ̄v/τ̃T (see Annex A3) and qT = 1

6π
τT
τ̃T

, we have on the one hand: qT
u
θ

= τT
ω

2π = τT
τexcit

. So Da � qT
u
θ

means τexcit � τvap. On the other hand, qT
6π
θ

= Da
τvap
τ̄v

, so that Da � qT
6π
θ

means τ̄v � τvap.
7 As the cause of the instability of Hickman depends on the situation (here the situation described by Fig. 3), it will be necessary to re-consider the

expression of the time τ to handle the case of a drop.
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Remarks. One may think to compare the former expression of ṁ∗ with the expression of ṁ presented in Annex A1.2,
Eq. (23). The latter results from the evidence of fluxes and generalized forces in the expression of the entropy production
rate and from a linearization, in the framework of classical thermodynamics of irreversible processes applied to a pure
species. Studying evaporation in vacuum condition, Palmer (see Appendix A.2, Eq. (26)) uses a different but analogous

expression of ṁ, with a generalized force (
p0

(TS)
1/2 − p∗

G
(T ∗

G)1/2 ).

To evaluate the evaporation rate ṁ∗ , we proceed here in a different way. Indeed, the assumed local evaporation equilib-
rium at the interface concerns the species constituting the liquid drop, whose vapor is mixed with combustion products, as
explained in Appendix A.3.

However, we take into account the recoil force, as Palmer does. This force results in our case from the high evaporation
velocities encountered at high temperatures in rocket engine combustion chambers. The recoil force intervenes here in the
expression of the Hickmann number given by Palmer, through the product ṁ∗( dṁ

dT )∗ that depends on this force. �
Substituting in the expression of the Hickman number, we obtain:

Hi =
(

Hpsat

rT τ

)2( l

rT
− 1

)[
1

T

(
l

rT
− 1

)2

− b(T + c)

(T − c)3

]
βLδ

2
L μ

ρLκLσ ∗

(
1

ρV
− 1

ρL

)
(8)

We will remove the index (V ) denoting the vapor and take H = δ, the thickness of thermal diffusion layer in the gas.8

Considering that the acoustic disturbance is the cause of the possible Hickman instability, we evaluate the characteristic time

τ of the thermal fluctuation at the droplet surface defined by 1
τ = | d(ln Ts)

dt |, using T ′
s = Ts−T̄s

T̄s
. Hence, setting T ′

s = T̂seiωt and

assuming |�T ′
s| � 1 (which is verified in our application case), we get 1

τ = ω| �T ′
seiωt

1+�T ′
seiωt | ∼= ω|�T ′

s|. Moreover, as can be shown

from the results presented in Appendix A.3, T̂s = p̂C

b̄
A+B

B−θ E(u,θ)
. Then

1

τ
∼= ω|p̂C|

∣∣∣∣1

b̄

A + B

B − θ E(u, θ)

∣∣∣∣ (9)

The thickness of the liquid thermal boundary layer δL and the temperature gradient βL = |dTl/dr| in the liquid are
calculated as follows in the case of a propellant droplet.

Thermal gradients in the liquid are caused by high-frequency disturbances from the combustion chamber that are trans-
mitted by the gas to the whole drop or part of it. Indeed, the reference configuration is that of the steady state in which the
temperature of the drop is uniform, unlike the gas temperature. Ideally, the thermal field is spherically symmetrical (Fig. 4)
and produces density variations which cause convective motions.

Hypothesizing that we legitimately neglect the thermal convection due to the feeding of the droplet, we show hereafter

that δL/r̄S ≈ |1/E(u, θ)|, with E(u, θ) = 1 − (1 + i)
√

3u
2θ

coth[(1 + i)
√

3u
2θ

].
Indeed, setting T ′

L = T̂L(r)eiωt , we can demonstrate from the results presented in Appendix A.3 that T̂Lred = b̄
p̂C

T̂L =
A+B

B−θ E(u,θ)
sh(vξ)
ξ sh v , where v = (1 + i)

√
3u/2θ, ξ = r/r̄S. The modulus of the temperature perturbation |T ′

L| is thus proportional
to the quantity ΘL = sh(vξ)/ξ sh v . A limited expansion of ΘL near the surface gives ΘL = 1 + (v coth v − 1)�ξ .

We find therefore ΘL = 0 for |�ξ | = δL/r̄S = |1/(1 − v coth v)| = |1/E(u, θ)|. In Fig. 5 are shown the results obtained with
different values of θ .

Let us notice that |v coth v| must be large enough so that |�ξ | be less than 1. In this case, we will have:

∣∣1/(1 − v coth v)
∣∣ ≈ | th v/v| ≈ |1/v| and thus |�ξ | ≈ |1/v| = √

θ/(3u), i.e., δL/rS ≈ √
θ/(3u) (10)

Moreover, based on the foregoing, one obtains

βL =
∣∣∣∣dTL

dr

∣∣∣∣ = T̄S|p̂C|
b̄r̄S

(A + B)

∣∣∣∣ E(u, θ)

B − θ E(u, θ)

∣∣∣∣ (11)

A suitable expression of the Hickman number is then

Hi =
(

δ p̄C

rT̄Sτ

)2( l

r T̄S
− 1

)[
1

T̄S

(
l

r T̄S
− 1

)2

− b(T̄S + c)

(T̄S − c)3

]
βLδ

2
L μ

ρLκLσ ∗

(
1

ρ̄S
− 1

ρL

)
(12)

where ρ̄S represents the density of the vapor at the surface of the liquid.

8 Remark: The fact that Palmer treated a vacuum evaporation (which is not the case here) led him to consider only the boundary layer in the liquid
(Fig. 3).
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Fig. 4. (Color online.) Two examples of the oscillating reduced temperature field inside the drop, resulting from a pressure perturbation in the chamber.
They are depending on ξ = r/r̄S for different values of dimensionless time tred = t/τ̄v. Increasing the excitation frequency leads to a reduction of the
wave-penetration depth.

Fig. 5. (Color online.) δL/r̄S as a function of u for different values of θ .

4. Calculation results and conclusion

Four pairs of propellants were studied, corresponding to eight configurations for the species of both droplet and gas:
LOX–H2, LH2–O2, LOX–CH4, LCH4–O2, LOX–C10H22, LC10H22–O2, LN2O4–MMH and LMMH–N2O4. The first letter “L” means
“liquid” and serves to designate the species of the droplet, “MMH” means mono-methyl hydrazine, and the n-decane C10H22
represents here the kerosene (because the dynamic model of evaporation treats only single-component drops up to now) [7].

The conditions of the study (10 bar pressure, 1000 K temperature) are typical of the environment of a propellant droplet
in a rocket engine. Moreover, we have considered diameters of plausibly existing droplets, after the vibrational breakup

owing to the shear at injection, i.e. such that the Weber number We = ρ(V G−V L)
2

σ be less than 20 (for an initial velocity
difference between the gas and the droplet of 25 m/s). These diameters range from 1.5 micron for hydrogen to 185 microns
for MMH (see Fig. 6). However, the conditions of evaporation equilibrium are checked for a droplet at rest.

4.1. Assumption of liquid/vapor equilibrium at the drop/gas interface

We have identified three necessary conditions for the liquid–vapor equilibrium at the gas–drop interface, from the con-
sideration of the law of non-equilibrium evaporation, envisaged for a planar interface (see Section 2.3).
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Fig. 6. (Color online.) Droplet radii as a consequence of the vibrational break-up criterion applied in typical rocket engine conditions.

Fig. 7. (Color online.) Checking the vapor–liquid equilibrium for a drop at rest.

The first one is related to a Damköhler number of evaporation/condensation, defined as the ratio of the characteristic
time of diffusion in the gas and the characteristic time of return to evaporation equilibrium:

Da = τT

τvap
= α

δ

κ

√
rT

2π
(13)

with τT = δ2

κ and τvap = δ
√

2π

αflow
√

rT
. The condition is Da = τT

τvap
� 1.

Two additional conditions appear to be verified in the case of a drop subjected to an acoustic environment, regarding on
the one hand the period of excitation, on the other hand the droplet lifetime:

τlife/τvap � 1, τexcit/τvap � 1 (14)

The estimates that we have carried out show that under usual conditions, at the considered frequency of 5000 Hz (which
is a typical median value of the frequency range for the combustion instabilities in liquid–propellant rocket engines), these
criteria are generally properly satisfied with a difference of at least one order of magnitude on the three criteria, the lifetime
criterion being however hardly satisfied in the case of a hydrogen droplet (see Fig. 7).

This conclusion has nevertheless to be moderated, for three reasons.
1. We considered here the case of a drop at rest. It will be necessary to extend the analysis to the case of a drop

subjected to a flow.
2. Moreover, due to the lack of data, we have assumed a unit value of the coefficients of evaporation and condensation

for all species considered. These coefficients are actually neighboring the unity for many studied species, and the others are
greater than 0.01, according to the compilation done by Pound [8], which includes however none of the species of interest
for us. A further literature search on the values of the coefficients of evaporation and condensation of usual propellants
would thus to be carried out.

3. Finally, the triple equilibrium condition was formulated for a plane interface; it should be transposed to the case of
spherical geometry.
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Fig. 8. Values of the Hickman number for a propellant drop at rest in an environment of combustion products.

Fig. 9. Critical Hickman number. a) Typical results. Zone I: mechanism of moving boundary, zone II: vapor recoil, zone III: viscous dissipation, dotted curve:
neutral stability curve for Br = 0. b) Dependence on the Reynolds number for different values of the density ratio, Cr = 10−5, Bo = 1, Pr = 10, μL/μG = 102,
Br = 0, Ma = 0. c) Same for different Cr, Bo = 1, Pr = 10, μL/μG = 102, Br = 0, Ma = 0. d) Dependence on the ratio of viscosities for various values of the
Reynolds number of the vapor, Cr = 10−5, Bo = 1, Pr = 10, ρL/ρG = 108, Br = 0, Ma = 0 (redrawn from Palmer [4]).

4.2. Hickman instability

Hickman instability is related to differential vapor recoil, which is an inertial effect due to the difference between the
mass densities of vapor and ejected liquid. Instability can occur by deformation of the interface, in case of strong evapora-
tion. One might fear that such instability occurs in the case of intense noise.

Assuming a planar interface and local liquid–vapor equilibrium, we determined the expression of the Hickman number
for our practical purpose (see Eq. (12)).

Whereas Palmer (see Appendix A.2) looked for the stability condition, considering departure from a disequilibrium state,
and obtained so a critical Hickmann number depending from various dimensionless numbers, we studied the case of a
harmonic perturbation applied to a system at evaporation equilibrium. We took Hi � 1 as the condition of non-occurrence
of instability.

To evaluate the expression, we estimated the parameter bL, which represents the temperature gradient in the thermal
diffusion layer of the liquid, and the characteristic time of thermal fluctuation τ , using a conservative value of 10% for the
relative level of pressure fluctuation (|p̂C| = 0.1) in the chamber.

We obtained very low orders of magnitude, less than 10−10, for the Hickman number, which may suggest the absence of
instability (see Fig. 8). However, the results of Palmer presented in Appendix A.2 (Fig. 9) show that the problem is complex
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and depends on the values of several dimensionless numbers to be determined. On the other hand, it would be useful to
translate our expression of the Hickman number in the case of the spherical interface geometry, and to take into account
an external flow.

4.3. Conclusion

We have established criteria permitting to assess the hypothesis of local evaporation equilibrium and the absence of
Hickmann instability, for an evaporating droplet submitted to acoustic excitation.

Having applied these criteria to several propellant pairs in conditions which are typical of a rocket engine, and having
obtained positive results, justifies a posteriori these hypotheses, that were used to build the linear analytical model presented
by the authors in Ref. [1] and in Appendix A.3.

However, in the frame of the present study the droplet was supposed at rest and we have taken only in a partial way
the spherical character of the droplet geometry. The formulation of these criteria should so be extended to a droplet in a
flow, and considering a fully spherical geometry. Moreover, a further literature search on the values of the coefficients of
evaporation and condensation of usual propellants should be carried out.

The model presented in Appendix A.3 aims at evidencing the dynamic characteristics of an evaporating droplet placed at
a pressure anti-node. Such a model helps to physical understanding and is a useful mean of validation for the implemen-
tation of more complex models into a fluid mechanics computer code. Moreover, the direct use of this model to study the
role of evaporation in combustion instabilities, by means of a simplified approach, is in progress and will be the subject of
a future publication.
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Appendix A

A.1. The vapor recoil

A.1.1. General equations
The vapor recoil, which will be presented here for a species evaporating in its own vapor, results from the presence of

terms to the square of velocity in the equation of momentum at the interface. When they are not negligible, they generate
a pressure jump between both sides of the evaporation interface.

The equations of momentum balance at the interface without mass and without internal viscosity, projected respectively
on the normal and on the tangent plane, are (see [6]):⎧⎨

⎩
ṁ(�v+ − �v−) · �N + p+ − p− + ( ��Π+ · �N − ��Π− · �N) · �N = −σ �∇ · �N
ṁ(�v+// − �v−//) + ( ��Π+ · �N − ��Π− · �N)

//
= �∇Sσ

with �∇S = �∇// (15)

In these equations, the liquid side is designated by the index (–) and the vapor side by the index (+), �N is the unit
normal directed from – to +, ṁ is the mass flow rate through the interface unit area, �v is the velocity vector, p is the

thermodynamic pressure, ��Π is the tensor of viscous pressure and σ the surface tension.
The equation of mass balance is written:

ṁ = ρ−(�v− − �w) · �N = ρ+(�v+ − �w) · �N (16)

where ρ is the density and �w the interfacial velocity.

A.1.2. Planar interface
For a planar interface, the curvature �∇ · �N is equal to zero. So for inviscid fluids, Eqs. (15) and (16) result in:{

ṁ(�v+ − �v−) · �N + p+ − p− = 0

ṁ = ρ−(�v− − �w) · �N = ρ+(�v+ − �w) · �N (17)

We deduce the pressure jump at the interface

p− − p+ = ṁ2
(

1 − 1
)

(18)

ρ+ ρ−
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As below the critical point we generally have ρ+ � ρ− , Eq. (18) becomes

p− − p+ = ρ+(v+⊥ − w⊥)2 (19)

showing that the recoil force is exerted to the liquid.
Let us now consider the constitutive law of evaporation.

• At the evaporation–condensation equilibrium:
– in the absence of recoil, there is equality of thermodynamic potentials of liquid and vapor, which one can translate for

a pure substance as

g+ = g− (20)

where we have g− = g0
T− + (p− − p0)/ρ−, g+ = g0

T+ + RT ln p+/p0 with p0 standard pressure, T+ = T− = T , ρ− =
ρ−(T ), which is assumed to be constant;

– with recoil force, we get

g+ = g− − (v+⊥ − w⊥)2/2 + (v−⊥ − w⊥)2/2 (21)

• Near evaporation–condensation equilibrium (assuming T+ = T− = TS = T ):
– in the absence of recoil, we obtain the constitutive law:

ṁ = − L

T
(g+ − g−) (22)

where L is a phenomenological coefficient;
– with recoil force, we should have:

ṁ = − L

T

(
g+ − g− + (v+⊥ − w⊥)2/2 − (v−⊥ − w⊥)2/2

)
(23)

• Far from the evaporation–condensation equilibrium, the unit rate is given by a relation of type (2) or (3).

A.1.3. Curvature effect
For a curved interface, the effect of surface tension must be added:

p− − p+ = ṁ(v+⊥ − v−⊥) + σ∇ · N (24)

Assuming near-equilibrium conditions, the evaporation rate writes:

ṁ = − L

T

[
g+ − g− + 1

2
(v+⊥ − w⊥)2 − 1

2
(v−⊥ − w⊥)2

]
(25)

A.2. The Hickman instability

Palmer studied the instability resulting from the recoil of the vapor in the case of a pure liquid under reduced pressure
by taking, as stable reference state, a horizontal flat evaporation surface [4]. This instability is called Hickman instability [5].
Palmer [4] shows that “rapidly evaporating liquid is unstable for local variations of the evaporation rate, local depressions of
the surface being produced by the force exerted on the surface by vapor evaporation and rapid flow of liquid being caused
by the resulting shear exerted on the liquid surface by the vapor.”

Densities of both liquid and vapor are assumed to be constant and uniform. It is also supposed that, in the absence of
instabilities due to surface tension, a stationary thermal boundary layer thickness δL, through which heat is transported by
conduction only, exists in the liquid, in the vicinity of the interface. The temperature profile in the thermal boundary layer is
assumed to be linear and the temperature of the liquid outside of the boundary layer is assumed to be constant. In addition,
the cooling rate of the liquid surface by heat conduction in the vapor phase is assumed to be negligible in comparison to
the heat removed by the phase change (Fig. 3).

We write first the balance equations for the reference state, denoted by (∗), in which all quantities are constant. The
mass flow rate is given by the relation (3), which is written in the following way:

ṁ∗ = α

(
M

2π R

)1/2( p0

(TS)1/2
− p∗

G

(T ∗
G)1/2

)
(26)

where α is a coefficient of evaporation, M the molar weight of the liquid, R the universal gas constant, p0 the equilibrium
vapor pressure at the surface temperature TS, which is equal to the temperature T ∗

L of the liquid, p∗
G and T ∗

G the pressure
and the temperature of the gaseous phase above the liquid. The interface is devoid of mass and viscosity, but has a surface
tension.
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Balance equations of mass, momentum and energy write respectively:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṁ∗ = ρLW ∗
L = ρGW ∗

G

p∗
L − p∗

G = (
ṁ∗)2

(
1

ρG
− 1

ρL

)

ṁ∗l + 1

2

(
ṁ∗)3

(
1

ρ2
G

− 1

ρ2
L

)
+ λL

∂T ∗
L

∂z
= 0

(27)

where l is the latent heat of vaporization at temperature T ∗
L and W the vertical component of the velocity vector.

For the perturbed state, we define the perturbation f ′ of f by setting f = f ∗ + f ′ , and we write the system of equations
of the linearized problem for small perturbations.

Writing the equation of the disturbed surface:

z = η(x, y, t) (28)

we obtain successively the unit normal pointing from liquid to gas, the average normal curvature and the normal velocity
of the interface:

�N = �k − �∇η, �∇ · �N ∼= − �∇2
//η, w ∼= ∂η/∂t (29)

where �k is the unit vertical upward vector.
Equations for small perturbations of mass, momentum and energy write as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ∗
(

1

ρG
− 1

ρL

)
�∇2

//η = ∂W ′
L

∂z
− ∂W ′

G

∂z

p′
L − p′

G + 2ṁ∗ṁ′
(

1

ρG
− 1

ρL

)
+ 2

(
μL

∂W ′
L

∂z
− μG

∂W ′
G

∂z

)
+ g(ρL − ρG)η − σ ∗ �∇2

//η = 0

�∇2
//σ

′ = μL

(
�∇2

//W ′
L − ∂2W ′

L

∂z2

)
− μG

(
�∇2

//W ′
G − ∂2W ′

G

∂z2

)

ṁ′l + λL
∂T ′

L

∂z
+ 3

2

(
ṁ∗)2

ṁ′
(

1

ρ2
G

− 1

ρ2
L

)
− 2ṁ∗

(
μG

ρG

∂W ′
G

∂z
− μL

ρL

∂W ′
L

∂z

)
= 0

(30)

In the first momentum equation, the first term is the pressure jump, whereas the second one corresponds to the recoil
force, the third one to the viscous forces, the fourth one to gravity; the last one is the surface tension.

For a local depression we have η < 0, and �∇2
//η > 0, then the fourth and fifth terms are both negative. Hence when

the interface is hollow, the sum of the first three terms is positive. These three combined forces are responsible for the
instability, leading to an increase of the surface depression.

Far from the interface all perturbations are assumed by Palmer to be nearly nil:

{
W ′

L = ∂W ′
L/∂z = T ′

L = 0 as z → −∞
W ′

G = ∂W ′
G/∂z = 0 as z → +∞ (31)

Palmer analyzes the problem of small perturbations of the form φ′(x, y, z, t) = eγ t f (x, y)φ(z), where γ is the growth
rate constant and f satisfies the wave equation:

∇2 f + K 2 f = 0. (32)

K is the wave number. The neutral stability requires that the real part of the growth rate constant γ be zero but if only
the “stationary” (i.e., non-oscillatory) modes of instability are considered, as Palmer does, the imaginary part of γ is also

equal to zero. The dispersion equation relates the Hickman number Hi = ( dṁ
dT )∗ ṁ∗βLδ

2
L μG

ρLκLσ ∗ ( 1
ρG

− 1
ρL

), defined by Eq. (7), to the
dimensionless wave number K and other dimensionless groups.

The latter are the Marangoni number Ma = (−dσ/dT )(βLδ
2
L /(κLμL)), the crispation number Cr = μLκL/(σ

∗δL), the vis-
cosity ratio μL/μG, the density ratio ρL/ρG, the Reynolds number Re = ṁ∗δL/μL, the Prandtl number Pr = μL/(ρLκL), the
Bond number Bo = δ2

L g(ρL − ρG)/σ ∗ and the Brinkman number Br = ṁ∗μ2
L/(βLκLρ

2
L δ2

L ).
In these groups, (−βL) refers to the thermal gradient in the thermal boundary layer thickness δL (Fig. 3), (dṁ/dT ) is the

rate of variation of the evaporation rate as a function of the interfacial temperature and κL is the thermal diffusivity.
Fig. 9, redrawn from Palmer’s paper, shows respective influences of some of these dimensionless numbers on the neutral

stability curve, in case vapor recoil prevails.
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A.3. Linear approach of the evaporation dynamics of a drop submitted to acoustic excitation

We consider a droplet supplied with the flow ¯̇M equal to the mean evaporation flow rate ¯̇M (Fig. 10), considered as
being representative of a mean droplet at a defined point of a combustion chamber.9

In Heidmann’s theory [9], the temperature of the drop is assumed to be uniform (assuming infinite conductivity) and
equal to the temperature TS of its surface, which is in local evaporation equilibrium with the external gas mixture. More
recently, a continuous temperature field was considered (with a finite thermal diffusivity κL) [1].

The droplet is disturbed by high-frequency waves coming from the combustion chamber; we characterize its response
by a response factor, neglecting the feed-back on incident disturbances.

We consider here what happens at an acoustic velocity node of the combustion chamber, which is also a pressure
anti-node. This means that the incident disturbance concerns the pressure pc. The spherical drop evaporates so in a medium
that is at rest at infinity, and which imposed conditions are chamber ones.

A.3.1. Equations for the gaseous phase
The unperturbed state is a stable situation for which any thermodynamic variable f of droplet has a uniform distribu-

tion f̄ .
For small harmonic disturbances, we set f = f̄ + � f , f ′ = � f / f̄ and f ′ = f̂ (x)eiωt . We show that the evolution is

governed by two equations:

ˆ̇M = ᾱ
iu

1 + iu
(b̄T̂S − p̂C) (33)

�Q̂ L = ¯̇Ml̄(ā p̂C − μT̂S) (34)

In these equations, Ṁ , Q L, Ts, pc, l are respectively the mass flow rate of evaporation, the heat flow penetrating into the
drop from the surrounding gas mixture,10 the surface temperature, the pressure chamber and the latent heat of evaporation.
The coefficients used in these equations are:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ᾱ = B̄M

(1 + B̄M) ln(1 + B̄M)

ȲAC ȲFS

ȲAS(ȲFS − ȲFC)

MF

MF X̄FS +MA X̄AS
, ā = T̄C

T̄C − T̄S

γ − 1

γ
+ φ

b̄ = T̄S

(T̄S − c)2
b, μ = T̄S

T̄C − T̄S
− 2c

T̄S − c
+ b̄φ

In these definitions, F designates the fuel, A represents the burnt gases, C the chamber and S the surface of the drop,
the quantities Y j, B M ,M j, γ are respectively the mass fraction of species j, the Spalding parameter for the mass, the
molecular weight of species j and the isentropic coefficient (assumed to be constant11). The coefficients b and c are de-
rived from the expression of the latent heat given in the form: l = bRT 2

S /MF(TS − c)2. φ corresponds to the function
φ = ȲAC ȲFSMF/ȲAS(ȲFS − ȲFC)(MF X̄FS +MA X̄AS).

A.3.2. Equations of the liquid phase
The following equation for small perturbations concerns the temperature of the liquid. It is written according to the

classical irreversible thermodynamics, neglecting the thermal convection due to injection, provided that the characteristic
time of internal thermal conduction is small in comparison to the residence time of the fluid in the droplet [1]:

∂T ′
L

∂t
− κL

r

∂2(rT ′
L)

∂r2
= 0 (35)

Setting T ′
L = T̂L(r)eiωt , we find the relation iωrT̂L − κL∂

2(rT̂L)/∂r2 = 0, whose characteristic equation writes: (sr̄S)
2 −

i 3u
θ

= 0.

We define here the reduced frequency u = 3ωτ̄v, the residence time in the fed drop τ̄v = M̄/ ¯̇M (which is proportional
to the lifetime of the corresponding free drop), the time of heat conduction τ̃T = r̄2

S/κL, and θ = τ̄v/τ̃T. The eigenvalues
s+r̄S, s−r̄S are such that s+r̄S = s0r̄S, s−r̄S = −s0r̄S, with s0r̄S = (1 + i)

√
3u/2θ and rTL = C+es0r + C−e−s0r .

The boundary conditions are respectively:

• T ′
L = T ′

s and �Q L = 4π r̄2
SkL T̄S dT ′

L/dr|r̄s at the surface of drop,

9 The model of supplied drop is due to Heidmann. It allows one to represent a two-phase flow by a mean drop whose feeding corresponds to providing
fresh drops at the same place of the considered combustion chamber. The mean diameter of this average drop is considered to be invariant, as the liquid
supply compensates the evaporation.
10 We have: Q L = Q − Ṁl where Q is the heat flux form the gas to the drop, and Q̄ L = 0 in the reference unperturbed state; the absolute perturbation

of Q L is thus �Q L = Q L , but one cannot write Q ′
L = �Q L/Q̄ L .

11 Small perturbations are assumed to propagate in the gaseous phase in an isentropic way, at the sound velocity.
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Fig. 10. a) The vaporizing droplet of Heidmann, continuously supplied by a steady flow rate. b) The reduced response factor as a function of the reduced
frequency (for arbitrary values A = 10, B = 100).

• dTL/dr|r=0 = 0 at the center of the drop, assuming adiabatic feeding.

For small harmonic disturbances, we finally find:

rT̂L = r̄S T̂S
es0r − e−s0r

es0 r̄S − e−s0 r̄S
(36)

�Q̂ L = 4π r̄SkL T̄S T̂S E(u, θ) (37)

with E(u, θ) = 1 − s0r̄S coth(s0r̄S).

A.3.3. Transfer function and response factor

We define the complex transfer function by Z = ˆ̇M/ᾱ p̂C.
The expression of this function,

Z = iu

1 + iu

A + θ E(u, θ)

B − θ E(u, θ)
(38)

is obtained by eliminating �Q̂ and T̂S between equations (33), (34) and (37) and setting λ = cL T̄S/l̄, A = 3(āb̄ − μ)/λ, and
B = 3μ/λ.

The response factor is defined by N =˜
V,t q′(x, y, z, t)p′(x, y, z, t)dt dx dy dz/

˜
V,t(p′(x, y, z, t))2 dt dx dy dz, where p′ is

the relative intensity of the incident disturbance (here that of the pressure chamber) and q′ the relative intensity of the
response (here the rate of evaporation). We have: p′ = p′

c = (pc − p̄c)/p̄c, q′ = (Ṁ − ¯̇M)/ ¯̇M .
We show that, for harmonic disturbances,

N = ᾱ�(Z) (39)

An amplification effect or a damping effect occurs, respectively when the response factor is positive or negative. The
cutoff reduced pulsation uc separates the two regimes (Fig. 10).
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