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One of the most widely used approaches to model metallic-glasses high-temperature
homogeneous deformation is the free-volume theory, developed by Cohen and Turnbull
and extended by Spaepen. A simple elastoviscoplastic formulation has been proposed that
allows one to determine various parameters of such a model. This approach is applied
here to the results obtained by de Hey et al. on a Pd-based metallic glass. In their study,
de Hey et al. were able to determine some of the parameters used in the elastoviscoplastic
formulation through DSC modeling coupled with mechanical tests, and the consistency of
the two viewpoints was assessed.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Understanding the physical basis of the homogeneous deformation of bulk metallic glasses is an important fundamental
as well as practical subject. On a fundamental basis, there exists no consensus on the nature of the mechanism(s) responsible
for the deformation of amorphous materials. In practice, the homogeneous mode is of interest, particularly for shaping
operations on metallic glasses at high temperature. For the latter class of materials, one of the most widely used models to
describe the homogeneous deformation is the free-volume model. It was proposed by Cohen and Turnbull [1–3] for liquids
and applied to the glass-transition phenomenon, and was later adapted to the case of the deformation of metallic glasses
by Spaepen [4]. In this framework, the carriers of plastic deformation are so-called flow defects, whose concentration cf is
given by:

cf = exp

(
−γ v∗

v f

)
(1)

where v∗ is the critical free volume level, v f is the average free volume per atom and γ is a geometrical factor allowing for
the overlap of free-volume areas. The viscoplastic strain rate then writes:

γ̇ = cf2ν exp

(
−�Gm

kT

)
sinh

(
τΩ

kT

)
(2)

where ν is the atomic vibration frequency, �Gm is the migration free energy, τ is the shear stress and Ω is the activation
volume. k and T have their usual meaning.
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This model leads to a satisfying rationalization of the dependency of glasses viscosity with temperature, by assuming
that the average free volume writes:

v f = T − T0

B
γ v∗ (3)

which allows us to write the Vogel–Fulcher–Tammann equation from the free-volume system, the VFT equation being com-
monly used to describe the temperature dependence the viscosity of undercooled liquids (see for example [5]). This equation
is then interpreted as a temperature-dependent equilibrium concentration of defects, ceq:

ceq = exp

(
− B

T − T0

)
(4)

where B and T0 are material parameters. For a glass at sufficiently high temperature, if the free-volume level is higher
than the equilibrium one, the so-called structural relaxation occurs. This phenomenon is notably accompanied by a density
increase. The viscosity of the glass then increases linearly with time, which in the framework of the free-volume model can
be understood as an annihilation of flow defects with a second-order kinetics, which writes [6–8]:

ċf = krcf(cf − ceq) (5)

where kr is the structural relaxation kinetic coefficient, which is thermally activated [8].
The stress–strain curve of a metallic glass deformed in the homogeneous mode exhibits stress overshoots whose ampli-

tude increases with the strain rate. Various studies have investigated this phenomenon (see, for example, [9–11]), and from
a free-volume perspective, it is due to an increase of the flow defect concentration. Several forms of the dependency of the
flow defect concentration with strain have been studied, and based on their measurements coupling uniaxial tests and DSC
results, de Hey et al. have shown [12] that the best description of the flow defect creation by strain is:

ċf = axε̇pcf ln2(cf) (6)

where ε̇p is the plastic strain-rate and ax is the flow defect creation coefficient. This equation is derived from the free-
volume model assuming dv f ∝ dεp. By coupling Eqs. (5) and (6), the kinetic of flow defect concentration, when a metallic
glass is plastically deformed, is given by:

ċf = axε̇pcf ln2(cf) − krcf(cf − ceq) (7)

whose steady-state solution c∗
f writes:

c∗
f = ceq + ax

kr
ε̇p ln2 c∗

f (8)

By coupling Eqs. (2) and (8), it is possible (see [13]) to deduce the ratio ax/kr and ε̇0,c , knowing the activation volume Ω

and ceq.
Assuming that the total strain is the sum of the elastic and viscoplastic contributions, it writes (in uniaxial conditions):

ε̇ = σ̇

E
+ cfε0,c sinh

(
σΩ

2
√

3kT

)
(9)

where E is the Young modulus. By coupling Eq. (9) with Eq. (7), it is then possible to model mechanical experiments [11].
By coupling this type of modeling with the approach based on the steady state [13], most of the parameters of the free-
volume model—at a given temperature—can be deduced from mechanical results only, with the noticeable exception of the
equilibrium flow defect concentration, ceq.

The aim of the present paper is to examine the consistency of the elastovisoplastic approach, by comparing the values
found by de Hey et al. [12] for the various parameters of the model thanks to DSC measurements with the ones that can
be deduced from a purely mechanical analysis of their results, following the method depicted in [11].

2. Structural parameters determination and comparison

In their study [12] of the structural modifications induced by plastic deformation of a PdNiP metallic glass in the ho-
mogeneous domain correlating tensile tests and DSC measurements, de Hey et al. have conducted one experiment that is
particularly favorable to apply the mechanical analysis proposed in [11]. Indeed, using the results of uniaxial strain-rate
jump experiments, it is possible to determine almost all the parameters of Eqs. (7) and (9), which include the structural
relaxation coefficient kr and the free-volume creation coefficient ax . These two parameters were also determined by de Hey
et al. thanks to the modeling of DSC curves, i.e. a thermodynamical approach.

However, for the model to be consistent, the values found by an approach and the others must be the same. In Fig. 1
are presented the data published by de Hey et al. for a tensile test involving strain-rate jumps between ε̇ = 8.3 × 10−5 s−1

and 4.2 × 10−5 s−1. By adjusting the parameters of Eqs. (7) and (9), it is possible to obtain a rather satisfying fit of the
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Fig. 1. Red dots: true stress vs. true strain curve obtained for a tensile test on a PdNiP metallic glass at 556 K by de Hey et al. [12], strain-rate cycling
between 8.3×10−5 s−1 and 4.2×10−5 s−1. Black line: best fit obtained using the elasto-plastic formulation of the free-volume model obtained by coupling
Eqs. (9) and (7). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of the results obtained from DSC analysis by de Hey et al. [12] thanks to the
modeling of DSC and mechanical data, and the results obtained in the present study thanks
to mechanical modeling only.

Present study de Hey et al.

Ω (Å
3
) 130 130

ax 0.034 0.043
kr (s−1) 6 × 1011 3.2 × 1010

ε0,c (s−1) 5.47 × 109

E (GPa) 40

experimental results (see Fig. 1 and Table 1). The model reproduces then correctly the overshoot and undershoot amplitude,
and the value of the steady-state stress.

The value of the Young modulus used to reproduce the stress–strain curves was 40 GPa, whereas the measured value
reported by de Hey et al. at room temperature is 96 GPa. Such a decrease of the Young modulus is generally understood
as the signature of anelastic phenomena developing at high temperature. Indeed, when measured at high frequency (about
2 kHz), the elastic modulus shows very little variation (less than 5% on a Zr-based metallic glass in the glass-transition
range), and in the same temperature interval, the value of the modulus decreases markedly with the measuring frequency
(more than 50% at 1 Hz) (see [14,15]). However, the free-volume model cannot account for such anelastic effects and it is
necessary to use the experimental modulus to model the stress–strain curves.

To evaluate the other material parameters—beyond the elastic modulus—from mechanical results only, it is necessary to
determine a value of the equilibrium flow defect concentration at this temperature, as this parameter is free. The chosen
value was ceq = 5.49×10−15, as can be calculated using structural data proposed by Duine et al. [16] and used by Tuinstra et
al. [17] for the same glass. Thanks to viscosity measurements conducted as creep tests on amorphous ribbons and assuming
that the Newtonian viscosity dependency on temperature can be described thanks to the Vogel–Fulcher–Tammann equation,
which writes:

η = η1 exp

(
B

T − T0

)
(10)

they obtained B = 6600 K and T0 = 355 K, these parameters being the same as in Eq. (4) that describes the dependency of
the free volume on temperature.

Table 1 compares the values found in the present analysis and the ones obtained by de Hey et al. in [12] and Duine et
al. in [16] (through the modeling of DSC and viscosity measurements).

It turns out that the activation volumes are in good agreement, and their large value points out the necessity to reinter-
pret the physical picture of the original free-volume interpretation, which was the jump of a single atom into a big enough
hole, as such a large activation volume corresponds to several average atomic volumes. This observation has already been
made by several authors (see for example [18,19]), and Argon proposed an analysis that led to similar stress/strain rate
relationships, but based on the concept of shear transformation zone (see [20]), concept widely used in the community.

The values of the free-volume creation coefficient ax found in both studies are close to one another (0.034 found here vs.
0.043 ± 0.004 found by de Hey et al.). On the other hand, the structural relaxation parameter kr shows a larger discrepancy
(6 × 1011 vs. 3.2 × 1010 s−1), which results in a significant difference in terms of ax/kr. This ratio is particularly sensitive
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when applied to steady-state analysis (see [13]) and the values proposed by de Hey et al. (1.3 × 10−12 s) lead to results that
are incompatible with their stress/strain rate experimental results in the steady state, for which a value of 1.4 × 10−13 s is
required, based on the steady-state analysis.

This disagreement could be due to various errors. First, in the stress/strain rate experimental values. However, the stress
error would then have to be more than 100 MPa and/or the error on the strain rate should be about 3 × 10−5 s−1 on the
4.2 × 10−5 s−1, both of them seem to be very large and unlikely.

A second possibility would be an error on the various material parameters of the free-volume model. Varying the activa-
tion volume between values that do not allow a satisfying fit of the data (from 30 to 230 Å

3
) and appear then as unrealistic,

according to the method presented in [11], does not lead to variations of the predicted ax/kr ratio (1.4 × 10−13 s) of more
than 0.01%, which is far from enough to account for the value deduced from de Hey et al.’s results. On the other hand, an
increase in the flow defect concentration from 5.49 × 10−15 up to 5.49 × 10−14 would suffice. Hence, there may be some-
what significant errors in the parameters that were determined by Tuinstra et al. in [17] and Duine et al. [16] and used
for comparison in the present study. Small incertitudes on the thermodynamical parameters can result in a rather large
variation of kr or ceq, particularly concerning the activation energy or the temperature, as kr has an Arrhenian behavior.
Indeed, an error of 8% on the temperature and/or the activation energy would be sufficient to account for the discrepancy
in kr, whereas for ceq an error of 6% on the parameter B or 4% on T0 (see Eq. (4)) would bring the equilibrium flow de-
fect concentration ceq within margins compatible with the steady-state analysis as seen above. Obviously, a combination of
lesser errors on all these parameters could also account for the ax/kr ratio discrepancy.

Alternatively, this could be the sign of an inconsistency of the viscoplastic formulation of the free volume model, but it
would be necessary to rule out all the other previous possibilities before to come to this conclusion.

3. Conclusion

The free-volume theory provides a satisfying way to rationalize the mechanical behavior of metallic glasses in the
homogeneous mode. The determination of the two parameters related to the free-volume kinetics (free-volume creation
coefficient ax and structural relaxation constant kr) by DSC or mechanical modeling shows relatively good agreement, but
points out probable errors, inferior to a few percent in the thermodynamical and kinetics parameters determination through
DSC measurement and viscosity analysis. The free-volume model is then able to account quantitatively for mechanical as
well as kinetic and thermodynamical results, on a rather phenomenological basis.
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