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The aim of this paper is to study an initial and homogeneous boundary value problem 
to a quasilinear hyperbolic equation with a p(x, t)-Laplacian and a positive initial energy. 
The authors prove that the solution blows up in a finite time under some conditions on 
the initial value, the exponents and the coefficients in the equation. The results generalize 
and improve that of S.N. Antonsev (2011) [6]. Besides, the conditions of positivity of the 
integral to the initial data and the boundedness of pt(x, t) are removed.
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r é s u m é

Le but de cet article est d’étudier un problème aux limites initial et homogène défini par 
une équation hyperbolique quasi linéaire avec un p(x, t)-Laplacien et une énergie initiale 
positive. Les auteurs montrent que la solution explose dans un temps fini sous certaines 
conditions sur la valeur initiale, les exposants et les coefficients de l’équation. Les résultats 
généralisent et améliorent celui de S.N. Antonsev (2011) [6]. En outre, les conditions de 
positivité de l’intégrale pour les données initiales et le caractère borné de pt(x, t) sont 
supprimées.
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1. Introduction and main result

In this paper, we consider the following quasilinear hyperbolic problem:⎧⎪⎨⎪⎩
utt − div

(
a(x, t)|∇u|p(x,t)−2∇u

) − �ut = b(x, t)|u|q(x,t)−2u, (x, t) ∈ Ω × (0, T ) := Q T

u(x, t) = 0, (x, t) = ∂Ω × (0, T ) := ΓT

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ Ω

(1)

where Ω ⊂ R N (N � 1) is a bounded domain, ∂Ω is Lipschitz continuous. It will be assumed throughout the paper that the 
exponents p(x, t), q(x, t) and the coefficients a(x, t), b(x, t) satisfy the following conditions.

1 < p− � p(x, t) � p+ < ∞, 1 < q− � q(x, t) � q+ < ∞
0 < a− � a(x, t) � a+ < ∞, 0 < b− � b(x, t) � b+ < ∞ (2)

The problem with variable exponent occurs in many mathematical models of applied science, for example, viscoelastic 
fluids, electro-rheological fluids, processes of filtration through a porous media, fluids with temperature-dependent viscosity 
etc. The interested readers may refer to [1–5] and the references therein. To the best of our knowledge, when p varies 
in space and time, only in [6], S.N. Antontsev discussed the blowing-up properties of solutions to the initial and homo-
geneous boundary value problem of quasilinear wave equations involving p(x, t)-Laplacian and a negative initial energy. 
However, it is natural to ask what happens when the initial energy is positive, whether the results of [6] do remain true. 
If so, is it a trivial generalization? In view of pure mathematics, we have to overcome the following difficulties in dealing 
with such problems. The main difficulties are the following: how we can establish the quantitative relationships among 
‖∇u‖p(.) , ‖u‖q(.) and the initial energy and what functional should be constructed to ensure that the initial energy may 
be controlled by the term 

∫
Ω

|u|q(x,t)dx. In this paper, we construct a new control function and apply suitable embedding 
theorems to establish the quantitative relationship between the term 

∫
Ω

|u|q(x,t)dx and the initial energy. Furthermore, by 
modifying the functional constructed in [6] and utilizing the quantitative relationship between the term 

∫
Ω

|u|q(x,t)dx and 
the initial energy, we prove that the solution blows up in finite time even in the case when the initial energy is positive. In 
addition, our results not only improve the conditions on the initial data and the exponents in the problem, but also remove 
the constrains of the boundedness of pt (x, t) and qt(x, t).

Define the energy functional as the following:

E(t) = 1

2

∫
Ω

|ut |2dx +
∫
Ω

a(x, t)

p(x, t)
|∇u|p(x,t)dx −

∫
Ω

b(x, t)

q(x, t)
|u|q(x,t)dx

By [6], we find that the energy functional E(t) satisfies the following identity.

Lemma 1.1. Suppose that u ∈ Lq(x,t)(Q T ) ∩ L∞(0, T ; W 1,p(x,t)
0 (Ω)), ut ∈ L2(0, T ; H1(Ω)) is a solution to Problem (1), then E(t)

satisfies the following identity:

E(t) +
t∫

0

∫
Ω

|∇us|2 dx ds = E(0) +
t∫

0

∫
Ω

a(x, s)ps

p2
|∇u|p(

ln |∇u|p − 1
)
dx ds

+
t∫

0

∫
Ω

(
as(x, s)

p
|∇u|p − bs(x, s)

q
|u|q

)
dx ds −

t∫
0

∫
Ω

b(x, s)qs

q2
|u|q(ln |u|q − 1

)
dx ds (3)

For simplicity, we give some notations and the embedding inequality to be used later. By Corollary 3.34 in [2], we know 
that W 1,p(x)

0 (Ω) ↪→ W 1,p−
0 (Ω) ↪→ Lr(Ω) (1 < r <

Np−
N−p− ). Let B be the best constant of the embedding inequality:

‖u‖r � B‖∇u‖p(.), ∀u ∈ W 1,p(x)
0 (Ω)

Set E1 = (r−p+)a−
rp+ α1, α1 = ( a−

b+ Br
1
)

p+
r−p+ , where B1 = max{B, 1, ( a−

b+ )
1
r }.

First, we consider the simplest case when p(x, t) is independent of t and q(x, t) ≡ r is a fixed constant. Our main result 
is as following.
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Theorem 1.1. Assume that the exponent p(x), the coefficients a(x, t), b(x, t) and u0(x), u1(x) satisfy (2) and the following conditions:

(H1) 0 �≡ u0 ∈ L2(Ω) ∩ W 1,p(x)
0 (Ω), u1 ∈ L2(Ω), E(0) < E1,min

{‖∇u0‖p−
p(x),‖∇u0‖p+

p(x)

}
> α1

(H2) r > max{2, p+},at(x, t) � 0,bt(x, t) � 0,∀x ∈ Ω, t � 0

then the solution of Problem (1) blows up in finite time.

By Lemma 1.1, it is easy to verify that the following inequality holds.

Lemma 1.2. Suppose that u is a solution to Problem (1) and the coefficients a(x, t), b(x, t) satisfy the conditions of Theorem 1.1, then 
E(t) satisfies:

E(t) +
t∫

0

∫
Ω

|∇ut |2dx ds � E(0), t � 0

Next, we establish quantitative relationship between the term 
∫
Ω

|u|rdx and the initial energy.

Lemma 1.3. Let u be a solution to Problem (1). If (H1) and (H2) are satisfied, then there exists a positive constant α2 > α1 such that 
for all t � 0:∫

Ω

|∇u|p(x)dx � α2 (4)

∫
Ω

|u|rdx � Br
1 max

{
α

r
p−

2 ,α
r

p+
2

}
(5)

Proof. A simple analysis shows that:

E(t) � a−

p+ α(t) − b+Br
1

r
max

{
α

r
p− (t),α

r
p+ (t)

}
= h

(
α(t)

)
(6)

with α(t) = ∫
Ω

|∇u|p(x)dx.
Following the lines of the proof of Lemma 2.2 in [7], we have that h(α) is increasing for 0 < α < α1 while h(α) is 

decreasing for α � α1, and limα→∞ h(α) = −∞. Due to E(0) < E1, then there exists a positive constant α2 > α1 such 
that h(α2) = E(0). By min{‖∇u0‖p−

p(x), ‖∇u0‖p+
p(x)} > α1, we get h(α0) � E(0) = h(α2), where α0 = ∫

Ω
|∇u0|p(x)dx. Once again 

applying the monotonicity of h(α), we have α0 � α2.
Define F (t) �

∫
Ω

|∇u(., t)|p(x)dx. According to u ∈ L∞(0, T ; W 1,p(x)
0 (Ω)), we know that F (t) ∈ L∞(0, T ). Next, we prove 

(4) by arguing by contradiction. Suppose that there exists a t0 > 0 such that F (t0) < α2. Hence, it is easy to verify that 
Steklov averages

Fh(t) =
{

1
h

∫ t+h
t F (s)ds, t ∈ (0, T − h]

1
h

∫ t
t−h F (s)ds, t > T − h

is continuous with respect to time t and limh→0+ Fh(t) = F (t), for t � 0. So it is not difficult to check that there exists a 
δ > 0 such that

Fh(t0) < α2, |h| < δ

Furthermore, by choosing 0 < ε0 < α2 − α1 and using the continuity of Fh(t), we get that there exists a t1 > 0 such that

α1 < Fh(t1) < α2 − ε0 (7)

Letting h → 0 in (7), we have

α1 � F (t1) � α2 − ε0 < α2.

By the definitions of E(t) and the monotonicity of h(α), we have

E(t1) � h

(∫
Ω

∣∣∇u(., t1)
∣∣p(x)

dx

)
> h(α2) = E(0)

which contradicts E(t) � E(0), ∀t � 0.
The rest is similar to that of Lemma 2.1 in [7], we omit the details. �
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Define

L(t) = 1

2

∫
Ω

|u|2dx + 1

2

t∫
0

∫
Ω

|∇u|2dx dτ − t

2
‖∇u0‖2

2 + β(t + t0)
2

where β > 0, t0 > max{ ‖∇u0‖2
2

β
, ‖u1u0‖1

2β
} will be determined later. The idea of the following proof comes from [9]. A direct 

computation shows that:

L′(t) =
∫
Ω

uutdx +
t∫

0

∫
Ω

∇u∇uτ dx dτ + 2β(t + t0)

L′′(t) =
∫
Ω

ut utdx +
∫
Ω

uuttdx +
∫
Ω

∇u∇ut dx + 2β

According to the definition of E(t), the expression of L′′(t) and Lemma 1.2, we have

L′′(t) � r + 2

2
‖ut‖2

2 + r

p+

∫
Ω

|∇u|p(x)dx + r

t∫
0

∫
Ω

|∇uτ |2dx dτ − rE1 + 2β

� r + 2

2

[
‖ut‖2

2 +
t∫

0

∫
Ω

|∇uτ |2dx dτ + 4β

]

where β = a−α1
2(r+1)p+ . Here we have used inequality (4) and the definition of E1. Hence

(
L′(t)

)2 �
[
‖ut‖2

2‖u‖2
2 +

t∫
0

∫
Ω

|∇uτ |2dx dτ

t∫
0

∫
Ω

|∇u|2dx dτ

+ ‖ut‖2
2

t∫
0

∫
Ω

|∇u|2dx dτ + ‖u‖2
2

t∫
0

∫
Ω

|∇uτ |2dx dτ

+ 4β2(t + t0)
2 + 4β(t + t0)

(∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣ +
∣∣∣∣∣

t∫
0

∫
Ω

∇u∇uτ dx dτ

∣∣∣∣∣
)]

� 2L(t)

[
‖ut‖2

2 +
t∫

0

∫
Ω

|∇ut |2dx dτ + 4β

]

The last inequality above follows from

4β(t + t0)

∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣ � 2‖ut‖2
2

(
β(t + t0)

2 − t

2
‖∇u0‖2

2

)
+ 2β2(t + t0)

2‖u‖2
2

(
β(t + t0)

2 − t

2
‖∇u0‖2

2

)−1

So we have

L(t)L′′(t) − r + 2

4

(
L′(t)

)2 � 0

where r > 2, which implies(
L1− r+2

4 (t)
)′′

� 0, for t > 0

Noting that L1− r+2
4 (0) > 0, (L1− r+2

4 )′(0) < 0, then

L1− r+2
4

(
T ∗) = 0, for some T ∗ ∈

(
0,

−L1− r+2
4 (0)

(L1− r+2
4 )′(0)

)
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In the case when q(x, t) = r(x), we have the following theorem.

Theorem 1.2. Assume that p(x), r(x) and u0(x) satisfy the following conditions:

(H3) 0 �≡ u0 ∈ L2(Ω) ∩ W 1,p(x)
0 (Ω), u1 ∈ L2(Ω), E(0) < E1,min

{‖∇u0‖p−
p(x),‖∇u0‖p+

p(x)

}
> α1

(H4) max{2, p+} < q− � r(x) � q+,at(x, t) � 0,bt(x, t) � 0,∀x ∈ Ω, t � 0

then the solution of Problem (1) blows up in finite time.

We only need to replace 
∫
Ω

|u|r(x)dx by max{‖u‖r+
r+ , ‖u‖r−

r−}, the rest of the proof of Theorem 1.2 is the same as that to 
the previous theorem. Next, we give an example to illustrate that there exists a u0 satisfying the condition of Theorem 1.2. 
For simplicity, we assume that a(x, t) = b(x, t) ≡ 1. Denote

Ẽ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(u0, u1) ∈ W 1,p(x)
0 (Ω) × L2(Ω) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

∫
Ω

|u1|2dx + ∫
Ω

|∇u0|p(x)

p(x) dx − ∫
Ω

|u0|r(x)

r(x) dx > 0,

1
2

∫
Ω

|u1|2dx + ∫
Ω

|∇u0|p(x)

p(x) dx − ∫
Ω

|u0|r(x)

r(x) dx < E1,

min
{
‖∇u0‖p−

p(x),‖∇u0‖p+
p(x)

}
> α1.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Then we get Proposition 1.1.

Proposition 1.1. The set ̃E is not empty.

Proof. First, we consider the simplest cases when r(x) = r is a fixed constant and r(p+ − p−) < p−(r − p+). And then we 
may choose a suitable positive constant B1 satisfying

max{B,1} < B1 <

(
p−r − p−p+

rp+ − rp−

) r−p+
r(p+−p−)

In fact, the inequalities above hold by choosing a suitable domain Ω , since the embedding constant B is dependent on |Ω|.
Subsequently, by Theorem 2 of [8], we know that for any λ0 > 0, there exists a nontrivial solution ϕ(x) ∈ W 1,p(x)

0 (Ω) to 
the following problem:

(Δ)

{−div
(|∇ϕ|p(x)−2∇ϕ

) = λ0|ϕ|r−2ϕ, x ∈ Ω

ϕ = 0, x ∈ ∂Ω

where max{2, p+} < r <
Np−

N−p− . In particular, we choose λ0 satisfying B
rp−

p+−r

1 < λ0 < min{ p+ p−
p+−p− B

rp+
p+−r

1 , p−
r } such that ∫

Ω
|ϕ(x)|rdx = 1. And then, multiplying the first identity in (Δ) by ϕ(x) and integrating over Ω , we have 

∫
Ω

|∇ϕ|p(x)dx =
λ0

∫
Ω

|ϕ(x)|rdx. Without loss of generality, we also assume that 
∫
Ω

|ϕ|rdx = 1 (in fact, set S = {ϕ ∈ W 1,p(x)
0 , ‖u‖r = 1}, 

J (ϕ) = ∫
Ω

1
p(x) |∇ϕ|p(x)dx − λ0. Then S is a weakly closed set of W 1,p(x)

0 (Ω) and J (ϕ) is coercive, weakly lower continuous 
and bounded from below, so J (ϕ) attains its infimum value in S).

Next, we construct a function ψ satisfying 1
r − λ0

p+ <
∫
Ω

|ψ |2
2 dx < E1 + 1

r − λ0
p− , for example ψ = |Ω|− 1

2 (E1 − λ0(p++p−)

p+ p− +
2
r )

1
2 .
Finally, we prove (ϕ, ψ) ∈ Ẽ . It is apparent from the proof above that the following conclusions hold:⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 <
1

2

∫
Ω

|ψ |2dx +
∫
Ω

|∇ϕ|p(x)

p(x)
dx −

∫
Ω

|ϕ|r
r

dx < E1

min
{
‖∇ϕ‖p−

p(x),‖∇ϕ‖p+
p(x)

}
� λ

p+
p−
0 > α1

which shows that the set Ẽ is not empty. Similarly, we may generalize the results to the case when r is a function with 
respect to a spatial variable. The proof is left to the reader. �

At the end of this paper, we consider the case when p, q are dependent on t .
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Theorem 1.3. Assume that p(x, t), q(x, t), the coefficients a(x, t), b(x, t) and u0(x), u1(x) satisfy (2) and the following conditions:

(H5) 0 �≡ u0 ∈ W 1,p(x,0)
0 (Ω), u1 ∈ L2(Ω), E(0) +

(
a+

p− + b+

q−

)
|Ω| < E1,min

{‖∇u0‖p−
p(x),‖∇u0‖p+

p(x)

}
> α1

(H6) max
{

2, p+}
< q− � q(x, t) � q+ <

Np−

N − p− ,at(x, t) � 0,bt(x, t) � 0,∀x ∈ Ω, t � 0

(H7) pt � 0,qt � 0,

∣∣∣∣ pt

p2

∣∣∣∣ +
∣∣∣∣ qt

q2

∣∣∣∣ ∈ L1
loc

(
(0,∞); L1(Ω)

)
then the solution of Problem (1) blows up in finite time.

In order to prove this theorem, we need to prove a new energy estimate.

Lemma 1.4. Suppose that (H7) holds, then the energy functional E(t) satisfies:

E(t) +
t∫

0

∫
Ω

|∇ut |2dx ds � E(0) +
(

a+

p− + b+

q−

)
|Ω|, t � 0

Proof. From Lemma 1.1, we have:

E ′(t) +
∫
Ω

|∇ut |2dx �
∫
Ω

a(x, t)|∇u|p(x,t)

p2(x, t)

(
p(x, t) ln |∇u| − 1

)
pt(x, t)dx

−
∫
Ω

b(x, t)|u|q(x,t)

q2(x, t)

(
q(x, t) ln |u| − 1

)
qt(x, t)dx := J1 + J2 (8)

Next, we estimate the value of J1 and J2, respectively:

J1 �
∫

{|∇u|p�e}

a(x, t)|∇u|p(x,t)

p2(x, t)

(
ln |∇u|p(x,t) − 1

)
pt(x, t)dx

�
∫

{|∇u|p�e}

−pt(x, t)a(x, t)

p2(x, t)
dx � a+

∫
Ω

−pt(x, t)

p2(x, t)
dx (9)

The second inequality above follows from:

−1

e
� s ln s � 0, 0 � s � 1

Similarly, we have:

J2 � b+
∫
Ω

qt(x, t)

q2(x, t)
dx (10)

Eqs. (8)–(10) imply that

E ′(t) +
∫
Ω

|∇ut |2dx �
∫
Ω

−pt(x, t)

p2(x, t)
dx +

∫
Ω

qt(x, t)

q2(x, t)
dx

The conclusion of Lemma 1.4 follows easily. �
The rest of the proof of Theorem 1.3 is similar to that of Theorem 1.1, we omit the details here.

Remark 1.1. If E(0) is bigger than zero, it seems that inequalities (19) and (21) in [6] do not hold, while (19) and (21) play 
an essential role in proving their main results. Particularly, when p is dependent on t , the argument of [6] is not applicable. 
However, it can be checked that the results in [6] may be obtained by the method in this paper.
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