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While natural rubber is commonly considered as an incompressible material, this study
shows how carbon black-reinforced natural rubber (NR-CB), when subjected to various
mechanical loading conditions (uniaxial, hydrostatic, monotonic, cyclic), is affected by
volume change. Experiments show a volume variation even for low straining values and
a significant volume change for large elongations. Moreover, volume change can be either
reversible or not, depending on the loading conditions. It is related to a competition
between void growth, chain orientation, and stress softening. At a microscopic scale, in situ
Scanning Electron Microscopy (SEM) examinations and image analysis allow one to record
damage and microscopic volume change as a function of elongation. Therefore the volume
change measured at the microscopic scale is equal to the macroscopic one. Based on the
experimental results, this paper shows that the hypothesis of incompressibility is worth
being revisited. Thus, a nearly compressible approach was considered, where the strain
energy is assumed to be the sum of spherical and deviatoric parts that are both affected
by damage. The model was then implemented in a finite-element code. Good agreement
was obtained between experimental results and model predictions for low triaxiality test
conditions.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

The shear modulus of natural rubber varies with temperature and straining. Commonly reported values lay between 0.5
and 6 MPa. On the other hand, the bulk modulus is generally assumed to be strain independent and can reach a value as
high as 1000 MPa. Due to the high ratio between bulk modulus and shear modulus, natural rubber is usually assumed to
be nearly incompressible. Constitutive modelling commonly used to describe the behaviour of carbon black-filled natural
rubber uses an incompressible constraint assumption.

To the authors’ knowledge, Busse [1] and Yerzley [2] were the first to find internal rupture of rubber subjected to hy-
drostatic tensile stress. According to Gent & Lindley [3], the critical stress value that initiates cavitation is related to the
elastic characteristics of rubber. Later, Gent & Tompkins [4], who used a dissolved gas to identify the onset of cavitation,
showed that this critical value is about 5 G/2, where G is the rubber’s shear modulus. This result was confirmed by Cho &
Gent [5] and by Gent & Wang [6]. Accordingly, cavitation that leads to volume change in rubber has mainly been studied
under hydrostatic tensile loading [7–9]. The present paper aims at studying volume change under various loading conditions.
The carbon black-filled natural rubber (NR-CB) material under study exhibits several phenomena affecting volume change,
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Table 1
General formulation of the carbon black-reinforced natural rubber used in the study.

Ingredient Wt% (with respect to NR) Volume fraction (%)

NR 100 75
Sulphur 1–2 0.3–0.7
ZnO 10−2 11.8
CB 23 8.7

Table 2
Mechanical properties of NR-CB used in the study.

Density (g/cm3) 1.1
Hardness (shore) 48
Failure stress in tension (MPa) 25.3
Failure strain in tension (%) 500
Tangent modulus at 300% in tension (MPa) 7.8

Fig. 1. “Pancake specimen” used for hydrostatic test: lateral contraction.

namely crystallisation, stress softening, and damage. Damage leads to an increase in volume, whereas both stress soften-
ing [10] and crystallisation [11–13] induce a volume decrease. In fact, when crystallisation occurs, the chains are aligned
and the material is compacted.

The paper presents an experimental investigation of the volume change of an NR-CB material under various loading
conditions, both from a macroscopic and a microscopic point of view. Then, a damage-induced compressibility model is
presented; finite-element calculations using this model are compared to our experimental results.

1. Material and experimental techniques

1.1. Material

The material of interest is a cis-1,4-polyisoprene reinforced by carbon black and is essentially used for bearings subjected
to fatigue. Its chemical composition and mechanical properties are shown in Table 1 and Table 2, respectively. Note the large
amount of ZnO introduced in the material compared to the literature data. Its influence on volume change will be discussed
later.

1.2. Mechanical testing

Uniaxial tests were carried out using a universal tensile machine. The specimens are 2 mm thick and 6 mm wide
thin strips. Monotonic tensile tests were performed at a constant engineering strain rate (displacement rate divided by
specimen gauge length) laying between 10−3 s−1 and 5×10−2 s−1, whereas cyclic loading tests were carried out at constant
engineering strain rate equal to 10−2 s−1.

For uniaxial compression, the specimens are cylindrical and have a diameter of 19 mm and a height of 8 mm. They have
been lubricated in order to avoid friction. Tests were also performed at different engineering strain rates within the range
of 3.5 × 10−2 s−1–1.6 × 10−1 s−1.

The oedometric compression consists in testing a cylindrical specimen under compression within a rigid chamber. The
specimens have a diameter of 19 mm and a height of 8 mm and were also lubricated in order to avoid friction. Several
engineering strain rates were applied ranging from 0.8 × 10−4 s−1 to 3.8 × 10−2 s−1.

For hydrostatic loading, the experimental device consists of an electromechanical machine with a load capacity of 100 kN
and a crosshead-speed ranging from 100 to 500 mm min−1. The specimen used for this kind of loading consists of thin disk
rubber layers attached by vulcanisation to top and bottom steel grips (Fig. 1). These cylindrical “pancake specimens” have
a diameter of 40.6 mm and are 3 mm high. Tests were carried out under monotonic and cyclic loading. Engineering strain
rates range from 10−1 s−1 to 10−3 s−1.
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Fig. 2. (a) Volume change under tension compression at various engineering strain rates, (b) volume change under oedometric at various engineering strain
rates.

Finally, in situ SEM uniaxial tension experiments were performed using a thin strip and a low acceleration voltage of
about 1 kV.

1.3. Volume change measurement

The experimental device used for volume change quantification under uniaxial loading is called Video TractionTM. The
principle consists in following, by means of a CCD camera, the displacement and distortion of seven full circles initially
drawn on the surface of the specimen. Dashes are circular, have a diameter of approximately 1 mm and are 0.25 mm
distant. Further information about Video TractionTM experimental device is given in [14]. The volume is then measured
thanks to the determination of principal Hencky strain h11 = ln(λ11) and h22 = ln(λ22) and the isotropy assumption, such
that

�V

V 0
(%) = (

e(h11+2·h22) − 1
) · 100 (1)

where λ11, λ22 are the longitudinal and transverse elongation respectively and λ = L
L0

, L and L0 are the present and the
initial specimen lengths.

Under uniaxial compression, images of the specimen are tracked during loading, which gives its shape evolution. This
allows us, as the specimen is axisymmetric, to quantify volume change under uniaxial compression. The ratio between
the diameter and the height of a “pancake specimen” allows us to ensure a hydrostatic stress state in the centre. The
observation of the specimen during loading shows the occurrence of an edge effect (Fig. 1). The actual volume change was
then determined by taking into account the axial stretch given by displacement sensors and the lateral contraction by means
of a video-controlled device.

2. Experimental results

The compressibility of the material was first characterised by carrying out an oedometric compression. This test allows
us to apply a negative high-stress triaxiality at low strains. Next, volume change was measured for low-stress triaxiality
under uniaxial tensile test. As the material is used for fatigue, volume change was measured under cyclic loading. So
as to detect the microscopic phenomena responsible for volume change, in situ SEM uniaxial tension experiments have
been performed. In order to establish the effect of a highly positive stress triaxiality onto volume change, hydrostatic tests
were performed under monotonic and cyclic loading. Furthermore, volume change was characterised under uniaxial and
hydrostatic compressions. All the specimens surfaces were then observed by means of optical microscopy and SEM.

2.1. Oedometric compression

The slopes of all curves are independent of the strain rate in the range studied (Fig. 2) and correspond to the bulk
modulus (Kv) which is about 1130 MPa. This value is in agreement with those of other elastomeric materials tested with
the same conditions such as silica-filled natural rubber (1200 MPa and 1265 MPa), EPDM (1600 MPa) and silica-filled SBR
(1900 MPa). The value of shear modulus (G) is about 1 MPa. Due to the high ratio between these two moduli (Kv and G),
this material can be considered to be initially quasi-incompressible.

2.2. Uniaxial tension

When stretched monotonically until a maximum strain of λ = 4.2, the material response reveals three important aspects
of the macroscopic volume change (�V /V 0)Macro, as shown in Fig. 2a and Fig. 3a: (i) it is engineering-strain-rate inde-
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Fig. 3. Uniaxial tension. (a) Macroscopic and microscopic volume change with respect to elongation. (b) Identification of the ZnO particles responsible for
microscopic cavitation (in situ tension along the horizontal direction).

Fig. 4. (a) First series of cyclic uniaxial tension tests. (b) Relative volume change (�V /V 0)ith cycle/(�V /V 0)1st cycle at λ = λmin versus cycle number under
cyclic loading for λmax = 4.2 and various values of λmin.

pendent, (ii) it occurs even at low elongation values (λ = 1.1): i.e. no threshold, (iii) its value can be as high as 15% for
λ = 4.2.

At the microscopic scale (in situ tension), voids appear as soon as the material is stretched. So no elongation threshold
exists for cavitation as it was already observed at the macroscopic scale. Then, ZnO particles have been systematically
detected in the neighbourhood of cavitated areas (Fig. 3b). So, their distribution in the material and the evolution of their
shape ratio have been determined. ZnO particles are spherical and isotropically distributed in the material. Recent tests
under x-ray were unable to confirm the isotropic or near-isotropic assumption [15]. This result allows us to assume that the
surface fraction (quantification made in 2D) is equal to the volume one (3D result). By means of image analysis, the evolution
of the microscopic volume is measured (ratio between the void surface and the examined area) as a function of elongation.
The examined area was obtained by cartography and its size is about 350 μm by 350 μm. It comes out that, under uniaxial
tension, the microscopic volume change (�V /V 0)Micro is slightly higher than the macroscopic one (Fig. 3a). This could be
due to the difference between the two test conditions and the image analysis errors. Thus, macroscopic and microscopic
volume changes should be considered as similar. In this study, the large amount of ZnO appears to be responsible for the
initiation of volume change under uniaxial tension. In addition, when the specimen is unloaded, some cavitated areas are
still present. So volume change could be distinguished into an irreversible part and a reversible one. Furthermore, uniaxial
cyclic loading tests have been carried out. The first cyclic loading schedule consists in keeping constant the maximum
elongation value (λmax = 4.2) and by changing alternatively the minimum elongation (λmin). By varying λmin from 1.2 to
3.95, three trends can be evidenced for volume change at λ = λmin, as exemplified in Fig. 4:

(1) for λmin � 2.2, the minimum volume increases with increasing the number of cycles, corresponding mainly to damage
accumulation during cycles. In fact, when the specimen is unloaded down to a minimum elongation value less than 2.2,
strain-induced crystallisation vanishes (see [28]). In addition, in this case, stress softening does not play a significant
role. So only damage appears to be responsible for the volume increase at λmin for λmin � 2.2;

(2) for 3.45 � λmin: increasing λmin induces both permanent crystallisation and stress softening. Therefore crystallisation
and stress softening effects become more important than damage ones, leading to a global cyclic volume decrease
at λmin;
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Fig. 5. (a) Second series of uniaxial cyclic tension tests. (b) Evolution of relative nominal stress, (F/S0)ith cycle/(F/S0)1st cycle at λ = λmax and relative
volume change (�V /V 0)ith cycle/(�V /V 0)1st cycle at λ = λmax with cycles where λmax = 4.2 and 1.2 < λmin < 4.2.

Fig. 6. Cross section perpendicular to the loading axis of a pancake specimen loaded in tension: a central damaged zone with spherical cavities with
“onion-skin” topography and a smoother surrounding zone.

(3) for 2.2 < λmin < 3.45: the cyclic curve is identical to the first loading one. So, damage accumulation seems to be
compensated by stress softening and crystallisation effects.

Another loading schedule was applied to confirm the competition between damage, crystallisation and stress softening.
It consists in keeping λmax constant and increasing the value of λmin (Fig. 5). This test has been reproduced several times
(10 times). The minimum volume change and minimum nominal stress increase during the cycles, whereas the maximum
nominal stress (i.e. at λ = λmax) behaves according to three stages:

(1) cycles 1–5 (λmin � 2.2): the maximum nominal stress decreases due to stress softening;
(2) cycles 5–8 (2.2 < λmin < 2.95): the minimum elongation reaches the threshold corresponding to the beginning of strain-

induced crystallisation. That leads to an increase in the maximum nominal stress by crystallisation reinforcement;
(3) cycles 8–12 (λmin � 2.95): crystallisation saturates, leading to a decrease in the maximum nominal stress by stress

softening.

According to the maximum nominal stress evolution, volume change is expected to decrease by crystallisation and stress-
softening effects. It is the case during the two first stages (λmin < 2.95). Therefore, during the third stage, the maximum
volume variation increases from the 8th to the 11th cycle (2.95 � λmin � 3.7) before decreasing at λmin � 3.7. This is due
to damage effects that overcome crystallisation and stress softening ones. This result confirms the competition between
damage, crystallisation, and stress softening.

From the results of these tests, keeping λmax constant makes the stabilised volume change depend on the competition
between damage accumulation, stress softening contribution, and strain-induced crystallisation effects. So, either a reversible
evolution (steady-state volume variation during cycles) or an irreversible one (cyclic volume change increase or decrease
from one cycle to the next one) may happen.

2.3. Hydrostatic tensile tests

By imposing elongation rates from 10−3 s−1 to 10−1 s−1, no influence of the engineering strain rate on volume change
could be checked. A transition concerning cavitation-induced damage appears at a nominal stress equal to 0.8 MPa and
agrees with the work of Gent and Lindley [3]. Volume change is important as it reaches a value of 150% at λ = 2.8.
Sectioning the specimen perpendicular to its axis (see cutting lines in Fig. 6) shows a central damaged zone with circular



304 S. Cantournet et al. / C. R. Mecanique 342 (2014) 299–310
Fig. 7. Volume change versus elongation under cyclic loading of pancake specimens such that λmax = 2.8 and λmin is constant: λmin = 1.02,1.11,1.74,

2.15,2.27.

Fig. 8. Volume change with respect to elongation under uniaxial compression. Comparison with oedometric volume change.

cavities and a smoother surrounding zone. The location of circular cavities depends on the quasi-hydrostatic stress state at
the centre, which vanishes at the periphery of the sample, giving rise to a deformation gradient. The observed cavities can
lead, after coalescence, to the rupture of the specimen.

The damage mechanisms taking place for low cycles could be distinguished into two mechanisms: low- and high-
triaxiality conditions. Under low-triaxiality loading, debonding between ZnO particles and matrix is responsible for cav-
itation. At the same time, nothing occurs in the neighbourhood of carbon black (CB) particles. This is due to the poor
bonding between the matrix and the ZnO particles, whereas CB particles are well-bonded to the matrix because of their
chemical and physical structure. Under hydrostatic loading, the damage is not related to ZnO particles location and is more
pronounced, with an important number of 1-mm-size damaged zones. The mechanism is different from the former one and
comes from the high-stress triaxiality that induces a sudden appearance of cavities, which is followed by crack propagation
and coalescence. The aim of this paper is to model cavitation effects but not tearing ones, so only ZnO-matrix debonding
will be taken into account. Consequently, only low triaxiality tests will be modelled.

The behaviour under cyclic hydrostatic loading has been studied at a controlled strain rate of 10−2 s−1. The first series of
cycles performed for uniaxial tests (Fig. 4a) were also applied on pancake specimens. The result differs from those obtained
under uniaxial loading. In fact, volume change under uniaxial tension can either increase or decrease cyclically, depending on
the minimum elongation value, whereas volume change under hydrostatic tension follows a steady-state evolution (Fig. 7)
and depends neither on the minimum nor on the maximum elongation. Thus, volume change under hydrostatic conditions
is totally controlled by growth and closure of cavities.

2.4. Uniaxial and hydrostatic compression

Volume change under uniaxial compression decreases due to the compaction of the material (Fig. 8). This decrease
is lower than under oedometric conditions: this confirms that volume change is triaxiality dependent. Under hydrostatic
compression, volume change is very low and strain rate independent (Fig. 9). Under low stress values, volume change is
higher under oedometric loading than under hydrostatic loading, which confirms the volume-change triaxiality dependence.
Moreover, sectioning the specimen perpendicular to its axis did not reveal any cavity. So no macroscopic effect of damage
is assumed to occur in compression. To confirm this result, specimens have been loaded in tension after loading–unloading
in compression. Loading–unloading paths in compression are similar and no difference could be observed between volume
change obtained under tensile tests after and without previous loading–unloading in compression.
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Fig. 9. Volume change with respect to nominal stress during hydrostatic compression. Influence of strain rate on volume change. Comparison with oedo-
metric compression.

The previously described tests allow us to analyse the volume change under various kinds of loading. Under both uniaxial
and hydrostatic compressions, the volume decreases due to material compaction and remains very low compared to tensile
loading [16]. The increase in volume is much higher under hydrostatic tension than under uniaxial tension. This is due to the
difference in stress triaxiality between the two loading conditions and shows that volume change is triaxiality dependent.

3. Modelling

As damage mechanisms differ from hydrostatic to uniaxial loading, only low triaxiality test conditions will be modelled,
i.e. only cavitation induced by damage will be modelled. Also, stress softening and crystallisation effects are neglected:
only the stabilised state obtained at the fifth cycle will be considered. So compressibility induced by damage was taken
into account in a constitutive model. A phenomenological approach was chosen within the hyperelastic nearly compressible
framework proposed by [17].

3.1. Model basis

In order to write the potential W in its volume-shear separable form, the [18] kinematic split is applied to the deforma-
tion gradient F as follows:

F = Fvol · F (2)

where Fvol = J 1/3I is the volumetric deformation gradient tensor, J is the determinant of the deformation gradient tensor F,
I is the identity tensor and F is the isochoric deformation gradient tensor. Every overlined quantity will refer to the isochoric
part.

Consequently, volumetric and isochoric right Cauchy–Green tensors Cvol and C are defined as

Cvol = J 2/3I and C = J−2/3C = F̄T · F̄

The description is developed in a total Lagrangian frame. The internal free energy is assumed to be the sum of a deviatoric
part and of a volumetric one, so that

W = W iso + W vol = (1 − D)W0(E) + Kvψ( J̃ ) (3)

where superscript iso (resp. vol) stands for the isochoric (resp. volumetric) part, D is the damage parameter (0 � D < 1), W0
is the isochoric energy of the damage-free material, E is the isochoric Green–Lagrange deformation tensor, Kv is the bulk
modulus, J̃ is an effective value of J referring to the damage-free rubber gum and is related to the volume-change ratio
J through the damage parameter D (Eq. (4)), and α is a positive parameter that allows one to distinguish the reversible
volume change part from the irreversible one. In fact, when α = 1, the volume variation is totally irreversible:

J̃ = J

g(D)
= J

1 + αD
(4)

By assuming that there is no heat exchange and by considering only intrinsic dissipation, the Clausius–Duhem inequality
can be written as follows:[

S − 2 J−2/3(1 − D)DEV

[
∂W0

]
− 2Kv

∂ψ( J̃ ) ∂ J
]

: Ċ + Y Ḋ � 0 (5)

∂C ∂ J ∂C
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where S is the second Piola–Kirchhoff stress tensor, C = FT · F is the right Cauchy–Green tensor corresponding to the defor-
mation gradient tensor F, DEV is the deviatoric operator as defined by [19] (Eq. (6)), Y is the damage thermodynamic force
(Eq. (7)) and Ḋ describes the damage rate:

DEV[·] = [·] − 1

3

([·] : [C])C−1 (6)

Y = −∂W

∂ D
(7)

The expression of Piola–Kirchhoff tensor (Eq. (8)) and the damage thermodynamic force (Eq. (9)) are then written as:

S = Siso + Svol = 2 J−2/3(1 − D)DEV

[
∂W0

∂C

]
+ 2Kv

∂ψ( J̃ )

∂ J

∂ J

∂C
(8)

Y = Y iso + Y vol = W0 + Kv

2

(
g′(D)

g(D)

)(
J̃ 2 − 1

)
(9)

where g′(D) = ∂ g
∂ D .

By taking the isotropy assumption into account, the right Cauchy–Green tensor C can be represented by its invariants I1,
I2 and I3 defined as I1 = tr(C), I2 = 1

2 [(tr(C))2 − tr(C2)] and I3 = det(C).
Considering the isochoric right Cauchy–Green tensor C, the invariants are expressed as

I1 = tr(C) = I1 · I−1/3
3 (10)

I2 = 1

2

[(
tr(C)

)2 − tr
(
C2)] = I2 · I−2/3

3 (11)

where Ī1, Ī2 are the Penn invariants [20]. Then, a Rivlin form for W0 has been chosen such that

W0 = C10( Ī1 − 3) + C01( Ī2 − 3) + C20( Ī1 − 3)2 (12)

where C10, C01 and C20 are material parameters. Penn invariants allow one to force W0 to be zero when the material is
subjected to pure spherical loading. For the spherical strain energy, a quadratic form respecting [21] conditions has been
chosen:

ψ( J̃ ) = 1

2

[
1

2

(
J̃ 2 − 1

) − log J̃

]
(13)

Damage evolution is determined by defining a non-damage surface f (Y , Q ) such that

f (Y , Q ) = Y − Q (D) � 0 (14)

The following form of Q (D) has been adopted with no damage threshold as observed experimentally:

Q (D) =
{

η(ln(D∞) − ln(D∞ − D)) if D < D∞
+∞ if D = D∞

(15)

where η and D∞ are material parameters. The maximum value of D is D∞ .
The normality rule of Generalised Standard Materials [22] allows us to write the damage evolution as

Ḋ =
{

δ̇
∂ f
∂Y if f = 0 (damage evolves)

0 if f < 0 or D = D∞ (damage remains constant)
(16)

where δ̇ is the damage multiplier. Eq. (14) and Eq. (16) allow us to write Ḋ = δ̇. The damage evolution Ḋ is deduced from
the consistency condition ( ḟ = 0) and from the damage condition ( f = 0), so that

Ḋ =
〈 [ Siso

2(1−D)
+ [ Kv

2 J̃ 2 g′(D)
g(D)

]C−1] : Ċ

Q ′(D) − [ Kv
2 [−(

g′
g )2(3 J̃ 2 − 1) + g′′

g ( J̃ 2 − 1)]]

〉
(17)

where 〈x〉 denotes the positive value of x (this insures Ḋ � 0 with the parameter η > 0), g(D) = 1 +αD , g′ = α and g′′ = 0.
Furthermore the dissipation Ω can be written as follows:

Ω = ρO
∂W

∂E
: Ė − ρO

∂W

∂ AK
ȦK = Y Ḋ (18)

where AK are the internal and observable variables used in the model (D and E). From Eq. (9) and Eq. (17), the dissipation Ω

is always positive whatever the imposed load. The approach is thus thermodynamically acceptable as it verifies the Clausius–
Duhem inequality. The model had seven material parameters that can be related to hyperelasticity (C10, C01, C20, Kv) and
damage evolution (α,η, D∞).
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Fig. 10. Uniaxial test used for the model parameters identification. λ: elongation, F/S0: engineering stress, J = V /V 0.

Table 3
Identified model parameters corresponding to
NR-CB used in this study.

Coefficients Values

C10 (MPa) 0.15
C01 (MPa) 0.2
C20 (MPa) 0.0235
Kv (MPa) 750
D∞ 0.5
η 3105
α 50

3.2. Numerical implementation of the model

The aforementioned constitutive equation has been implemented into the Z -set finite element (FE) code [23]. The global
resolution is done by means of Newton–Raphson method [24]. The tangent matrix (L) is defined in Appendix A. The con-
sistent tangent matrix L

C
used for the FE formulation is approached by the tangent matrix, so that L

C
≈ L. Concerning

damage evolution, Eq. (17) will be used in the case of formal calculation. In the FE calculation, the damage parameter will
be integrated by applying a semi-implicit integration scheme to the damage condition f = 0. This is sufficient to ensure the
consistency condition, as the model is associated. This is equivalent to solve Eq. (19) by introducing a residual scalar R as

R = R D = Y − Q (D) = 0 (19)

The solution R = 0 is searched with respect to the increment of the state variable D using an iterative Newton–Raphson
method. The Jacobian, Jac, of Eq. (19) is therefore required. It can be computed as

[ Jac] = ∂{R D}
∂�D

= ∂Y

∂ D
− Q ′(D) (20)

where ∂Y
∂ D = Kv

2 [−(
g′
g )2(3 J̃ 2 − 1) + g′′

g ( J̃ 2 − 1)] is the hysteresis loop (Fig. 11).

3.3. Parameters identification and model abilities

The seven model parameters are fitted to the experimental stabilised material response under uniaxial tension in terms
of stress–strain and volume–strain curves (Fig. 10). The obtained coefficients are reported in Table 3. Note that the value of
Kv is lower than the bulk modulus experimentally determined under oedometric compression. This is due to the fact that
the parameter Kv is optimised on the stabilised state and for low triaxiality loading.

The same model response calculated formally by Maple™ software and by FE Method has been obtained in the case of
cyclic uniaxial tension. Thus, the FE implementation of the model is validated under cyclic uniaxial tension. Furthermore,
the model response, compared to an incompressible one, reveals both stress softening and hysteresis loop (Fig. 11).

The evolution of volume change and damage under cyclic uniaxial tension is described in Fig. 12. Under loading, both
damage and volume increase. During unloading, damage remains constant, whereas volume is partially restored. The evo-
lution of volume during unloading represents the reversible part of volume change. The irreversible part increases with
damage accumulation during loading history. So, during the following cycles, volume change remains identical to that after
the first unloading, since there is no cyclic damage accumulation. The stabilised state can thus be defined as corresponding
to a constant value of damage.
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Fig. 11. Comparison between a Rivlin incompressible model (I: C10 = 0.15 MPa, C01 = 0.2 MPa, C20 = 2.35 × 102 MPa, Kv = 750 MPa) and the damage-
induced compressible approach (II: C10 = 0.15 MPa, C01 = 0.2 MPa, C20 = 2.35 × 102 MPa, Kv = 750 MPa, D∞ = 0.5, η = 3104, α = 50).

Fig. 12. Description of loading (l versus t), volume change (J) and damage (D) evolutions for cyclic uniaxial tensile test. The model parameters used are
those of Table 3.

Fig. 13. Uniaxial compression test: comparison between model prediction (line) and experimental results (dots).

The parameter α controls the reversibilty part. The introduction of the parameter α is part of the originality of this
model, if the value of α is choosen as α = 1, the evolution of damage and volume change are the same and they are totally
irreversible (see Saanouni’s model [27]).

3.4. Model validation

The modelling approach was validated by comparing the model prediction to experimental results for the other loading
conditions experimentally investigated.

First, under uniaxial compression, the stress response is well-predicted. In fact, the discrepancy between experimental
and numerical response begins at elongation λ = 0.65, corresponding to barrelling (Fig. 13). Volume change is underesti-
mated, but it is more realistic than that predicted using an incompressible approach.
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Fig. 14. Proportional tension–torsion test (0 � F � 600 N, 0 � Θ � 150◦; F : axial force; Θ: twist angle): comparison between model prediction (lines) and
experimental results (symbols).

Furthermore, the model has been validated for more complex loading conditions carried out on the same material. Exper-
imental data obtained from Diabolo specimen loaded under in phase fatigue in tension–torsion–compression are considered.
A 3D mesh containing 675 elements and 9318 degrees of freedom was used. Good agreement was obtained between exper-
imental results and model predictions (Fig. 14). Satisfactory results were also obtained under out-of-phase loading.

4. Conclusions

Volume change has been studied and experimentally quantified under various loading conditions for a carbon black-
reinforced natural rubber. The experimental results show a significant volume change and are in contradiction with the
commonly adopted assumption of incompressible material. At the microscopic scale, volume change under uniaxial tension
is due to the decohesion between ZnO particles and the elastomeric matrix. Volume change is triaxiality dependent and can
be either reversible or not, depending on the interactions between damage, stress softening and crystallisation. Applied to
multi-scale microstructure model of carbon black distribution in rubber [25,26], our results appear to be helpful in order
to understand the link between volume fraction and damage such as the Mullins effect. Furthermore, the cavitation mech-
anism occurring under uniaxial tension is different from that occurring under hydrostatic tension. In fact, ZnO particles
are responsible for uniaxial cavitation, but they do not participate in crack initiation, whereas under hydrostatic conditions
cavitation observed under monotonic loading occurs in high-triaxiality zones (independently of ZnO particles) and can lead
to the specimen’s rupture.

Based on the experimental results, damage-induced compressibility was modelled. A phenomenological approach was
chosen within a hyperelastic nearly compressible framework. Good agreement between experimental results and model
predictions was obtained for low-triaxiality loading conditions.
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Appendix A. Tangent matrix calculation

The tangent matrix L is defined as

Ṡ = L : Ė (21)

where S = S(C, D) = S(E, D). So

S = ∂S

∂E
: Ė + ∂S

∂ D
Ḋ = 2

∂S

∂C︸︷︷︸
Hyperelastic part

: Ė + 2
∂S

∂ D
⊗ ∂ D

∂C︸ ︷︷ ︸
Damageable part

: Ė = L
hyper

: Ė + L
damage

: Ė (22)

where L
hyper

and L
damage

are fourth-order tensors.

The expression of L
damage

is given by Eq. (23).

L
damage

= −4

[
I−1/3
3

∂W0

¯
∂ I1 ⊗ ∂ D + I−2/3

3
∂W0

¯
∂ I2 ⊗ ∂ D

]
− 2Kv

g′
3

(
∂ I3 ⊗ ∂ D

)
(23)
∂ I1 ∂C ∂C ∂ I2 ∂C ∂C g ∂C ∂C
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The expression of ∂ D/∂C is derived from the consistency condition ḟ = 0, so that

∂ D

∂C
= − (

∂ f
∂C )

(
∂ f
∂ D )

(24)

where ∂ f
∂ D = −Kv(g′)2 (3 J̃ 2−1)

2g2 − η
D∞−D

∂ f

∂C
= ∂Y

∂C
= Siso

2(1 − D)
+

[
Kv

2

g′ J̃ 2

g

]
C−1
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