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This paper deals with an analytical approach of the buckling behavior of a functionally 
graded circular cylindrical shell under axial pressure with external axial and circumferential 
stiffeners. The shell properties are assumed to vary continuously through the thickness 
direction. Fundamental relations and equilibrium and stability equations are derived using 
the third-order shear deformation theory. The resulting equations are employed to obtain 
the closed-form solution for the critical buckling loads. A simply supported boundary 
condition is considered for both edges of the shell. The comparison of the results of this 
study with those in the literature validates the present analysis. The effects of material 
composition (volume fraction exponent), of the number of stiffeners and of shell geometry 
parameters on the characteristics of the critical buckling load are described. The analytical 
results are compared and validated using the finite-element method. The results show 
that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners 
considerably affect the critical buckling loads.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Stiffened cylindrical shells have found widespread use in modern engineering, especially in aircraft and spacecraft indus-
try. There have been many studies on the stability of cylindrical shells, but closed-form solutions are possible only for the 
case when all edges are simply supported. Due to the increasing demands for high structural performances, the study of 
functionally graded materials in structures has received considerable attention in recent years. The buckling and postbuck-
ling of cylindrical shells under combined loading of external pressure and axial compression have been demonstrated by 
Shen and Chen [1], who studied the interaction of local and overall buckling in stiffened plates and cylindrical shells.

Classical theories developed for thin elastic shells are mostly based on the Love–Kirchhoff assumptions. This theory 
considers that straight lines normal to the undeformed middle surface remain straight and normal to the deformed middle 
surface, that the normal stresses perpendicular to the middle surface can be neglected in stress–strain relationships, and that 
the transverse displacement is independent of the thickness coordinate. Therefore, transverse shear strains are neglected, as 
reported in surveys of classical shell theories by Naghdi [2] and Bert [3].

These theories are expected to produce accurate results when the thickness-to-radius ratio (h/a) is small. The application 
of such theories to thick or moderately thick or laminated composite shells can lead to serious errors in deflection or 
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stresses. The effect of transverse shear and normal stresses in shells has been studied by Reissner [4]. The effect of transverse 
shear deformation was also considered by Vinson [5], Dong et al. [6,7], and Reddy [8] extended Vlasov’s theory to laminated 
composite plates and shells. This higher-order theory based on five degrees of freedom (same number as in a first-order 
shear-deformation theory by Reddy [9]). This theory assumes a constant transverse deflection through the thickness and the 
displacements of the middle surface expanded as cubic functions of the thickness coordinate. The displacement field leads 
to a parabolic distribution of the transverse shear stresses and zero transverse normal strain. Therefore, no shear correction 
was used.

Stiffened cylindrical shells have found widespread use in modern engineering, especially in aircraft and spacecraft in-
dustry. There have been many studies on the stability of cylindrical shells, but closed-form solutions are possible only for 
the case when all edges are simply supported. Due to the increasing demands of high structural performances, the study of 
functionally graded materials in structures has received considerable attention in recent years.

The buckling and post-buckling of cylindrical shells under the combined loading of external pressure and axial com-
pression has demonstrated by Shen and Chen [10]. An instability analysis of stiffened cylindrical shells under hydrostatic 
pressure was given by Barush and Singer [11]. The post-buckling of stiffened cylindrical shells under combined external 
pressure and axial compression was investigated by Shen et al. [12]. Using a novel finite-elements model, Sridharan and 
Zeggane [13] studied interacting local and overall buckling in stiffened plates and cylindrical shells. Ji Zhen and Yeh Kei [14]
studied the part of the cylindrical shell which is stiffened with stringers; it is treated as an isotropic shell, and the part 
stiffened with rings as a discrete shell element. Based on the Donnell equations, the stability equation of nonhomogeneous 
cylindrical stiffened shells was obtained by use of the perturbation technique. Sadeghifar et al. [15] studied new buckling 
results for laminated stiffened cylindrical shells with nonuniform stringers. They used the first-order shear deformation 
theory to obtain the basic equations.

In this paper, the stability of FG cylindrical shells with axial and circumferential stiffeners was studied. The material 
properties were assumed to vary smoothly through the shell thickness according to a power-law distribution of the vol-
ume fraction of constituent materials. Initially, the stability equations were derived from the third-order shear deformation 
theory (TSDT). The resulting equations were employed to obtain the critical buckling loads. Also the effects of geometrical 
parameters, of the number of stiffeners and of the FG power index on the critical buckling load have been studied.

2. Formulation

Consider an FG cylindrical shell which is stiffened by external axial and circumferential stiffeners as shown in Fig. 1.
Throughout the current investigation, x, y and z coordinates coincide with the directions of the length, circumference 

and thickness of the FG cylinder, respectively.

Fig. 1. Geometry and coordinate system of the stiffened cylindrical shell.

The FGM shell being made of a combined ceramic–metal material, the material distribution governed by the equation:

V m(z) =
(

1

2
+ z

h

)ξ

, V c(z) = 1 − V m(z) (1)

where V (z) is the volume fraction of a constituent material, ξ is a non-negative volume fraction exponent, and subscripts c 
and m stand for ceramic and metal. Thus, the effective Young modulus of the shell assumed to vary as a power law of the 
thickness coordinate:
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E(z) = Ec + Emc

(
1

2
+ z

h

)ξ

, Emc = Em − Ec (2)

The material composition varies smoothly from the metal-rich outer surface (z = h/2) of the FGM shell to the ceramic-rich 
inner surface (z = −h/2). The displacement fields can be written as:

u(x, y, z) = u0(x, y) + zϕx(x, y) − c1z3(ϕx + w0,x)

v(x, y, z) = v0(x, y) + zϕy(x, y) − c1z3(ϕy + w0,y)

w(x, y, z) = w0(x, y) (3)

where u, v and w are displacements of arbitrary points through the cylindrical shell along coordinates (x, y, z), and c1 is 
equal to 4/3h2. The kinematic relations for a cylindrical shell are defined by:
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Hook’s law is defined by:

σxx = E

(1 − ν2)
(εxx + νεyy), σyy = E

(1 − ν2)
(εyy + νεxx),

τxy = E

2(1 + ν)
γxy, τyz = E

2(1 + ν)
γyz (5)

The stress resultants are presented as:
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− h
2

σi
(
1, z, z2)dz, i = xx, yy

(Ni, Mi, Pi) =
h
2∫

− h

τi
(
1, z, z2)dz, i = xy
2



504 H. Farahani et al. / C. R. Mecanique 342 (2014) 501–512
(Q i, Ri) =
h
2∫

− h
2
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(
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Substituting Eqs. (4) and (5) into Eq. (6) gives the stress resultants as:⎧⎨
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where A, B , C , D , F and G are given by:

(A, B, C, D, F , G) =
h
2∫

−h
2

(
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The strain energy of the shell, Ush, may be written as:
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Assuming a constant contact between circumferential and axial stiffeners, the latter are assumed to behave like beam 
elements. The kinematic description of the beam elements is based on the Euler–Bernoulli beam theory and can be written 
under the form (see [16, p. 798]):
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where, (uc, wc) and (va, wa) are circumferential and axial stiffeners displacements, respectively, and (uI, v I, w I) show the 
displacement components of the point which are located on the surface of the shell. The kinematic relations for the circum-
ferential stiffeners can be written as [16]:
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Hook’s law is defined for stiffeners by:

σa = Eaεa, σc = Ecεc (13)
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The potential energy of axial stiffeners is [13]:
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and the potential energy for circumferential stiffeners is:
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where subscripts c and a stand for circumferential and axial stiffeners, A is the area of the stiffener, I is the moment of 
inertia of the stiffener about the reference surface (z = 0), Z is the distance from the stiffener to the reference surface, J is 
the torsional constant and Ec and Ea are the Young modulus of the circumferential and axial stiffeners, respectively. Here 
Sa and Sc are the distances between the circumferential and axial stiffeners, respectively, and are defined by:

Sa = 2πa/Na

Sc = L/Nc (16)

where Na and Nc are the numbers of axial and circumferential stiffeners, respectively.
The total potential energy of a cylindrical shell subjected to the axial pressure loading is defined as:

V = U + Ω (17)

The total strain energy for cylindrical shell and stiffeners is obtained as follows:

U = Ush + Ua + Uc (18)

The potential energy of the applied loads, Ω , for a conservative system is the negative of the work done by loads as the 
structure deformed. Thus, for the axial compressive edge load, P , it is defined by:
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Using the minimum potential energy criterion [17], the equilibrium equations of the stiffened cylindrical shell composed of 
functionally graded materials is obtained as:
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where Nxx and N yy are defined by:
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The stability equations of the cylindrical shell may derived by the variational approach. If V is the total potential energy 
of the shell, the first variation, δV , is associated with the state of equilibrium. The stability of the original configuration 
of the shell around the equilibrium state can be determined by the sign of second variation, δ2 V . However, the condition 
dδ2 V = 0 is used to derive the stability equations of many practical problems concerning the buckling of shells [17]. Thus, 
the stability equations are represented by the Euler equations for the integrand in the second variation expression:
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− Z a Ea Aa
(
(h/2) − c1(h/2)3)(∂ w1

I

∂x

)))
= 0

∂M1
xy

∂x
+ ∂M1

yy

∂ y
− Q 1

yz + 3c1 R1
yz − c1

(
∂ P 1

xy

∂x
+ ∂ P 1

yy

∂ y

)

+ ∂

∂ y

(
1

Sc

(
(h/2) − c1(h/2)3)Ec Ac

(
∂v1

I

∂ y
+ 1

2

(
∂ w1

I

∂ y

)2

+ w1
I

a

)
− 1

Sc
Z c Ec Ac

(
(h/2) − c1(h/2)3)(∂ w1

I

∂ y

))
= 0

(22)

where N0
xx , N0

yy , and N0
xy are the pre-buckling force resultants of the shell, and N0

xx and N0
yy are the pre-buckling forces of 

the stiffeners.

3. Buckling analysis

In this section, a closed-form solution for obtaining the critical buckling load is presented. To determine the critical buck-
ling loads, the pre-buckling mechanical forces should be found from the equilibrium equations and then substituted into the 
stability equations for the buckling analysis. Under a uniformly distributed axial compressive load P , the cylinder shortens, 
except at the ends, and increases in diameter. The initial deformation is axisymmetric and the pre-buckling mechanical 
forces are given by:

N0
yy = N0

xy = N0
xx = N0

yy = 0

N0
xx = − P

2πa
(23)

The simply supported boundary condition is considered for both edges. The displacement field can be defined by:

u1
0 = umn cos

(
mπx

L

)
sin

(
ny

a

)

v1
0 = vmn sin

(
mπx

L

)
cos

(
ny

a

)

w1
0 = wmn sin

(
mπx

L

)
sin

(
ny

a

)

ϕ1
x = ϕxmn cos

(
mπx

L

)
sin

(
ny

a

)

ϕ1
y = ϕymn sin

(
mπx

L

)
cos

(
ny

a

)
m,n = 1,2, . . . (24)

where m and n are the axial and circumferential half-wave numbers, respectively. The simply supported boundary condition 
at both edges is satisfied. By substituting Eq. (24) into Eq. (22), we obtain the coefficient matrix; then we set the determinant 
of the coefficient matrix at zero and derive the buckling load as a function of half-wave parameters m and n. Using the 
principle of minimum potential energy and the Ritz method is equivalent to using the matrix equation:

Π = U�U

U = Ush + Ua + Uc

δΠ = 0

∂2Π

∂π2
= 0, π = {A, B, C, D, E} (25)

⎡
⎢⎢⎢⎣

L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A
B
C
D
E

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
0
0
0
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

Li j are coefficients based on the material’s properties and the geometrical parameters (Appendix 1).
We obtain an obvious solution:

|Li j| = 0 (27)



508 H. Farahani et al. / C. R. Mecanique 342 (2014) 501–512
We obtain a high correlation with the shell buckling equation expressed as follows:

η1N3 + η2N2 + η3N + η4 = 0 (28)

N is the shell buckling load and (ηi) are terms corresponding to coefficients (Li j).
The critical buckling load may be determined by minimizing the buckling load with m and n. The critical buckling load 

is the smallest buckling load.

4. Calculation results and discussion

A ceramic–metal FG stiffened cylindrical shell is considered. The basic materials properties determined at room temper-
ature (300 K) are displayed in Table 1.

Table 1
Basic properties of the materials at room temperature.

Constituents Material Young’s modulus (GPa)

Ceramic Al2O3 300
Metal Al 1100 69

The Poisson ratio is assumed to be constant and equal to 0.3.
As a numerical example, the numbers of axial and circumferential stiffeners are 15 and 20 respectively. Let ha = hc =

ba = bc = 1 mm and Ea = Ec = 151 GPa. The results for an aluminum isotropic shell are [17] listed in Tables 2 and 3. The 
values of the buckling load for an FG cylindrical shell of thickness-to-radius ratio h/a and the power law index are listed in 
Table 4.

Table 2
Critical axial buckling load (MN) for an isotropic shell made of alumina, with L/a = 1 and a = 0.3 m.

Present Almroth & Brush [17]

h/a = 1/30 Unstiffened 25.8814 26.2390
Stiffened 25.9558 26.3023

h/a = 1/50 Unstiffened 9.4834 9.4460
Stiffened 9.4776 9.4827

h/a = 1/100 Unstiffened 2.3536 2.3615
Stiffened 2.3743 2.3659

h/a = 1/200 Unstiffened 0.5891 0.5904
Stiffened 0.5999 0.5988

h/a = 1/300 Unstiffened 0.2620 0.2623
Stiffened 0.2686 0.2672

Table 3
Critical axial buckling load (MN) for an isotropic shell made of alumina, compared with the results of ANSYS and of reference [17], with 
L/a = 1 and a = 0.3 m.

Present ANSYS Almroth & Brush [17]

Critical axial loads (MN)
h = 1 mm 0.2620 0.2610 (0.38%) 0.2623 (0.11%)

h = 3 mm 2.3536 2.3260 (1.17%) 2.3615 (0.33%)

h = 6 mm 9.4834 9.2381 (1.31%) 9.4460 (0.90%)

h = 12 mm 37.1370 36.5216 (1.66%) 37.7841 (1.02%)

Table 4
Critical axial buckling load (MN) for FG cylindrical shells, with L/a = 1 and a = 0.3 m.

ξ = 1 ξ = 2 ξ = 5

h/a = 0.002 Unstiffened 0.2353 0.2798 0.3320
Stiffened 0.2656 0.3101 0.3615

h/a = 0.01 Unstiffened 5.8618 6.9722 8.2729
Stiffened 5.9351 7.0448 8.3422

h/a = 0.02 Unstiffened 23.3595 27.8010 32.9763
Stiffened 23.4984 27.9373 33.1076
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It can be seen that the critical buckling load increases by increasing the FG power index; varying material properties 
along the thickness of the shell results in an increase in the critical buckling load. Also it is acceptable that by increasing 
the thickness-to-radius ratio, the critical buckling load increases.

In Fig. 2 the critical buckling load is plotted versus the number of axial and circumferential stiffeners for a stiffened FG 
shell. It can be seen that the percentage increase in the buckling load rises continuously with the increment of the number 
of stringers; one may notice that circumferential stiffeners are less effective in stiffening the shell than axial stiffeners.

Fig. 2. (Color online.) Critical buckling load as a function of the number of stiffeners for a stiffened FG cylindrical shell, with ξ = 2, h/a = 0.02, L/a = 1, and 
a = 0.3 m.

The variation of the critical buckling load with the length-to-radius ratio, L/a, for stiffened and unstiffened cylindrical 
shells is shown in Fig. 3.

Fig. 3. (Color online.) Critical buckling load as a function of the length-to-radius ratio for a stiffened FG cylindrical shell, with h/a = 0.02 and a = 0.3 m.

The results show that the critical buckling load decreases when increasing the length-to-radius ratio.
The variation of the critical buckling load for a stiffened FG cylindrical shell is exhibited in Fig. 4. Through increasing the 

power index, the critical buckling load increases as expected. Also the critical buckling loads appear to be constant for high 
values of the power index.
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Fig. 4. (Color online.) Critical buckling load as a function of the power index for a stiffened FG power index, with Na = Nc = 15, L/a = 1 and a = 0.3 m.

5. Conclusions

In this paper the stability of stiffened FG cylindrical shell is studied. The equilibrium and stability equations are derived 
based on TSDT. The system of partial differential equations is solved analytically. The effects of the geometrical parameters, 
the power index and the number of rings on the critical buckling load have been studied. The conclusions can be explained 
briefly as follows:

a. The critical buckling load dicreases by increasing the length-to-radius and increases by increasing the thickness-to-
radius ratios;

b. through increasing the power index, the critical buckling load increases;
c. circumferential stiffeners are less effective in stiffening the shell under axial pressure.

Appendix 1
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