
C. R. Mecanique 342 (2014) 619–635
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Theoretical and numerical approaches for Vlasov–Maxwell equations

Reduced Vlasov–Maxwell simulations

Philippe Helluy a,∗, Laurent Navoret a, Nhung Pham a, Anaïs Crestetto b

a IRMA, Université de Strasbourg & Inria TONUS, 7, rue René-Descartes, 67084 Strasbourg cedex, France
b LMJL, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 March 2014
Accepted 8 June 2014
Available online 6 August 2014

Keywords:
Vlasov–Maxwell
Model reduction
Particle-In-Cell
Discontinuous Galerkin
GPU

In this paper we review two different numerical methods for Vlasov–Maxwell simulations.
The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell
solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG
approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to
a space-only hyperbolic system thanks to the finite-element method. The two numerical
methods are implemented using OpenCL in order to achieve high performance on recent
Graphic Processing Units (GPU).

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

The Maxwell–Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles
beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution
function, solution to the Vlasov equation. The two systems of equations are coupled because the motion of particles gen-
erates an electric current at the right-hand side of the Maxwell equations, while the electromagnetic field accelerates the
particles in the Vlasov equation. The Maxwell equations are a system of linear hyperbolic equations. Today, they are rou-
tinely solved in industrial applications with commercial software. Several numerical methods exist: finite difference, finite
elements. In this paper, we will use a more and more popular method for solving the Maxwell equations: the Discontinuous
Galerkin (DG) finite element approach. This method is presented in many works. We refer for instance to Helluy [1], Bourdel
et al. [2], Cohen et al. [3], Klöckner et al. [4], Crestetto [5].

The Vlasov equation is a rather simple transport equation, but set in a six-dimensional (x, v) space-velocity phase space.
This leads to very heavy computations. The most popular method for solving the Vlasov equation is thus the Particle-In-Cell
(PIC) method of Birdsall and Langdon [6], because this is one of the less expensive. It consists in distributing random
particles with random velocities in the computational domain. The particles are then pushed by the electromagnetic field.
They are also deposited on the Maxwell finite-element mesh in order to generate a current in the right-hand side of the
Maxwell equations.

The PIC method is very easy to implement. However it is subject to numerical noise. It leads also to other issues:
smoothing, charge conservation errors, energy conservation errors. We will also see in this paper that the PIC method is
rather difficult to parallelize.

Therefore, while they are certainly more memory consuming, Eulerian approaches, which solve the Vlasov equation
directly on a phase-space grid, are more and more investigated.

* Corresponding author.
E-mail addresses: philippe.helluy@unistra.fr (P. Helluy), laurent.navoret@math.unistra.fr (L. Navoret), pham@math.unistra.fr (N. Pham),

anais.crestetto@univ-nantes.fr (A. Crestetto).
http://dx.doi.org/10.1016/j.crme.2014.06.008
1631-0721/© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crme.2014.06.008
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:philippe.helluy@unistra.fr
mailto:laurent.navoret@math.unistra.fr
mailto:pham@math.unistra.fr
mailto:anais.crestetto@univ-nantes.fr
http://dx.doi.org/10.1016/j.crme.2014.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2014.06.008&domain=pdf

620 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
In this paper, we first review some aspects of the DG and PIC methods, which are very important for obtaining a
robust and precise approximation. We then describe a parallelization of the full Vlasov–Maxwell coupling on recent Graphic
Processing Units (GPU) with the OpenCL framework.

We will see that the DG method is very well adapted to parallelization. The PIC method is more difficult to efficiently
parallelize. Therefore, we will present a recent approach, the reduction method, which allows approximating the Vlasov
equation also by a DG solver.

1. Vlasov–Maxwell equations

1.1. Maxwell equations

In this paper, we consider the two-dimensional Maxwell equations in Transverse Magnetic (TM) mode. The unknowns
depend on the space variable x = (x1, x2) ∈ R

2 and the time t ≥ 0. They are the electric field

E = (E1, E2,0)T

and the magnetic field

H = (0,0, H3)
T

The current

j = (j1, j2,0)

is supposed to be given.
We then write the unknowns and the source term in a vector form

W = (E1, E2, H3)
T, S = (− j1,− j2,0)T

In this way, the Maxwell equations read as a linear first-order hyperbolic system

∂t W + Ai∂i W = S (1)

where we use the Einstein convention (sum on repeated indices)

Ai∂i = A1∂1 + A2∂2

and the notation

∂i = ∂

∂xi

In the first-order differential system (1), the matrices Ai are given by

A1 =
⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠

(the equations are written under a dimensionless form where the speed of light c = 1). Let now n = (n1, n2)
T ∈ R

2. We can
also define the flux of the Maxwell equations:

f (W ,n) = Aini W

If we define

n1 = (1,0)T, n2 = (0,1)T

the Maxwell equations can also be written under the more general conservative form:

∂t W + ∂i f
(
W ,ni) = S (2)

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 621
1.2. Vlasov equation

We consider now the motion of N particles of mass m and charge q in the electromagnetic field. The particles are labeled
by an index k, 1 ≤ k ≤ N . The position of particle k at time t is xk(t) and its velocity is

ẋk(t) = d

dt
xk(t)

For x = (x1, x2) ∈ R
2 and v = (v1, v2) ∈ R

2, the distribution function of particles is defined by

f (x, v, t) =
∑

k

ωkδ
(
x − xk(t)

)
δ
(

v − ẋk(t)
)

where δ denotes the Dirac measure on R2 and ωk is the weight of particle k. The electric current generated by the particles
motion is given by

j(x, t) =
∫
v

f (x, v, t)v dv =
∑

k

ωkδ
(
x − xk(t)

)
ẋk(t) (3)

The particle acceleration is given by the relativistic equation of motion

ẋ = v, ẍ = μ
q

m
(E + v ∧ H) (4)

with

E = (E1, E2,0)T, H = (0,0, H3)
T

μ = μ(v) = (1 − v · v)1/2(Id − v ⊗ v) (5)

where Id − v ⊗ v denotes the projection to the orthogonal space to v . We can also write the acceleration with the notation

ẍ = μ(ẋ)a(x, ẋ, t), a(x, v, t) = q

m

(
E1(x, t) + v2 H3(x, t), E2(x, t) − v1 H3(x, t)

)

It is then possible to prove that, in the weak sense, the distribution function satisfies the relativistic Vlasov equation written
under a conservative form

∂t f + ∇x · (f v) + (
μ(v)a

) · ∇v f = 0 (6)

When the particle velocity is small compared to the speed of light c = 1, we can use the Galilean approximation

μ(v) 	 1 (7)

In addition, we introduce the admissible velocity disk

D = {
v ∈ R

2, v · v < 1
}

Let us also observe that on the boundary of the velocity disk, we have:

v ∈ ∂ D ⇒ μ(v) = 0

This is a nice property. Indeed, the Vlasov equation (6) is a transport equation written in the (x, v) velocity phase space.
The phase space transport velocity is

V = (v,μa) ∈ R
4

The component of V in the velocity direction v is the acceleration μa, which vanishes on ∂ D . Thus we will have no
boundary condition to apply on ∂ D , or more precisely, if at the initial time f = 0 on ∂ D , then this property is maintained
at all times.

622 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
1.3. Divergence cleaning

The charge ρ(x, t) is defined by

ρ(x, t) =
∫
v

f (x, v, t)dv

Integrating the Vlasov equation with respect to v , we obtain the charge conservation:

∂tρ + ∇x · j = 0 (8)

If at the initial time t = 0 the Gauss law is satisfied

∇x · E(x, t = 0) = ρ(x, t = 0)

then, using the charge conservation (8) and the Maxwell equations (1) we deduce the Gauss law at all times

∇x · E = ρ (9)

The Gauss law is thus a consequence of the Vlasov–Maxwell equations. However, depending on the numerical scheme, it
might not be well satisfied by the numerical approximation. A practical tool for improving the numerical accuracy is to use
a divergence cleaning technique of Munz et al. [7]. The divergence cleaning consists in considering an additional artificial
unknown φ(x, t) in the Maxwell equations, which satisfies:

∂tφ + χ∇x · E = χρ

The constant parameter χ > 0 represents the speed at which the divergence errors are propagated to the boundaries of the
computational domain. In addition, the time derivative of the electric field ∂t E is replaced by ∂t E + χ∇xφ in the Maxwell
equation. We thus obtain a new vector of unknowns

W = (E1, E2, H3, φ)T

The divergence cleaning model still reads as a hyperbolic system (1), but the matrices are now

A1 =

⎛
⎜⎜⎝

0 0 0 χ
0 0 1 0
0 1 0 0
χ 0 0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 χ

−1 0 0 0
0 χ 0 0

⎞
⎟⎟⎠

and the source term becomes

S = (− j1,− j2,0,χρ)T (10)

An important feature of this extended Maxwell system is that we recover exactly the Maxwell equations when φ is constant.
Thus, with adequate boundary conditions, we introduce only a numerical stabilization of the divergence errors without
additional numerical errors, even for small values of χ . For more details on the divergence cleaning system, we refer to
Munz et al. [7], Crestetto and Helluy [8], Crestetto [5], Fornet et al. [9].

1.4. Boundary conditions

The Vlasov–Maxwell equations (2), (6) need to be supplemented by conditions at the boundary of the computational
domain Ω × D .

1.4.1. Maxwell boundary conditions
Stable boundary conditions for the classic Maxwell equations have been extensively studied. These conditions are prop-

erly generalized to the divergence cleaning model in a few papers: Fornet et al. [9], Crestetto and Helluy [8]. We recall here
briefly the general theory.

We consider local boundary conditions in the form

M(n)
(
W − W inc) = 0 (11)

where n = (n1, n2, 0) is the normal outward vector on ∂Ω and W inc a given incident boundary electromagnetic field (which
can be zero). The boundary condition has to be chosen in such a way that the Maxwell operator in space x is maximal
positive. Stability conditions are given by the Lax–Philips theory (Lax and Phillips [10], Petkov and Stoyanov [11], Bourdel et
al. [2], Helluy [1], Crestetto and Helluy [8], Fornet et al. [9]) which requires:

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 623
• 1
2 Aini + M(n) ≥ 0.

• dim kerAin−
i = dim kerM(n).

It is possible to prove that the following boundary conditions (and associated M matrices) satisfy the Lax–Philips stability
conditions:

• generalized “metal”:

n × E = 0, φ = λE · n, λ ≥ 0 (12)

• generalized “Silver-Müller”, M = −Ain−
i :

H3 − n1 E2 + n2 E1 = H inc
3 − n1 E inc

2 + n2 E inc
1

E · n − φ = E inc · n (13)

The generalized metal condition is compatible with the original Maxwell system only when λ = 0 (because we need to have
φ = 0). However, a small λ > 0 can be interesting for numerical reasons, because it introduces a slight energy damping.

We would like to emphasize that the respect of the Lax–Philips stability condition is absolutely crucial for obtaining
stable and precise numerical results, especially when the DG solver is coupled to a PIC solver.

1.4.2. Vlasov boundary conditions
As seen in Section 1.2, no boundary condition is required on the boundary Ω × ∂ D of the velocity domain. We thus

consider the case x ∈ ∂Ω and v ∈ D . The outward normal vector on ∂Ω is still noted n(x).

Inflow condition It is natural to impose the value of the distribution function f only at inflow (Johnson and Pitkäranta [12]).
Introducing the notations

α+ = max(α,0), α− = min(α,0)

the inflow condition can be written
(

v · n(x)
)−

f (x, v, t) = (v · n)− f0(x, v, t)

in such a way that when v · n > 0, no condition is imposed on f .

Child–Langmuir condition A more subtle boundary condition is the Child–Langmuir current condition. This condition is use-
ful at a particle-emitting boundary because it allows creating just the quantity of charges that cancels the normal component
of the electric field. For the moment we do not know how to express in a rigorous mathematical way the Child–Langmuir
condition. We just describe the practical computation.

The electrons are emitted at the cathode if the normal electric field is strong enough, until it cancels (Child–Langmuir
law).

More precisely, we use the following algorithm for a discretization cell L that touches the cathode boundary ΓC :

• if E · n < 0 on ∂L ∩ ΓC , then compute

δL = ρL −
∫

∂L\ΓC

E · n

where ρL = ∑
xk∈L ωk (charge in the cell L).

• if δL < 0, create ne random particles in the cell L with weights δL/ne.

2. Discontinuous Galerkin method

2.1. Weak upwind DG formulation

The Discontinuous Galerkin (in short DG) approximation is a more and more popular method for approximating hyper-
bolic systems of conservation laws (see, among many others, Bourdel et al. [2], Crestetto [5], Crestetto and Helluy [8], Cohen
et al. [3], Klöckner et al. [4], Lesaint and Raviart [13]).

We consider a mesh of the domain Ω . In each cell L, the fields W (x, t) are approximated by a second-order polynomial
in x. We denote by P2(R

2) a linear space of second-order polym.Mesh(c12, c13, c0, c15, c16, c17, c4, c18, c19, c20, c9, c8);
nomial in x = (x1, x2). In practice, we use P2(R

2) = span{1, x1, x2, x1 · x2, x2
1, x

2
2, x

2
1 · x2, x1 · x2

2} because with this choice, we
have dim P2(R

2) = 8, which is well suited to GPU optimizations. Then:

624 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
W L(x, t) =
∑

j

w L, j(t)ψL, j(x), {ψL, j} basis of P2
(
R

2)4

The DG upwind weak formulation (Lesaint and Raviart [13], Johnson and Pitkäranta [12], Helluy [1]) consists in finding
the basis components w L, j(t) in each cell L such that for all test function ψL ∈ P2(R

2)3

∫
L

∂t W L · ψL −
∫
L

W L · Ai∂iψL +
∫

∂L∩Ω

(
Ain+

i W L + Ain−
i W R

) · ψL +
∫

∂L∩Ω

(
M + Aini

)
W L · ψL

=
∫
L

S · ψL +
∫

∂L∩Ω

MW inc · ψL (14)

where we denote by n the normal vector on ∂L oriented from the cell L to the neighboring cells R and

x+ = max(0, x), x− = min(0, x)

The DG formulation is a generalization of the finite volume method. It relies on the standard upwind numerical flux for
linear hyperbolic systems:

f (W L, W R ,n) = Ain+
i W L + Ain−

i W R

Finally, (14) is equivalent to a system of ordinary differential equations for the w L, j(t).
We do not give all the details of the implementations, but for our application, the main lines are:

• the cells L are quadratic curved “quadrilaterals”;
• the components of the basis functions ψL, j are orthonormal polynomials on the cell L when the cell is a parallelogram:

we use a modal basis defined directly in the physical space. We do not rely on a reference element. Thanks to this
choice we will not have to invert a geometric transformation for computing the fields at the particles;

• we use a high-order numerical integration (16 Gauss–Legendre quadrature points in the cells and 4 points on each
edge).

For more details, we refer to Crestetto and Helluy [8].

2.2. GPU parallelization

The DG method can be parallelized efficiently on a Graphic Processing Unit (GPU) (Klöckner et al. [4]). GPUs are recent
computing devices that have proven to be very efficient for performing computations on data that can be regularly organized
into the GPU memory.

GPUs are not as easy to program as classic processors. CUDA is a well known environment for programming NVIDIA
GPUs. OpenCL is another framework for programming various multicore devices, including GPUs or CPUs of several vendors.
OpenCL means “Open Computing Language”. It includes a library of C functions, called from the host, in order to drive the
GPU and a C-like language for writing the programs that will be executed on the processors of the multicore accelerator.
The specification is managed by the Khronos Group [14].

OpenCL proposes a rather general abstraction that works well for various multicore SIMD hardware. Very schematically,
an OpenCL device possesses a few gigabytes of global memory and is made of a few tens of Computing Units (CU). Each CU
contains a few processors called Processing Elements (PE), and a small cache memory of a few kilobytes. The same program,
called a kernel, can be executed on all the Processing Elements at the same time. The PEs have a very fast access to the
cache memory of their CU. The PEs have also an efficient access to the GPU global memory if they read or write to adjoining
memory locations. For non-regular computations, a classic strategy is thus first to fetch a tile of data into the CU cache, then
to perform the computations with fast access to the cache. When the computations are finished, they are copied back, in a
regular way to the global memory. A special behavior of OpenCL devices makes the GPU programming rather complicated:
if two processors try to write at the same memory location at the same time, only one will succeed... This has to be kept in
mind, for instance in the flux collecting algorithm or when computing the current created by the particles in the same cell L.

We have written an OpenCL implementation of the previous DG formulation. Our programming strategy is described in
details in Crestetto and Helluy [8]. We just recall here the principal points:

• initialization: we compute and invert the local mass matrices on the CPU. We send (all) the data to the GPU;
• first pass of each time step: we associate with each Gauss point of each edge one processor. We compute the flux at

the Gauss points and store it into global memory;
• second pass: we associate with each basis function of each element a processor. We compute the time derivative of

the w L, j using the DG weak formulation, the previously computed fluxes and the stored inverted mass matrices. The
separation into two passes with parallelism redistribution allows avoiding concurrent writing operations;

• time integration: we use a simple second order Runge–Kutta scheme.

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 625
According to some benchmark that we have performed, we observed a spectacular efficiency of the GPU implementation.
Compared to a single core implementation on a traditional CPU, we have observed that the GPU implementation is 50–100
times faster (Crestetto and Helluy [8]).

3. PIC method

3.1. Generalities on the PIC method

The Particle-In-Cell method is a very natural method (Birdsall and Langdon [6]) for approximating the Maxwell–Vlasov
system (1), (6) because it starts directly from the particle interpretation of the Vlasov equation (4). The idea is simply
to move the particles with a standard ordinary differential equation solver. This requires the computation of the electro-
magnetic field at the particle positions. We have thus to know at each time step to which element belongs each particle.
Reversely, the motion of the particles produces an electric current measure given by (3).

The action of the fields over the particles is rather easy to parallelize.
The action of the particles on the current at the right-hand side of the Maxwell equations is less obvious to program.

Indeed, a naive parallelization would lead to concurrent memory writing. Recent GPU OpenCL drivers allow memory locking
and atomic operations, but it is not recommended to use these features because they generally lead to a dramatic drop of
performance. Therefore, we prefer to adopt a more sophisticated sorting technique (presented for instance in Aubert et al.
[15]) in order to achieve faster computations.

Let us mention that we have employed a very simple PIC method. Many authors have observed much better precision
of the PIC algorithm when the particles are smoothed. Smoothing is considered to be very important for stability, precision
and charge conservation, especially when the electromagnetic field is computed by a discontinuous approximation. Unfortu-
nately, smoothing also requires atomic operations and thus an even more complicated GPU implementation. Therefore, we
have decided to test the rough PIC method anyway. Surprisingly, we have been able to obtain rather precise results. The con-
dition for obtaining these results is to use a high divergence cleaning parameter χ 	 10. We will discuss the consequences
of this choice in Section 4.

3.2. GPU implementation

We give some details on the GPU implementation for one time step. More information is given in Crestetto and Hel-
luy [8].

3.2.1. Particles motion
• Emission: we use the algorithm described in the last paragraph of Section 1.4.2. The random positions are given by

independent van der Corput sequences.
• Particle acceleration: at each time step we associate one processor with each particle. We move the particle and find

its new cell location. Our algorithm works on an unstructured grid, but for efficiency, we assume that during one time
step the particle cannot cross more than one cell layer. This condition imposes a CFL condition that is not constraining
compared to the DG solver CFL condition.

3.2.2. Current
This is the most subtle part of the GPU algorithm because we have to avoid concurrent memory write operations. This

difficulty has been already addressed by several authors (see, for instance, Aubert et al. [15]). The most efficient solutions
generally rely on a particles sorting pass at each time iteration.

• We thus first sort the list of particles according to their cell numbers. For this sorting, we use a GPU-optimized radix
sort algorithm of Helluy [16]. Then, it is easy to know how many particles are in each cell.

• We can also sort the cells list according to the number of particles inside the cells (optional).
• We associate with each cell a processor. Then for each cell it is possible to loop on its particles in order to compute

their contributions to the current:∫
L

S · ψL =
∑
xk∈L

ωk
(−ẋk

1(t),−ẋk
2(t),0,χ

)T · ψL
(
xk(t)

)

• Thanks to the second optional sorting, neighboring processors treat approximately the same number of particles and in
this way they do not wait too much for each other. In some computations, this can increase the efficiency.

4. GPU numerical experiments

GPU programming is complex and time consuming. We thus expect at least high speedups of the implementation. For
measuring the efficiency, we have compared in Crestetto and Helluy [8] a sequential and a GPU implementation of the DG

626 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
Fig. 1. (Color online.) Planar diode case: Ex at times t = 1 with 8918 particles (left), and t = 5 with 44133 particles (right), 1024 elements.

Maxwell solver. In this case, without particles, we have observed speedups of the order of 50–100. When we couple the
Vlasov and the PIC solvers, we have still good speedups of the order 5–10, but we clearly loose one order of magnitude in
the computational time. This can be explained by several reasons:

• particle sorting is time consuming and requires non-coalescing memory accesses;
• the particles are sorted with an indirection array. The current computation thus also requires random memory accesses;
• particles sorting and current evaluation take approximately the same time. While the particle solver is called only every

ten iterations of the DG solver, the DG solver represents only 15% of the computation time. Recall that we do not use
particles smoothing and that we need high values of χ for performing a good divergence cleaning (typically, we take
χ 	 10). Finally, this is not so expensive, because the DG solver is much cheaper than the PIC solver.

We now present rapidly several numerical experiments.

4.1. Child–Langmuir current

In our first example, we try to compute numerically a stationary solution that can be expressed analytically. We will see
that a high value of χ is necessary. If χ is too small, the scheme does not correct the divergence errors efficiently. Maybe
that a smoothing of the particles would permit to diminish χ .

We consider a planar diode Ω = [0, Lx] × [0, L y] with a cathode C = {x = 0} × [0, L y] and an exit boundary A = {x =
Lx} × [0, L y]. We consider a metal boundary condition (19) at the anode x = 0 and we apply the exact solution with an
inhomogeneous Silver–Müller condition at x = Lx . At this point, the “incident” field is defined by

(E1, E2, H3,ψ)inc = (−1,0,0,0)T (15)

We apply periodic conditions at y = 0 and y = L y .
We represent Ex on Fig. 1 at times t = 1 and t = 5. χ is taken equal to 5 and we move the particles every 25 time steps

in order to let the divergence correction act. Smaller values of χ give inaccurate results (Crestetto [5]). We see the emission
(there is no particle at t = 0) and the motion of electrons from the cathode to the anode. We can also remark that on the
cathode Ex = E · n ≈ 0, which is the searched Child–Langmuir condition.

For such a planar diode in Cartesian geometry, the Child–Langmuir current JCL on the anode for a given potential drop
V 0 between the cathode and the anode verifies

JCL(Lx) = 4

9Lx
2

√
2|q|
m

V
3
2

0 (16)

where

JCL =
∫
A

j · n (17)

and

V 0 = V (x = Lx, y0) − V (x = 0, y0) =
Lx∫

∂x V (x, y0)dx = −
Lx∫

Ex(x, y0)dx (18)
0 0

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 627
Fig. 2. (Color online.) Child–Langmuir law: potential drop (left) and Child–Langmuir current (right), computed values (blue) compared to theoretical ones
(red).

Fig. 3. Diode geometry.

y0 ∈ [0, L y] and V denoting the scalar potential such that E = −∇x V . The computed potential drop is given as a function
of time on Fig. 2(left). It tends to the value denoted by V 0. The corresponding theoretical current JCL is also given on
Fig. 2(right) and compared to the computed one.

4.2. X-ray generator

With our code, we have also been able to simulate an electrons emitting diode. This device is used for producing X-rays,
when the electrons hit the anode. The axisymmetric geometry of the diode and the mesh of the computational domain
are represented in Fig. 3. At time t = 0, an electromagnetic wave is entering at the left of the computational domain. At
this boundary Γs we apply an inhomogeneous Silver–Müller boundary condition. At the cathode and the anode, we apply
metal boundary conditions. The electrons are emitted at the cathode. The rotational symmetry implies additional geometric
terms in the Maxwell equations and in the particles weights (see Crestetto and Helluy [8]). In addition there is no boundary
condition to apply on the rotation axis, because the numerical flux in the Galerkin Discontinuous method simply cancels (it
is multiplied by the distance to the axis).

We represent the radial component of the electric field and the particles at time t = 0.22 on Fig. 4.
This numerical simulation has been awarded a prize at the AMD OpenCL competition in 2011. See http :/ /developer.amd .

com /events /amd-opencl-coding-competition-2/.

5. Reduced modeling

The conclusion of our Vlasov–Maxwell PIC–DG experience is that it is finally possible to achieve interesting accelerations
on a GPU. However, the implementation is complex. While the PIC sequential implementation is straightforward, its paral-
lelization requires particles sorting, random memory accesses, etc. And in the end, most of the GPU time is spent in the PIC
algorithm, while the DG solver is very efficient.

We would thus like to present another approach where we use a unified Eulerian DG solver for the Maxwell and the
Vlasov equations. When coding our DG solver, we have tried to be as generic as possible. For instance the physical model is

http://developer.amd.com/events/amd-opencl-coding-competition-2/
http://developer.amd.com/events/amd-opencl-coding-competition-2/

628 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
Fig. 4. (Color online.) Electron emission at dimensionless time t = 0.22. The length of the computational domain L = 0.4 and the dimensionless speed of
light c = 1.

explicit only in a few parts of the code: in the numerical flux, the source terms and the boundary terms. But generally, the
whole DG algorithm is not aware of the underlying physical model. We will show how to rewrite the Vlasov equation in
order to obtain an augmented hyperbolic system, written only in (x, t) which can thus be solved by the generic DG solver.
The resulting model is called the reduced Vlasov–Maxwell model.

5.1. Velocity expansion

The Vlasov equation is a transport equation written in the (x, v) space. The objective of reduced modeling is to rewrite
the Vlasov equation in order to obtain a hyperbolic system of conservation laws, but set only in the x space. In this way it is
possible to reuse a generic DG solver. For this purpose, we consider a finite number of continuous basis functions depending
on the velocity

v ∈ D → ϕi(v), i = 1 · · · P

We suppose that

v ∈ ∂ D ⇒ ϕi(v) = 0 (19)

We expand the distribution function in this basis

f (x, v, t) 	
P∑

j=1

f j(x, t)ϕ j(v) = f jϕ j

We insert this representation into the Vlasov equation (6), multiply by ϕi and integrate on the velocity domain D . We also
integrate by parts the acceleration term, and using (19), we obtain (Helluy et al. [17]):∫

v

ϕiϕ j∂t f j +
∫
v

ϕiϕ j vk∂k f j −
∫
v

μa · ∇vϕiϕ j f j = 0

We can then define the following P × P matrices

Mi, j =
∫
v

ϕiϕ j, Ak
i, j =

∫
v

ϕiϕ j vk, Bi, j = −
∫
v

μa · ∇vϕiϕ j (20)

and the Vlasov equation can be rewritten in the reduced form

M∂t w + Ak∂k w + B w = 0 (21)

or also

∂t w + M−1 Ak∂k w + M−1 B w = 0 (22)

where

w = (
f 1, · · · , f P)T

(23)

The form (22) is called the reduced Vlasov equation. It is a first-order hyperbolic system of conservation laws (Helluy et al.
[17]) that can be solved by a standard DG solver. However, for practical reasons it is important to provide an efficient choice
of basis functions ϕi . A good choice ensures a small number of basis functions P and that the matrices M , Ak and B are
sparse. We detail now such a basis and also an adequate choice of numerical quadrature that will lead to diagonal matrices
M and Ak .

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 629
Fig. 5. (Color online.) A mesh of the velocity disk D with degree d = 3, K = 80 elements (in black), P D = 745 Gauss–Lobatto nodes (red points) and P = 697
interior nodes. The distribution function cancels on the boundary and is thus computed only at the interior velocity points. Such a mesh leads to very heavy
computations because we have to solve in space and time a hyperbolic system with P = 697 (Vlasov) + 3 (Maxwell) = 700 components.

5.2. Finite-element basis with nodal integration

We consider a nodal finite element interpolation in the velocity space with curved “quadrilaterals”. In addition, the nodal
points will coincide with Gauss–Lobatto quadrature points. In this way we obtain several interesting properties of the basis
functions. Let us give now more details.

We choose first a degree d ≥ 1 of polynomial approximation. We can associate with this degree d + 1 Gauss–Lobatto
points on the interval [0, 1], ξ1 = 0 < ξ2 < · · · < ξd+1 = 1. We consider also integration weights ω1 · · ·ωd . The Gauss–Lobatto
integration rule

1∫
0

Q (ξ)dξ 	
d+1∑
i=1

ωi Q (ξi)

is then exact if Q is a polynomial of degree ≤ 2d − 1. We also consider the Lagrange polynomials Li associated with the
Gauss–Lobatto subdivision. The polynomial Li , i = 1 · · ·d + 1 is of degree d and satisfies

Li(ξ j) = δi j

where δi j is the Kronecker delta.
We construct now a mesh of the velocity disk D . The mesh is made of nodes Vk , k = 1 · · · P D , P D > P . Each node Vk

for k = 1 · · · P is associated with a basis function ϕk . We also suppose that the nodes V P+1 · · · V P D are on the bound-
ary ∂ D in such a way that they are not associated with basis functions ϕk . The nodes are associated with elements Λk ,
k = 1 · · · K . Each element is a curved “quadrilateral” and owns (d + 1)2 nodes. An example of such a mesh with degree
d = 3, K = 80 elements, P D = 745 nodes and P = 697 interior nodes is given in Fig. 5.

As it is traditional in the finite element method, we consider a local and a global numbering of the nodes of element Λk .
The local node l, l = 1 · · · (d + 1)2 of element Λk is also noted

Vk,l = Vκ(k,l)

where κ(k, l) is the K × (d + 1)2 connectivity array of the finite-element mesh. Each element Λk is obtained from a geomet-
rical transformation τk that maps the square Λ̂ =]0, 1[×]0, 1[on element Λk . The geometrical transformation is defined
as follows. First, we consider (d + 1)2 reference nodes

V̂ l = (ξi, ξ j), with l = (i − 1)(d + 1) + j, 1 ≤ i, j ≤ d + 1

The reference nodes are the two-dimensional Gauss–Lobatto points of the reference element. Reference node V̂ l is also
associated with an integration weight:

ω̂l = ωiω j with l = (i − 1)(d + 1) + j, 1 ≤ i, j ≤ d + 1 (24)

630 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
With each reference node, we associate a reference basis function, which is a tensor product of Lagrange polynomials

ϕ̂l(ξ,η) = Li(ξ)L j(η), with l = (i − 1)(d + 1) + j, 1 ≤ i, j ≤ d + 1

We can check that

ϕ̂l(V̂m) = δlm

Then, the geometric transformation is defined by

τk(ξ,η) =
(d+1)2∑

l=1

ϕ̂l(ξ,η)Vk,l

in such a way that

τk(V̂ l) = Vk,l

We also suppose that the node V i are defined in such a way that τk is invertible and also a direct transformation:

detτ ′
k > 0

We have now all the pieces to construct the basis functions. Let i = 1 · · · P and v ∈ D , then necessarily, v ∈ Λk for some
k = 1 · · · K .1 We then have two possibilities.

1. Node V i is not a node of element Λk then

ϕi(v) = 0 (25)

2. Node V i is a node of element Λk . It means that i = κ(k, l) for some l = 1 · · · (d + 1)2. Then

ϕi(v) = ϕ̂l(v̂), with v = τk(v̂) (26)

In this case, we can also compute the gradient of the basis function

∇vϕi(v) = (
τ ′

k(v̂)T)−1∇v̂ ϕ̂l(v̂), v = τk(v̂) (27)

From the previous definitions, we obtain basis functions that are continuous on D . In addition, they satisfy the interpolation
property:

ϕi(V j) = δi j, 1 ≤ i, j ≤ P

This interpolation property ensures that the components of w in (23) are simply approximations of the distribution function
at the Gauss–Lobatto points V i :

f i(x, t) 	 f (x, V i, t)

We can thus also use the convention that on the boundary nodes

f i(x, t) = 0 if P + 1 ≤ i ≤ P D

For computing the matrices in (20), we use the Gauss–Lobatto integration rule. For a given function h defined on D the
integral is first split into elementary integrals

∫
D

h(v)dv =
K∑

k=1

∫
Λk

h(v)dv

and then (using definition (24))

1 We assume that the elements Λk are disjoint open sets and that ⋃Λk = D . Of course, this cannot be exactly true because τk is a polynomial transfor-
mation. We neglect in our presentation the error made in the approximation of D .

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 631
Fig. 6. The function q.

∫
Λk

h(v)dv =
∫

Λ̂

h
(
τk(ξ,η)

)
detτ ′

k(ξ,η)

	
(d+1)2∑

l=1

ω̂l detτ ′
k(V̂ l)h

(
τk(V̂ l)

)

=
(d+1)2∑

l=1

ωk,lh(Vk,l) (28)

Using the quadrature rule (28) and formula (27) for computing the gradient of the basis function we can practically compute
the matrices in (20). Our choice of integration points does not ensure exact integration for M , Ak , and B . However, in the
sequel, we use the same notation for the exact and approximate matrices. With our choice of quadrature points, we obtain
that M and Ak are diagonal matrices. More precisely, we have:

Mii =
∑

i=κ(k,l)

ωk,l (29)

and

Ak
ii = Mii V k

i , V i = (
V 1

i , V 2
i

)
These computations show that the components of the vector w satisfy a set of coupled transport equations:

∂t f i + V i · ∇x f i + Σ i(w) = 0, i = 1 · · · P (30)

In the vector form, the coupling source term is given by:

Σ(w) = M−1 B w

More precisely, after expanding the computations, the coupling source term becomes

Σ i(w) = −1

Mii

∑
Λk�V i

(d+1)2∑
l=1

ωk,l f κ(k,l)μ(Vk,l)a(·, Vk,l, ·) · ∇vϕi(Vk,l) (31)

where we recall that the gradient of the basis function ϕi is given by (27).

Remark. In practice, we can compute Mii and Σ i efficiently by a classic finite-element assembly procedure: we loop on the
elements, compute the elementary contributions and distribute them into the global (Mii) or (Σ i) vectors.

632 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
Fig. 7. (Color online.) Evolution of the charge in the computational domain, t = 0 (top), t = 0.5 (middle), t = 1.0 (bottom).

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 633
Fig. 8. (Color online.) Evolution of the distribution function f (0.37, 0.5, v1, v2, t) in the computational domain, t = 0 (top), t = 0.5 (bottom). The apparent
polygonal shape of the mesh boundary is due to a post-processor bug in the first picture.

5.3. Unified expression of the reduced Vlasov–Maxwell model

We are now in a position to write in a unified way the Maxwell and reduced Vlasov system. We extend the original
vector W of (1) in the following way:

W = (
E1, E2, H3, φ, f 1 · · · f P)T

We then obtain a hyperbolic system in the form (1) where the new matrices Ak are block diagonal. The blocks are con-
structed with the matrices Ak of Section 1.3 and Section 5.2. The source term of the new system is also assembled from the
source terms (10) and (5) of Section 1.3 and Section 5.2:

S(W) = (
j1, j2,0,χρ,ΣT)T

(32)

For computing the current and the charge here, we again use the Gauss–Lobatto quadrature (28) in the velocity space

ρ =
∑

ωk,l f κ(k,l), j =
∑

ωk,l f κ(k,l)Vk,l (33)

k,l k,l

634 P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635
Fig. 9. (Color online.) x1 component of the electric field at time t = 1.0.

In this formalism, it is very easy to adapt a generic Discontinuous Galerkin solver for handling the reduced Vlasov–Maxwell
model. We just have to modify the numerical flux and source functions. We have seen in (30) that the reduced Vlasov
equation is a set of coupled transport equations with velocities V i . We use a standard upwind numerical flux for the
transport equations. The source term (31) is computed with the assembly procedure and superimposed with the Maxwell
source term from (33) and (10).

5.4. Preliminary numerical results

In this section, we present preliminary Vlasov–Maxwell numerical results obtained with the reduced approach. We have
not yet implemented the Child–Langmuir boundary condition. Therefore we only present a very simple and academic test
case. We consider a cloud of charged particles in the center of a square domain Ω . Because the particles repel each other, the
cloud will expand with time. We plot the evolution of the total charge in the domain at different times. We also represent
the distribution function in the velocity space at a given point (x1, x2) = (0.37, 0.5). The initial distribution function is

f (x1, x2, v1, v2,0) = −q(x1)q(x2)q(v1)q(v2),

where the function q, represented in Fig. 6, has its support in [−1/2, 1/2] and satisfies
∫ ∞

r=−∞ q(r)dr = 1.
We suppose that the initial electromagnetic field vanishes. This initial condition is not physical, because the Gauss law

is not satisfied: ∇ · E �= ρ . Therefore, we take a divergence correction parameter χ = 4. On the boundary of Ω , we apply
homogeneous Silver–Müller conditions. Finally, we take μ = 1: our computation is non-relativistic. The simulation time is
short enough so that the exact distribution function vanishes on the boundary of the velocity disk, even at the final time
T = 1.

We use a mesh of Ω with 8 × 8 = 64 cells. The velocity mesh is of order d = 2. It contains 305 Gauss–Lobatto nodes.
We plot the charge evolution in Fig. 7.
We also plot the distribution function at point (x1, x2) = (0.37, 0.5) at different times on Fig. 8.
Finally, we plot the x1-component of the electric field at time t = 1 in Fig. 9.

Conclusion

In this work, we have presented two numerical schemes for approximating the Vlasov–Maxwell system. The first scheme
is a coupling between an upwind DG solver for the Maxwell equations with a PIC solver for the Vlasov equation. We have
reviewed some practical aspects of a robust and precise implementation of the whole procedure: high-order polynomials,
upwind flux, stable boundary conditions, divergence cleaning. We have also implemented the algorithm on GPU, which
requires a sorting of the particles list at each time step. We obtained interesting speedups, but we also observe that the PIC
method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a
decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to
be a hyperbolic system of conservation laws written only in the (x, t) space. We can thus adapt very easily our DG solver
to the reduced model. We presented preliminary numerical results. Our next step will be to implement more physical
boundary conditions and test the reduced approach on emitting diode test cases.

P. Helluy et al. / C. R. Mecanique 342 (2014) 619–635 635
References

[1] P. Helluy, Résolution numérique des équations de Maxwell harmoniques par une méthode d’éléments finis discontinus, PhD thesis, Sup’aéro, 1994,
http://tel.archives-ouvertes.fr/tel-00657828.

[2] F. Bourdel, P.A. Mazet, P. Helluy, Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application
to an E.M.I. (electromagnetic impulse) case, in: Proceedings of the 10th International Conference on Computing Methods in Applied Sciences and
Engineering, 1992, pp. 405–422.

[3] G. Cohen, X. Ferrieres, S. Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain, J. Com-
put. Phys. 217 (2) (2006) 340–363.

[4] A. Klöckner, T. Warburton, J. Bridge, J.S. Hesthaven, Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys. (ISSN 0021-9991)
228 (21) (2009) 7863–7882, http://dx.doi.org/10.1016/j.jcp.2009.06.041.

[5] A. Crestetto, Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées, PhD thesis, Uni-
versité de Strasbourg, 2012.

[6] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, Series in Plasma Physics, Institute of Physics (IOP), 1991.
[7] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U. Voß, Divergence correction techniques for Maxwell solvers based on a hyperbolic model,

J. Comput. Phys. 161 (2) (2000) 484–511.
[8] A. Crestetto, P. Helluy, Resolution of the Vlasov–Maxwell system by PI discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS’11: Multiscale

Coupling of Complex Models in Scientific Computing, in: ESAIM Proc., vol. 38, EDP Sci., Les Ulis, 2012, pp. 257–274.
[9] B. Fornet, V. Mouysset, Á. Rodríguez-Arós, Mathematical study of a hyperbolic regularization to ensure Gauss’s law conservation in Maxwell–Vlasov

applications, Math. Models Methods Appl. Sci. (ISSN 0218-2025) 22 (4) (2012) 1150020, 28 pp., http://dx.doi.org/10.1142/S0218202511500205.
[10] P.D. Lax, R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Commun. Pure Appl. Math. 13 (3) (1960)

427–455.
[11] V.M. Petkov, L.N. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, Pure and Applied Mathematics (New York), John Wiley & Sons

Ltd., Chichester, ISBN 0-471-93174-8, 1992.
[12] C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comput. (ISSN 0025-5718) 46 (173)

(1986) 1–26, http://dx.doi.org/10.2307/2008211.
[13] P. Lesaint, P.-A. Raviart, On a finite element method for solving the neutron transport equation, in: Mathematical Aspects of Finite Elements in Partial

Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), vol. 33, Math. Res. Center, Univ. of Wisconsin–Madison,
Academic Press, New York, 1974, pp. 89–123.

[14] The Khronos Group Inc., OpenCL documentation, 2013, http://www.khronos.org/.
[15] D. Aubert, M. Amini, R. David, A Particle-Mesh Integrator for Galactic Dynamics Powered by GPGPUs, Lecture Notes in Computer Science, vol. 5544,

2009, pp. 874–883.
[16] P. Helluy, A portable implementation of the radix sort algorithm in OpenCL, 2011, http://hal.archives-ouvertes.fr/hal-00596730/PDF/ocl-radix-sort.pdf,

http://hal.archives-ouvertes.fr/hal-00596730.
[17] P. Helluy, N. Pham, A. Crestetto, Space-only hyperbolic approximation of the Vlasov equation, in: ESAIM: Proceedings, vol. 43, 2013, pp. 17–36,

http://dx.doi.org/10.1051/proc/201343002, http://hal.archives-ouvertes.fr/hal-00797974.

http://tel.archives-ouvertes.fr/tel-00657828
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib626F757264656C2D68656C6C75792D6D617A65742D31393932s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib626F757264656C2D68656C6C75792D6D617A65742D31393932s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib626F757264656C2D68656C6C75792D6D617A65742D31393932s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib66657272696572652D32303036s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib66657272696572652D32303036s1
http://dx.doi.org/10.1016/j.jcp.2009.06.041
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib63726573746574746F2D74686573652D32303132s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib63726573746574746F2D74686573652D32303132s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6269726473616C6Cs1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6D756E7A2D736F6E6E656E2D32303030s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6D756E7A2D736F6E6E656E2D32303030s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib63726573746574746F2D766C61736F762D6770752D63656D7261637332303131s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib63726573746574746F2D766C61736F762D6770752D63656D7261637332303131s1
http://dx.doi.org/10.1142/S0218202511500205
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6C61782D7068696C6970732D31393630s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6C61782D7068696C6970732D31393630s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib7065746B6F762D31393932s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib7065746B6F762D31393932s1
http://dx.doi.org/10.2307/2008211
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6C657361696E742D726176696172742D31393734s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6C657361696E742D726176696172742D31393734s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6C657361696E742D726176696172742D31393734s1
http://www.khronos.org/
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6461766964s1
http://refhub.elsevier.com/S1631-0721(14)00146-6/bib6461766964s1
http://hal.archives-ouvertes.fr/hal-00596730/PDF/ocl-radix-sort.pdf
http://hal.archives-ouvertes.fr/hal-00596730
http://dx.doi.org/10.1051/proc/201343002
http://hal.archives-ouvertes.fr/hal-00797974

	Reduced Vlasov-Maxwell simulations
	0 Introduction
	1 Vlasov-Maxwell equations
	1.1 Maxwell equations
	1.2 Vlasov equation
	1.3 Divergence cleaning
	1.4 Boundary conditions
	1.4.1 Maxwell boundary conditions
	1.4.2 Vlasov boundary conditions
	Inﬂow condition
	Child-Langmuir condition

	2 Discontinuous Galerkin method
	2.1 Weak upwind DG formulation
	2.2 GPU parallelization

	3 PIC method
	3.1 Generalities on the PIC method
	3.2 GPU implementation
	3.2.1 Particles motion
	3.2.2 Current

	4 GPU numerical experiments
	4.1 Child-Langmuir current
	4.2 X-ray generator

	5 Reduced modeling
	5.1 Velocity expansion
	5.2 Finite-element basis with nodal integration
	5.3 Uniﬁed expression of the reduced Vlasov-Maxwell model
	5.4 Preliminary numerical results

	Conclusion
	References

