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T -stress expressions are provided for three-point bending (TPB) beams and compact 
tension (CT) specimens and then its influence on mode I fracture toughness of concrete 
is investigated. The study shows that T -stress is dependent on the specimen’s geometry 
and the material’s property as well, and for TPB and CT specimens of regular size, 
T -stress is so small that its consequences can be neglected. The study also indicates 
that concrete specimen size should be carefully chosen to make sure the existence 
of K -dominance ahead of the crack tip, thus fracture toughness extracted from these 
specimen configurations can be reliable.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It was once believed that the stress intensity factor (SIF), which describes the singular stress field ahead of a crack 
tip, was the single controlling parameter for the fracture process in cracked specimens. Nevertheless, further explorations 
have shown that higher-order terms of the crack tip asymptotic field are also of great importance, especially the second 
nonsingular term, the so-called T -stress. As the constant term of the Williams series expansion for stress component parallel 
to the crack flanks [1], T -stress has attracted much attention since it is considered as significantly influencing the stress and 
strain fields around the crack tip, and thus the fracture failure. When conventional fracture criterions (maximum tangential 
stress (MTS) criterion) [2], minimum strain energy density criterion (S-criterion) [3], maximum dilatational strain energy 
criterion (T -criterion) [4], to name but a few are used to predict the onset of fracture, the inclusion of T -stress provides 
more reliable results [5–7]. For example, when the MTS criterion is used for mode-I fracture without T -stress involvement, 
the pre-existing crack initiation coincides with the crack plane, as expected. But this is not happening all the time with 
the presence of T -stress. It was shown in [8] that when T -stress exceeds a certain value, the crack angle will deviate away 
from the initial crack and the calculated fracture toughness K Ic may decrease a lot. The influence of the T -stress is more 
notable for brittle materials under mode-II fracture conditions. The fracture angle is no longer −70◦ , as predicted by MTS, 
and the apparent fracture toughness ratio K IIc/K Ic may be much higher than 0.87 [9], or lower when T -stress is positive. 
For a general mixed mode fracture, the initiation angle and the effective fracture toughness in the form of Keff =

√
K 2

I + K 2
II

depend on the magnitude and on the sign of T -stress: a negative T -stress makes a smaller angle deviating from the existing 
crack plane and increases Keff; conversely, a positive T -stress increases the initiation angle and decreases Keff. Besides the 
initiation angle and fracture toughness, the consequence of T -stress on the crack trajectory has been investigated. For a 
“double-cleavage drilled compression” specimen, which has a strongly negative T -stress, the crack exhibits a stable fracture 
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path [10]. For a positive T -stress, however, the crack propagates in the direction away from the line of the initial crack [11]. 
Considering that T -stress cannot be ignored when the fracture behavior at the crack tip is considered, some researchers 
even suggest that T -stress, together with SIF, may be used as a two-parameter criterion to predict fracture conditions for 
mode-I cracks (K I and T ) [12] or a three-parameter criterion for mixed-mode cracks (K I , K II and T ) [13].

In the studies above, the influence of T -stress on the fracture behavior is mostly focused on brittle materials, such as 
PMMA or brittle rock, or materials with small-to-moderate scale yielding. For concrete material vulnerable to crack, fracture 
mechanics has found its wide application which could be traced back to 1961 with the works of Kaplan [14]. Nowadays, 
researches can make a great success in modeling fracture process in bituminous concrete by means of the finite element 
technique [15]. In concrete fracture mechanics, the reliable determination of fracture toughness is one major task. To the 
best of our knowledge, no attempt has been made to consider the impact of T -stress when TPB and CT specimens are used 
to determine concrete fracture toughness. A little doubt remains whether fracture toughness based on those conventional 
methods is still reliable.

Therefore, the aim of this study is to justify the influence of T -stress term on the fracture toughness (only mode-I 
fracture is considered in this study) determined from commonly used concrete specimens in laboratory, namely TPB and CT. 
At the same time, the effect of specimen geometry and material property on the value of T -stress is also investigated.

2. Review of modified MTS criterion for mode I fracture

In this section, the modified MTS criterion proposed in [8] is first briefly reviewed for the reader’s convenience, and its 
application for TPB and CT specimens is investigated in the following sections. For a crack in an isotropic and homogenous 
solid material subjected to mode-I loading, the tangential stress solution near the crack tip can be written

σθθ = 1√
2πr

K I cos3 θ

2
+ T sin2 θ + O

(
r1/2) (1)

where r and θ are the polar coordinates with the origin located at the crack tip; K I and T denote the mode I SIF and 
T -stress, respectively. The higher-order terms O (r1/2) can be considered negligible compared to the first and second terms.

According to the MTS [2], the pre-existing crack will grow in the direction along which σθθ at some distance rc from the 
crack tip reaches its maximum value. The crack initiation angle θ0 is determined from ∂σθθ /∂θ = 0, and by substitution of 
σθθ from Eq. (1), we get:

K I sin θ0 − 16

3
T
√

2πrc sin
θ0

2
cos θ0 = 0 (2)

The onset of fracture occurs when the (σθθ ) at angle θ0 from the crack plane and when the distance rc attains its critical 
value σc. Substitution of σθθ = σc and θ = θ0 into Eq. (1) then yields:

σc

√
2πrc = K I cos3 θ0

2
+ T sin2 θ0

√
2πrc (3)

For pure mode I, i.e., K I = K Ic and θ0 = 0, Eq. (3) reduces to:

σc

√
2πrc = K Ic (4)

Here Eq. (4) is particularly addressed, because it is a very important relation to be used in the following analysis.
For convenience, a dimensionless representation is used to include the T -stress’s influence

Bα = T
√

πa

K I
α (5)

where α = √
2rc/a, a is crack length, and B is stress biaxiality ratio [16] representing the relative magnitude of T -stress 

to K I .
Using the conventional MTS criterion, pure mode-I fracture always happens at the angle θ0 = 0 when the tangential 

stress σθθ is maximum. But in the presence of T -stress, it occurs only when

Bα < 0.375 (6)

which means that, only under this condition, the second derivative of σθθ at θ0 = 0 is negative [17].
For Bα > 0.375, the initial angle deviates from the crack plane, and apparent fracture toughness decreases along with 

the increase in Bα. Since our emphasis is restricted to TPB or CT specimens supposed to be under mode-I fracture, i.e., Bα
at the crack tip should be less than 0.375, readers who are interested in the situation where Bα > 0.375 can find a more 
detailed discussion in [17].
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Fig. 1. Three-point bending single-edge notched beam.

3. SIF and T -stress for notched TPB specimens

Consider a single edged TPB with span S , depth D , width t and crack length a (cf. Fig. 1). Let β and λ be the crack-to-
depth ratio and span-to-depth ratio, respectively:

β = a

D
λ = S

D
(7)

For a general single edged TPB with λ larger than 2.5, Guinea et al. [18] provided an approximate closed-form expression 
for K I according to the principle of superposition

K I = σ
√

Dkλ(β) with σ = 6M

t D2
(8)

where M is the bending moment in the central cross-section, and in case of TPB M = 1
4 P S; kλ(β) is a dimensionless shape 

function of the form:

kλ(β) = β1/2 pλ(β)

(1 − β)2/3(1 + 3β)

= β1/2

(1 − β)2/3(1 + 3β)

{
p∞(β) + 4

λ

[
p4(β) − p∞(β)

]}
(9)

where pλ(β) is a combination of shape functions of p4(β) (λ = 4 for standard TPB) and p∞(β) (λ = ∞ for pure bending); 
p4(β) and p∞(β) are determined to be cubic polynomials by means of curve fitting technique:

p4(β) = 1.9 + 0.41β + 0.51β2 − 0.17β3 (10a)

p∞(β) = 1.99 + 0.83β − 0.31β2 + 0.41β3 (10b)

Eqs. (8)–(10) are valid for any β varying between 0 and 1, and for any λ ≥ 2.5. The SIF solution for TPB is ready now, 
even though the T -stress expression is not available in the literature. Leevers and Radon [16] provided some numerical 
results of B for standard TPB; however, studies on the higher order terms of the crack tip asymptotic field [19] using a 
hybrid crack element show that the estimate in [16] seems unsatisfactory for the TPB. Besides, the general expression of 
T -stress for TPB [19] is only limited to the case in which β varies from 0.05 to 0.6.

In [18], the authors proposed a general expression for the SIF of TPB with span-to-depth ratio λ ≥ 2.5, where the SIF was 
decomposed into the sum of SIF caused by pure bending and a standard TPB according to the Saint-Venant’s principle. As 
two terms of stress component at the crack tip, the principle of superposition is applicable to T -stress. Following the same 
procedure for SIF deduction in [18], T -stress for any span-to-depth ratio λ ≥ 2.5 can be sought in the form(

T

σ

)
λ

=
(

T

σ

)
∞

− 4

λ

[(
T

σ

)
∞

−
(

T

σ

)
4

]
(11)

where σ has the exactly same meaning as in Eq. (8); ( T
σ )∞ and ( T

σ )4 represent dimensionless T -stresses for bending and 
standard TPB specimens, respectively, and numerical computations with finite element program package Abaqus have led to 
the following expressions using a fitting procedure:(

T

σ

)
4
= 0.9582β3 − 2.1562β2 + 1.8127β − 0.4405

(1 − β)2
= q4(β)

(1 − β)2
(12a)

(
T

σ

)
∞

= 0.9012β3 − 2.438β2 + 2.1988β − 0.5034

(1 − β)2
= q∞(β)

(1 − β)2
(12b)

The equation above is valid for a general range of β values (0 < β < 1) with a coefficient of determination R2 for each 
curve close to 1.
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Fig. 2. Theoretical predictions of Bα for different D and K Ic/ ft .

Normalizing T -stress in Eq. (11) against SIF in Eq. (8) and multiplying by α = √
2rc/a lead to the Bα for TPB specimens:

Bα = q∞(β) − 4
λ
[q∞(β) − q4(β)]

p∞(β) − 4
λ
[p∞(β) − p4(β)]

√
π

1 − β
(1 + 3β)

√
2rc

a
(13)

rc, representing a critical distance where the fracture actually happens, is assumed to be a material property. Since the 
value of rc is not easy to verify directly, we used the method suggested by [20], similar to the maximum normal stress 
criterion [21], that is, σc in Eq. (4) takes the value of the material tensile strength, while for TPBs, the tensile strength 
should take the flexure tensile strength fr rather than the uniaxial tensile strength ft, so that we utilized an empirical 
relationship expression between these two variables which was proposed in [22]:

fr = γ ft =
(

1 + 49.25

D

)
ft (14)

where D (mm) is the depth of the TPB. Thus rc is estimated by:

rc = 1

2π

(
K Ic

fr

)2

= 1

2π

(
K Ic

γ ft

)2

(15)

Substitution of Eq. (15) into Eq. (13) gives:

Bα = q∞(β) − 4
λ
[q∞(β) − q4(β)]

p∞(β) − 4
λ
[p∞(β) − p4(β)]

√
1

β − β2
(1 + 3β)

√
1

D

K Ic

γ ft
(16)

Eq. (16) is valid for any λ ≥ 2.5 and any β will be welcome. Referring to Eq. (16), we can conclude that Bα at the 
crack tip of TPB specimens depends not only on the specimen geometry, but also on the material’s properties. Figs. 2–3
report Bα values versus β = a/D for different values of D , λ and K Ic/ ft. D = 100 mm, 200 mm, λ = 4, 6, 8 and K Ic/ ft =
0.1, 0.2, 0.3, 0.4 are taken for consideration since these are in the geometrical and material parameter ranges generally used 
in the laboratory.

With reference to Figs. 2–3, the following conclusions can be drawn:
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Fig. 3. Theoretical predictions of Bα for different D and λ.

(1) in all, Bα (normalized T -stress effect) increases when increasing the relative crack length β whatever the values of D , 
λ and K Ic/ ft are actually. T -stress is negative when β < 0.4 (approximately), and positive for β > 0.4. For β = 0.4, 
T -stress has its minimum value (near to zero). According to the modified MTS criterion, non-positive T -stress will 
definitely have no contribution to crack initiation under mode-I fracture conditions;

(2) as shown from Figs. 2a–c, larger D results in smaller Bα in absolute value form for the same λ and K Ic/ ft, while for 
the same values of λ and D , the absolute value of the T -stress becomes greater as K Ic/ ft increases;

(3) Figs. 3a–c depict the influence of λ on the distribution of T -stress, and it is clear that for TPB specimens, T -stress is 
not as sensitive to λ as it is to D and K Ic/ ft.

When SIF is used to characterize the fracture behavior, we must bear in mind that singular stress field should be dom-
inant near the crack tip. That is to say, linear elastic fracture mechanics (LFFM) is valid only in the K -dominance zone. It 
is commonly accepted that when the distance from the crack tip is less than 1/25a, then the region within this distance is 
dominated by the singular term K . This is the reason why ASTM specifies the specimen size for testing fracture toughness 
of metallic materials [23]. The same thing can be said for rc introduced in the MTS criterion or modified MTS criterion. That 
is, rc used in TPB specimens, is required to follow:

a ≥ 25rc = 25 · 1

2π

(
K Ic

γ ft

)2

(17)

It is noteworthy to highlight that the modified MTS is applicable in the limit of linear elastic materials. It fails to be 
utilized in concrete fracture directly, since concrete follows an obvious non-linearity fracture behavior due to the presence 
of a fracture process zone (FPZ) ahead of the macroscopic crack, which includes initial crack length a0 and extended crack 
length 
a [24]. Nevertheless, when the concept of equivalent crack length ae is adopted during crack propagation instead 
of a0, the crack problem at the tip of ae can be treated using LEFM. This method is widely adopted in concrete fracture 
models, such as the two-parameter fracture model (TPFM) [25], the effective crack model [26] (ECM), and the double-K
fracture model [27] (DKFM), and so on. Recently, the method of equivalent elastic crack is used in [24] to interpret the size 
effect of concrete fracture toughness. Besides, the equivalent crack concept has found its application in wood fracture [28,29]. 
Fortunately, the equivalent crack concept does not exclude cohesive forces. On the contrary, the cohesive force acting on the 
FPZ is taken into account in DKFM to explain the crack resistance mechanism.
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In most cases, the ultimate limit state of concrete members is what we are interested in, so fracture toughness is often 
used to denote that unstable fracture state, such as K s

Ic in TPFM and K un
Ic in DKFM. Some researchers, however, suggested 

that the initiation of the first crack extension deserves much more attention, since it is believed to be an important material 
property [30–32]. Correspondingly, the initial cracking toughness K ini

Ic was introduced in DKFM and recently included in the 
2005 Norm for Fracture Test of Hydraulic Concrete in China (DL/T 5332-2005) [33]. Now robin tests are being carried out 
and discussed for RILEM recommendation test method of double-K fracture toughness in DKFM. K ini

Ic , marking the crack 
propagation state change from elastic-linear to nonlinear, can be directly determined using LEFM. Similarly, K s

Ic and K un
Ic

can also be experimentally determined using LEFM based on the equivalent crack concept. When those fracture parameters 
for mode-I fracture of concrete are determined, however, no consideration is given to the existence of T -stress. Next we 
use some experimental data to discuss the effect of T -stress on fracture toughness of concrete based on the modified MTS 
criterion.

As described in Eq. (17), rc introduced in the modified MTS criterion should be kept small to ensure K -dominance zone 
at the crack tip. Specifically, when K ini

Ic of concrete is determined experimentally, pre-notch length a0 should be carefully 
chosen to follow Eq. (17) where a is replaced by a0, and K Ic by K ini

Ic . Likewise, for the critical unstable state, the external 
load and the cohesive force can be superimposed to the linear elastic filed ahead of the critical equivalent crack length ac. 
Thus ac must meet

ac ≥ 25 · 1

2π

(
K un

Ic − K c
Ic

γ ft

)2

(18)

where K c
Ic is the fracture toughness caused by the cohesive force acting along the FPZ. According to three-parameter law in 

the DKFM [34], i.e. K un
Ic − K c

Ic = K ini
Ic , Eq. (18) can be rewritten as:

ac ≥ 25 · 1

2π

(
K ini

Ic

γ ft

)2

(19)

Considering the fact that the critical equivalent crack length ac is usually larger than a0, Eq. (19) follows naturally once 
a0 meets the requirements of Eq. (17). In a word, one must be careful in the choice of the pre-notch length for the sake of 
the K -dominance zone ahead of the crack. Many researchers, however, often miss this point, which will be demonstrated 
in the following example.

Another idea behind the equivalent crack concept is that the concrete specimen is supposed to be sufficient large, 
usually at least three times the maximum size of the coarse aggregate, so that concrete can be treated as homogenous 
macroscopically, which is one of the basic assumptions of LEFM. For notched specimens, the uncracked ligament (D–a0 and 
D–ac) needs to be at least three times the maximum aggregate to assure that concrete is macroscopically homogeneous and 
continuous.

Next some experimental results reported in [34–36] are utilized to substantiate the validity of fracture toughness in the 
TPFM and DKFM based on the modified MTS criterion. Table 1 lists the relevant calculation results.

(1) In TPFM, TPBs with different depth D are selected for analysis. Since no initial cracking toughness K ini
Ic is available, the 

mean value from those concrete specimens (A1, A2, A3 and A4 from Table 1) exhibiting an almost same tensile strength 
is borrowed. From columns 13© and 14©, it can been seen that for large and medium-size specimens CL1, CL2, CM1 and 
CM2, a0 and ac can satisfy Eq. (17), and the uncracked size in terms of D–a0 and D–ac is larger than three times da
simultaneously. This means in these four specimens, the K -dominance zone exists at the crack tip. Further investigation 
evidence that both Bα0 and Bαc are negative; thus T -stress has no effect on the determination of fracture toughness 
based on Eq. (6). In other words, fracture toughness values determined from these four specimens are reliable. In 
contrast, specimens CS1, CS2, CS3 and CS4 having smaller a0 fail to follow Eq. (17). More importantly, the ligament 
length D–ac is too small (less than three times the maximum size of aggregate da) to guarantee the homogeneity ahead 
of the crack, which is the basic assumption of LEFM. In turn, fracture toughness values determined from these four 
specimens remain questionable.

(2) Series B and C are two sets of TPBs with similar strength and initial crack length but different D only. Series B has 
smaller D (D = 203 mm), failing to meet the requirements for LEFM application demonstrated by Eq. (17); thus fracture 
toughness from series B makes no sense. For series C with larger specimen size (D = 305 mm), a0 and ac are far larger 
than rc, thus guarantying the K -dominance region valid at rc. Also, the uncracked ligament lengths D–a0 = 130.84 mm
and D–ac = 107.36 mm are both larger than 3da = 57 mm for series C. The T -stress for series C has values Ba0 = 0.053
and Bac = 0.075, both smaller than 0.375, which means that there is no influence on double-K fracture parameters. In 
summary, double-K fracture toughness values from series C are valid.

(3) In DKFM, four other kinds of specimen with different span-to-depth ratio λ = 3, 4, 5, 6 are used for discussion. Table 1
reveals that the pre-notch length a0 of all specimens in this set meets the requirement represented by Eq. (17), and 
uncracked ligament lengths D–a0 and D–ac for all the specimens used are larger than 3da = 60 mm. Furthermore, it is 
found from columns 10© and 11© that T -stress values for this specimen set are less than 0.375, implying no effect on the 
values of double-K fracture parameters. In conclusion, fracture toughness determined from this specimen set is reliable.
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rc

(mm)
25rc

(mm)
a0

(mm)
D–a0

(mm)
D–ac

(mm)
12© 13© 14© 15© 16©
1.80 44.90 74.93 150.07 146.70
1.80 44.90 74.93 150.07 138.15
1.52 37.89 47.70 102.30 93.15
1.52 37.89 48.60 101.40 73.65
0.97 24.37 21.98 53.02 37.73
0.97 24.37 21.98 53.02 33.98
0.97 24.37 21.98 53.02 35.03
0.97 24.37 21.98 53.02 35.25

5.54 138.40 125.05 77.95 64.15
5.28 132.09 174.16 130.84 107.36

1.36 34.08 60.00 140 119.00
1.53 38.32 60.00 140 122.20
1.69 42.30 60.00 140 122.80
1.89 47.28 60.00 140 126.40
Table 1
T -stress evaluations at the crack tip for TPB specimens.

Spe. No. λ D
(mm)

da

(mm)
( ft)

(MPa)
γ K ini

Ic
(MPa m1/2)

K ini
Ic / ft

(m1/2)

β0 βc Bα0 Bαc

1© 2© 3©a 4©b 5© 6© 7© 8© 9© 10© 11©
TPFM [35] CL1 4 225 19 2.50 1.219 0.324c 0.130 0.333 0.348 −0.018 −0.014

CL2 225 1.219 0.130 0.333 0.386 −0.018 −0.003
CM1 150 1.328 0.130 0.318 0.379 −0.026 −0.006
CM2 150 1.328 0.130 0.324 0.509 −0.024 0.029
CS1 75 1.657 0.130 0.293 0.497 −0.040 0.029
CS2 75 1.657 0.130 0.293 0.547 −0.040 0.042
CS3 75 1.657 0.130 0.293 0.533 −0.040 0.039
CS4 75 1.657 0.130 0.293 0.530 −0.040 0.038

DKFM [34] Series B 3.75 203 19 4.24 1.243 0.843 0.232 0.616 0.684 0.083 0.109
Series C 305 4.31 1.161 0.778 0.212 0.571 0.648 0.053 0.075

DKFM [36] A1 3 200 20 2.58 1.246 0.298 0.116 0.300 0.405 −0.032 −0.005
A2 4 1.246 0.316 0.122 0.300 0.389 −0.029 −0.002
A3 5 1.246 0.332 0.129 0.300 0.386 −0.027 0.001
A4 6 1.246 0.351 0.136 0.300 0.368 −0.027 −0.002

a da represents the maximum size of aggregates;
b ft = 0.4983

√
f ′
c if no tensile strength is available, where f ′

c is the cylinder compressive strength;
c The average of A1, A2, A3 and A4 for their almost equal tensile strength.
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Fig. 4. Notched compact tension specimen.

Fig. 5. Theoretical predictions of Bα for different K Ic/ ft .
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Fig. 6. Theoretical predictions of Bα for different D .

4. T -stress for notched CT specimens

For the standard CT specimen (cf. Fig. 4) recommended by ASTM [23], the value of Bα at the crack tip can be calculated 
following the same procedure as in the case of the TPB specimen, and the final form is given by data curve fitting [37]:

Bα ∼= 0.7702 − 6.572β + 26.665β2 − 43.446β3 + 29.695β4 − 6.6886β5

√
1 − β

√
2rc

a

= 0.7702 − 6.572β + 26.665β2 − 43.446β3 + 29.695β4 − 6.6886β5√
β − β2

√
1

π D

K Ic

γ ft
(20)

The above solution is recommended for cracks with β > 0.25.
Figs. 5–6 show the variation of Bα with β as predicted by Eq. (20), where the specimen’s size D is practically between 

200 and 1200 mm, and where K Ic/ ft ranges from 0.1 to 0.4. Compared to TPB specimens, the T -stress for notched CT 
specimens has its own characteristics.

(1) Bα increases monotonically when the crack length grows for small β values, and reaches its first peak value approxi-
mately at β = 0.6; then Bα drops a little before increasing dramatically. In addition, the Bα value is always positive, 
which is very different from the TPB case.

(2) For the same D value, the Bα values increase with K Ic/ ft, a trend similar to the case of TPB specimens.
(3) For the same value of K Ic/ ft, a larger D value results in a smaller value of Bα. And it is interesting to notice that, for 

D ≥ 800 mm, no large difference is observed in the T -stress distribution.

Next the experimental data obtained on CT specimens in [38] are examined to verify the effect of T -stress on fracture 
toughness. All the specimens have a relative initial crack length a0/D = 0.4 and maximum aggregate size da = 25 mm. In 
addition, the tensile strength is reported to be 5.21 MPa. The computed results are tabulated in Table 2. It is clear that all 
the specimens can satisfy the condition denoted by Eq. (17), and the values of the uncracked ligament length in terms of 
D–a0 and D–ac are all larger than 3da = 75 mm. Moreover, Table 2 also shows that for laboratory-size CT specimens, the 
T -stress value at the crack tip is not high enough to affect the crack tip, i.e., Bα < 0.375, which means that mode-I fracture 
can be guaranteed to happen, and that the apparent fracture toughness thus determined is the true fracture toughness.
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Table 2
T -stress evaluations at the crack tip for CT specimens.

D
(mm)

γ K ini
Ic

(MPa m1/2)

K ini
Ic / ft βc Bα0 Bαc rc

(mm)
25rc

(mm)
a0

(mm)
D–a0

(mm)
D–ac

(mm)
1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12©
200 1.246 0.635 0.122 0.602 0.080 0.093 1.52 38.06 80 120 79.6

0.656 0.126 0.565 0.083 0.096 1.62 40.61 87
0.662 0.127 0.601 0.084 0.097 1.65 41.36 79.8
0.753 0.145 0.62 0.095 0.110 2.14 53.51 76
0.725 0.139 0.603 0.092 0.106 1.98 49.61 79.4

300 1.164 0.675 0.130 0.563 0.075 0.086 1.97 49.28 120 180 131.1
0.711 0.136 0.568 0.079 0.091 2.19 54.68 129.6
0.456 0.088 0.632 0.050 0.058 0.90 22.49 110.4
0.740 0.142 0.535 0.082 0.094 2.37 59.23 139.5
0.614 0.118 0.615 0.068 0.079 1.63 40.77 115.5

400 1.123 0.562 0.108 0.545 0.056 0.064 1.47 36.70 160 240 182
0.583 0.112 0.524 0.058 0.066 1.58 39.50 190.4
0.702 0.135 0.541 0.070 0.080 2.29 57.27 183.6
0.546 0.105 0.570 0.054 0.063 1.39 34.64 172

600 1.082 0.928 0.178 0.510 0.078 0.089 4.31 107.81 240 360 294
0.788 0.151 0.545 0.066 0.076 3.11 77.73 273
0.620 0.119 0.510 0.052 0.059 1.92 48.12 294
0.960 0.184 0.521 0.081 0.092 4.61 115.37 287.4
0.876 0.168 0.531 0.074 0.085 3.84 96.07 281.4

800 1.062 0.751 0.144 0.541 0.056 0.064 2.93 73.36 320 480 367.2
0.739 0.142 0.547 0.055 0.063 2.84 71.04 362.4
0.713 0.137 0.493 0.053 0.059 2.65 66.13 405.6
0.713 0.137 0.518 0.053 0.060 2.65 66.13 385.6
0.792 0.152 0.503 0.059 0.066 3.26 81.59 397.6
0.823 0.158 0.545 0.061 0.070 3.52 88.10 364

1000 1.049 0.644 0.124 0.493 0.043 0.048 2.21 55.22 400 600 507
0.843 0.162 0.468 0.057 0.062 3.78 94.62 532
0.791 0.152 0.477 0.053 0.059 3.33 83.31 523
0.815 0.156 0.475 0.055 0.060 3.54 88.44 525
0.823 0.158 0.476 0.055 0.061 3.61 90.18 524
0.782 0.150 0.511 0.053 0.060 3.26 81.42 489

5. Conclusions

This work presents a study of T -stress at the crack tip of concrete specimens submitted to three-point bending and 
compact tension. Its effect on mode-I fracture is considered in terms of its relative value to the SIF at the crack tip, i.e. Bα. 
The expressions given in Eq. (16) for TPB and Eq. (20) for CT show that Bα depends on the specimen’s geometry as well as 
on the material’s property. For TPB, T -stress tends to be zero when the relative crack length β is around 0.4, meaning that 
there is no influence on mode-I fracture at all. When T -stress is too small compared with SIF (i.e., Bα is less than 0.375, 
including the fact that Bα is negative), the advancing crack tip will stay on its original crack plane and the critical stress 
intensity factor thus determined is the true fracture toughness of mode-I fracture. The same conclusion can be extended 
to CT specimens, even though T -stress in CT specimens is always positive. For the regular size of TPB or CT specimens 
used in the laboratory to determine concrete fracture toughness based on the modified MTS, T -stress generally satisfies the 
condition Bα < 0.375, thus no influence is expected for mode-I fracture of concrete. The other important thing we must 
take care of is the choice of the specimen’s size, because it significantly affects the K -dominance zone ahead of the crack tip.

From this study we can draw the conclusion that after the careful choice of the specimen’s size, the influence of T -stress 
on mode-I fracture of concrete can be neglected. Probably one reason is that T -stress, which is parallel stress component at 
the crack tip, has limited contribution to the opening pattern of mode-I fracture, which is supposed to be perpendicular to 
the crack plane. If so, T -stress is supposed to affect significantly mode-II fracture of concrete, which will be further explored 
in our next study.

Abbreviations

ASTM American Society for Testing and Materials
CT compact tension
DKFM double-K fracture model
ECM effective crack model
FPZ fracture process zone
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LEFM linear elastic fracture mechanics
MTS maximum tangential stress
RILEM Union of Laboratories and Experts in Construction Materials, Systems and Structures
SIF stress intensity factor
TPB three point bending
TPFM two parameter fracture model
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