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This paper deals with the applications of data mining techniques in the evaluation of 
numerical solutions of Vlasov–Maxwell models. This is part of the topic of characterizing 
the model and approximation errors via learning techniques. We give two examples of 
application. The first one aims at comparing two Vlasov–Maxwell approximate models. In 
the second one, a scheme based on data mining techniques is proposed to characterize 
the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these 
examples, this original approach should operate in all cases where intricate numerical 
simulations like for the Vlasov–Maxwell equations take a central part.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

There exist a lot of formulations that can model plasma physics or particle accelerators problems [1], as the Vlasov–
Maxwell equations. Some of these formulations are very complete and complex, whereas some others are approximated, 
like the static, quasi-static or paraxial models [2–7]. In the same way, there exist a lot of possible numerical methods to 
discretize these models, like finite-element, finite-volume, Particle-In-Cell methods or semi-Lagrangian ones [8–12]. For all 
these mathematical and numerical methods, there exist error estimates and theoretical evaluations that characterize their 
relative accuracy. However, could we propose a more practical way to compare or evaluate these methods?

Our idea is to evaluate them by using data mining techniques, directly processed on the computed results. Even this 
approach is yet heuristic, it presents the advantage to allow one to work directly on the results, like a kind of a posteriori 
analysis. In this spirit, this can be compared to some recent approaches derived from reduced base method [13], in which 
these ideas are developed to efficient linear algebra methods.

The principle to extend the scope of data mining techniques to scientific computing was first introduced in [14]. We 
started from the observation that numerical methods produce today a huge quantity of numerical results, especially with 
the availability of massively parallel computers. Then, we noted that data mining techniques have already proved to be 
efficient in other contexts which deal with huge data, like in biology [15], medicine [16,17], marketing [18], advertising, 
and communications [19,20]. Hence, a first attempt at comparing asymptotic models with data mining was used in [14], 
whereas the idea to compare several sources of errors with data mining was stated in [21].

In this paper, we review this principle and focus on the contribution of data mining to mathematical and numerical 
models for Vlasov–Maxwell equations. Indeed, using data mining is particularly well adapted to a very “rich” model like the 
Vlasov–Maxwell one, for which:
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1. the model is complete but complex and hard to accurately solve,
2. there are many approximate models, which are easier to solve numerically,
3. there are several different numerical methods with different levels of complexity and of precision.

For these reasons, this approach would probably not be well suited in a “quite simple” model for which there are not 
many different choices of modeling and approximations. It is well adapted to a real system modeled by a set of partial 
differential equations, the solution of which being carried out by numerical approximations methods. In these conditions, 
both modeling and approximation processes are different sources of errors (see [21]), that can in reality co-exist. The data 
mining approach proposed here could provide useful insights when difference types of errors are present, and could help 
to investigate possible interferences between these different types of errors.

For illustrative purpose, we will focus in this paper on two basic examples. We will first consider the system of Vlasov–
Maxwell equations and first approximate it by a hierarchy of asymptotic models. We will then choose the first two simple 
models denoted M1 and M2 and propose to compare them via data mining techniques. More precisely, we try to under-
stand in which way model M2, which is a priori more precise, improves model M1. This will requires the construction of a 
database made of all the numerical results computed by models M1 and M2.

The second example is devoted to the illustration of how data mining methods can allow us to evaluate error estimates 
between two approximations of the same model. More precisely, we consider a P1 and a P2 finite-element approximation 
of a Vlasov–Maxwell asymptotic model. A discretization error is defined as the error due to the difference of order between 
these two methods. Our aim is then to detect and characterize, by using data mining techniques, situations where using the 
P2 finite-element method does not improve significantly the numerical results compared with the P1 results.

This paper is organized as follows. In Section 2, we briefly present some notions and definitions of data mining that will 
be useful for the rest of the paper. In Section 3, a hierarchy of approximate Vlasov–Maxwell models will be derived. These 
will be the models used in our two fundamental illustrations. The first example of comparison between two asymptotic 
models is then exposed in Section 4, whereas Section 5 is devoted to the comparison of two finite-element methods. 
Perspectives will be drawn in the Conclusion. Let us emphasize that, beyond this study, this novel (even heuristic) approach 
could operate in other sources of errors, where simulations take a central part.

2. Principle of data mining exploration

Data mining is an activity of information extraction, whose goal is to discover hidden or a priori unknown facts contained 
in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, 
data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results 
[22,23,18,24].

To make the article self-contained even for a reader not aware of these techniques, we briefly present now some notions 
and definitions, useful for the rest of the paper. The data mining technique used in what follows is the decision tree. 
Decision trees [25] belong to the supervised data mining methods to process segmentation. The purpose of segmentation is 
to constitute homogeneous subgroups inside a given population regarding a target variable which is to be explained versus
predictor variables. This is processed by an algorithm of segmentation which is basically a minimization of the standard 
deviation for the concerned target variable.

In the case of the segmentation we will consider in our study, the target variable is a categorial one; It describes the 
belonging to one of several classes which characterizes a given level (called “Low”, “High” and so on), of a target variable to 
be explained.

A decision tree is then composed by different subgroups (called nodes) of the initial population (called root node). These 
nodes are obtained with the segmentation algorithm by identifying among the predictor variables the most discriminating 
one regarding the homogeneity degree of the resulting nodes.

Each split of the segmentation divides a given node into several nodes (here, in our study into two nodes, which is the 
specific case of binary decision trees), based on the most discriminating predictor variable var such that the left resulting 
node obeys the inequality var ≤ τ and the right one var > τ (τ being a threshold optimally computed by the algorithm of 
segmentation).

This process stops when the splitting is not feasible: either any new subgroup can be found to be more homogeneous 
than the previous one or the resulting segmentation is composed by insignificant subgroups. The path from the root node to 
each leaf (each terminal node) defines a succession of inequalities on the predictor variables that characterize the solutions 
belonging to the leaf with a certain risk which depends on the percentage of misclassified solutions in the leaf.

By choosing the leaves that predict the membership to the class of interest with the minimum risk, one is able to 
characterize this class with a set of “rules” at minimum risk.

3. A hierarchy of approximate Vlasov–Maxwell models

The first step of this study consists in introducing a hierarchy of approximate Vlasov–Maxwell models. We will then 
choose and compare two of them by data mining tools.
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In order to define an approximate model, one has often to neglect one or several terms in the equations. The underlying 
idea is to identify parameters whose values can be small (and thus possibly negligible). To derive a hierarchy of approximate 
Vlasov–Maxwell models, one can perform an asymptotic analysis of those equations with respect to the parameters. This 
series of models is called a hierarchy, since considering a supplementary term in the asymptotic expansion leads to a 
new approximate model, theoretically aimed to be more precise. An analogous principle is used for instance for building 
approximate paraxial models of the propagation wave equation in geophysics [26,27].

From a numerical point of view, the approximate models are useful first and foremost if they coincide with a physi-
cal framework and second if they can efficiently solve the problem at a lower cost. In the sequel, we will consider the 
axisymmetric Vlasov–Maxwell equations, and show briefly how to build formally such approximate paraxial models.

So consider a beam of charged particles, for instance electrons, with a mass m and a charge q, which moves inside a 
perfectly conducting cylindrical tube of boundary Γ . Let us denote by z the axis of the tube, which is also the optical axis 
of the beam. Due to the axisymmetric features, we introduce the cylindrical coordinates (r, θ, z). The boundary Γ is thus 
written Γ = {(r, θ, z); r = R}, R being the radius of the tube. We also denote by ν the unit outward normal to Γ . For the 
sake of simplicity, we assume here that there is no external field.

As for a non-collisional beam, the motion of these particles is described in terms of a particle distribution function 
f (x, p, t) by the relativistic axisymmetric Vlasov equation (details can be found for instance in [14]).

The electromagnetic Lorentz force involved in the equation is expressed by F = q(E + v × B), where F = (Fr, Fθ , F z)

describes how an electromagnetic field E = (Er, Eθ , Ez) and B = (Br, Bθ , Bz) acts on a particle that moves with a velocity 
v = (vr, vθ , vz). This electromagnetic field satisfies the classical axisymmetric Maxwell equations in the vacuum (see, for 
instance, [9]). The right-hand sides of Maxwell’s equations are constituted by the charge density ρ and the current density 
J = ( Jr, Jθ , J z), obtained as the zeroth and the first moments of the distribution function f solution to the Vlasov equation 
with

ρ = q

∫
f dp, J = q

∫
v(p) f dp (1)

The hierarchy of the paraxial models is then derived by exploiting the physical and geometrical properties of the problem, 
in the same spirit as in [2,5–7]. We briefly recall the principle here.

Let us assume that the beam—the dimension of which is small compared to the longitudinal length of the device—is 
highly relativistic, i.e. satisfies γ � 1, where γ denotes the Lorentz factor, γ = (1 − v2

c2 )−1/2. In fact, the notion of “highly 
relativistic” as well as the symbol “�” are rather vague, and need in practice to be more precisely defined or estimated. 
It is precisely one of the goal we want to achieve by using data mining techniques. It is thus convenient to rewrite the 
Vlasov–Maxwell equations in a frame, which moves along the z-axis with light velocity c. This requires to perform a change 
of variables by introducing the new position-velocity coordinates ζ and vζ defined by:

ζ = ct − z, vζ = c − vz (2)

We also assume that the longitudinal particle velocities vz are close to the light velocity c, whereas the transverse particle 
velocities (v2

r + v2
θ )

1/2 are small compared to c. Hence, the particles appear to drift slowly in the direction ζ > 0 in the new 
coordinates (r, ζ ).

As a second step, we introduce a scaling of these equations based on characteristic values, from which we build di-
mensionless equations. Obviously, the choice of the scaling together with the dimensionless independent variables is crucial 
for the derivation of the approximate models. Different choices will give different approximate models, with or without 
the same theoretical precision, see for instance [28]. Here again, data mining methods can help to practically compare and 
evaluate these different approximate models. Then, introducing a small parameter, for instance in our case η = v

c � 1, v de-
noting the particle transverse characteristic velocity, a hierarchy of approximate models is derived by retaining successively 
the first, second, third, etc. order in the asymptotic expansion of the distribution f . For instance, the paraxial models de-
scribed respectively in [4] and [28] are different, but both are derived by retaining the terms up to the third order in the 
asymptotic expansion of the distribution function f . In the following section, we will compare the two first models obtained 
using this procedure.

4. Data mining to compare two approximate models

We consider here the two first models obtained by the procedure described above. We denote by M1 the first-order 
model, corresponding to the asymptotic expansion of f up to the order 1, namely in which order-2 terms have been 
neglected. It is shown in [9,4] that this expansion is entirely determined from the knowledge of the 0-order expansion of 
the electromagnetic Lorentz force (F M1

r , F M1
θ , F M1

z ). To compute it, one proved that the electromagnetic field associated with 
the model M1 (denoting M1 ) has to satisfy the following equations,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E M1

r = cB M1
θ = 1

ε0 r

r∫

0

ρM1 s ds

E M1 = B M1 = 0

(3)
θ r
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whereas the corresponding forces have the following expression,

F M1
r = qv M1

ζ B M1
θ , F M1

θ = 0, F M1
z = qv M1

r B M1
θ (4)

Note that, in this model, the longitudinal fields E M1
z , B M1

z are identically zero.
In the same way, we denote by M2 the second-order model corresponding to the asymptotic expansion of f up to the 

order 2, where order-3 terms have been neglected. This expansion is entirely determined from the first-order expansion 
(F M2

r , F M2
θ , F M2

z ) of the electromagnetic force. To compute it, the electromagnetic field associated with this model M2 has 
to satisfy the following equations,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E M2

r = cB M2
θ = 1

ε0 r

r∫

0

ρM2 s ds

E M2
θ = B M2

r = 0

(5)

supplemented with, for the longitudinal fields:

⎧⎪⎨
⎪⎩

∂ E M2
z

∂r
= ∂ B M2

θ

∂t
,

E M2
z (r = R) = 0,

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ B M2
z

∂r
= μ0 J M2

θ

R∫

0

B M2
z r dr = 0

(6)

Finally, the corresponding forces are expressed:

F M2
r = q

(
v M2

θ B M2
z + v M2

ζ B M2
θ

)
, F M2

θ = −qv M2
r B M2

z , F M2
z = q

(
E M2

z + v M2
r B M2

θ

)
(7)

The models M1 and M2 are clearly simpler than the Maxwell one. Indeed, one replaces in each case the time-dependent 
Maxwell equations by a quasi-static model, where we have only to solve, for each ζ , two-dimensional transverse Poisson-like 
equations. This basically requires to compute integrals with respect to the variable r from the charge and current densities, 
see [29,9]. Moreover, as noted above, the bunch of particles is evolving slowly in a frame which moves along the optical 
axis at the speed of light. As a consequence, the computational domain can be defined as a simple rectangular domain in 
variables (r, ζ ). The above equations will be easily solved by a finite-difference method written on a uniform rectangular 
mesh. A numerical analysis of the schemes and more details can be found in [29].

Concerning the Vlasov equation, it is classically solved by means of a particle method [1]. One approximates the function 
r f (x, p, t) at any time t by a linear combination of delta distributions in the phase space (x, p), namely:

r f (x,p, t) =
∑

k

wkδ
(
x − xk(t)

)
δ
(
p − pk(t)

)
(8)

where wk denotes the constant weight of the particle k. Its position in the phase space xk = (r, ζ )k and pk = (pr, pθ , pz)k is 
solution to a classical differential system, the solution of which being the characteristics of the Vlasov equations. It can be 
solved efficiently by a leap-frog scheme. The corresponding particle charge and current densities ρ and J are obtained by 
introducing the particle approximation (8) in Eqs. (1), which yields:

rρ(x, t) = q
∑

k

wkδ
(
x − xk(t)

)
(9)

and

rJ(x, t) = q
∑

k

wkvk(t)δ
(
x − xk(t)

)
(10)

The Vlasov equation being discretized by a particle method and the M1 or M2 models being computed on a grid, the 
coupling between the fields and particles is obtained by gathering the contribution of the particles to the charge and current 
densities on the grid. In a reciprocal way, one has to interpolate the field values at the particles’ positions.

In what follows, we will show on an example how the use of data mining techniques will help us to perform a kind of 
“sensitivity analysis”. Our aim is to understand in which way model M2 practically improves model M1. As an example, we 
will use the particles’ radial velocities v Mi

r (i = 1, 2) as target variables in data mining analysis. An important remark is that 
the choice of these variables can not be automatic, and always depends on the human expertise that will decide what to 
show, verify or invalidate in the data.

Based on the methodology presented in the previous section, we will derive now a decision tree analysis for numerical 
computing applications. The first step consists in building the database. We consider the numerical results computed by 
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Fig. 1. (Color online.) Decision tree for vr .

models M1 and M2 that we write together in the same database. Hence, at each time step and for each node of the space 
grid, we get a set of variables that are:

v Mi
r , v Mi

θ , v Mi
ζ , E Mi

r , E Mi
z , B Mi

z ,ρMi , J Mi
θ , F Mi

r , F Mi
θ , F Mi

z (i = 1,2) (11)

Considering all the Nt time steps and the Nn space nodes, the database is composed by Nt × Nn rows and the 22 variables 
of (20) to be analyzed.

Our aim being to evaluate the contribution of the model M2 compared to model M1, we introduce a first variable

ω1,2(X) =
∣∣∣∣ X M1

X M2

∣∣∣∣ (12)

that measures the weight of model M1 in model M2, regarding a given variable X . In practice, we are interested first in 
the case when ω1,2 is around 1: this corresponds to an equivalence of numerical results obtained between the two models 
M1 and M2 for the calculation of X . Then, when ω1,2 is either very small or very great compared to 1: this describes the 
situation when the numerical results between M1 and M2 are significantly different. From the variable ω1,2, we introduce 
our target variable denoted ω(LMH)

1,2 , obtained by splitting the distribution of ω1,2 into three equal classes of individuals: Low, 
Medium and High. To identify which variables can explain a significant difference between X M1 and X M2 , we keep in our 
analysis the extreme groups defined by the “Low” class and the “High” class of the variable ω(LMH)

1,2 .
Our aim is now to evaluate the differences between the distributions of the variables which should be meaningful 

between models M1 and M2. For this purpose, we computed the variable ω1,2(vr) and performed a decision tree on the 
target variable ω(LMH)

1,2 , in order to identify the subgroups in the database which are homogenous to the categories “Low” 
and “High”. We obtained the decision tree (Fig. 1). The precision of the decision tree, computed by the risk estimate, is equal 
to 6.05%, which means that 93.95% of data are correctly classified by the model of segmentation. Consequently, the quality 
level of the decision tree is very high. The first segmentation that appears shows that the most discriminating predictor 
variable is E M2

z , with a computed threshold equal to −0.006. This means that the “Low” ω1,2(vr) subgroup is mainly 
different from the “High” ω1,2(vr) subgroup, if one splits the whole involved population of the database up to the found 
threshold of E(2)

z .
A first practical conclusion is that v M2

r differs significantly from v M1
r due to the variable E M2

z in the asymptotic model M2. 
This result was expected, since E M1

z = 0. On the other hand, in the classified list of predictors, the component E M2
r appears 

as the second more significant predictor that explains the numerical difference between M2 and M1. This was less expected 
since the component E M1

r is non-zero in model M1, and can be explained because of the strong nonlinearity of the partial 
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differential system. Finally, this classification also pointed out that B M2
z does not appear as a predictor that could explain 

a significant difference between the two models. Even if Bz is equal to 0 in model M1, namely B M1
z = 0, B M2

z does not 
bring a significant contribution to the model M2, despite what was intuitively expected. Of course, it is always interesting 
to confirm such results with a formal approach, which analyzes the relation between v M1

r and v M2
r . We refer the interested 

reader to [14] for more details.

5. Data mining to compare two numerical methods

In this second example, we will illustrate how data mining methods may help us to evaluate the error estimate in the 
case of the discretization error (see [21]). For introducing this error, let us consider a model of equations (E) that one 
wants to discretize with a numerical method in a given family of approximations, for instance the P1 and P2 finite-element 
method. The discretization error is defined as the error due to the difference of order between these methods.

At first glance, this definition appears quite trivial. Indeed, the Bramble–Hilbert theorem claims that, under certain con-
ditions of regularity of the mesh and of the solution, the results obtained by finite elements P2 (of order 2) will be more 
precise—in the sense of convergence order—than those computed by finite elements P1 (of order 1). But this definition 
depends on the presence of the constant in the error estimates, generally unknown or difficult to estimate. In that case, as 
in the comparison of two models, we will show how data mining could help to investigate this problem.

For this purpose, we will introduce the third-order approximate model M3 obtained by the procedure described above 
in Section 3. We will derive a particle approximation to deal with the Vlasov equation, whereas the model M3 will be 
discretized successively by a P1 and a P2 finite-element conforming method. The coupling between these two approaches 
will be performed with an assignment and interpolation procedure, adapted to the P1 and P2 finite elements, respectively. 
Following [21], the system of equations M3 is written (we drop the index M3 since there is no possible confusion):

⎧⎨
⎩

1

r

∂

∂r
(rEr) = 1

ε0
ρ(r, ζ, t),

Er(0, ζ, t) = 0,

⎧⎨
⎩

∂ Ez

∂r
= 1

c

∂ Er

∂t
,

Ez(R, ζ, t) = 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ Bz

∂r
= μ0 Jθ (r, ζ, t)

R∫

0

Bzr dr = 0

⎧⎨
⎩

1

r

∂

∂r
(rEr) = μ0c Jζ (r, ζ, t) − 1

c

∂ Ez

∂t
,

Er(0, ζ, t) = 0,

⎧⎨
⎩

1

r

∂

∂r
(rEθ ) = −∂ Bz

∂t
Eθ (0, ζ, t) = Eθ (R, ζ, t) = 0

(13)

where Jζ is defined by Jζ = ρc − J z = q 
∫

vζ f dv.
In this model appears the additional unknowns Er = Er − cBθ and Eθ = Eθ + cBr . The expression of the second-order 

expansion of the Lorentz force F = (Fr, Fθ , F z) is given by
⎧⎪⎨
⎪⎩

Fr = q(Er + vθ Bz + vζ Er/c)

Fθ = q(Eθ − vr Bz)

F z = q(Ez + vr Er/c)

(14)

and entirely determines the asymptotic expansion of f up to the order 3. We have now to build P1 and P2 finite-element 
approximations to explore the corresponding results by data mining techniques. In what follows, we briefly present the 
derivation of the variational formulation [30]. This is quite standard, except for component Bz . Moreover, as the regularity 
of the fields is not an issue for our study, we will assume that they are smooth enough. For the sake of simplicity, we will 
denote by V the space of the fields and of the test functions, regardless of the boundary conditions they satisfy.

We readily obtain, for the electric component Er , find Er ∈ V such that

Z∫

0

R∫

0

∂

∂r
(rEr)v dr dζ = 1

ε0

Z∫

0

R∫

0

ρvr dr dζ, ∀v ∈ V (15)

together with the boundary condition Er(0, ζ, t) = 0. Similarly, for the Ez component, find Ez ∈ V such that

Z∫

0

R∫

0

∂ Ez

∂r
v dr dζ = 1

c

Z∫

0

R∫

0

∂ Er

∂t
v dr dζ, ∀v ∈ V (16)

together with the perfect conductor boundary condition Ez(R, ζ, t) = 0.

Remark 5.1. One can choose to handle the boundary condition by using an integration by part formula regarding r. We get:
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−
Z∫

0

R∫

0

Ez
∂v

∂r
dr dζ −

Z∫

0

Ez v(r = 0, ζ, t)dζ = 1

c

Z∫

0

R∫

0

∂ Er

∂t
v dr dζ, ∀v ∈ V

The difficulty to compute the magnetic component Bz is related to its boundary condition, which has an integral form. 
To overcome this difficulty, we introduce the variable Bz(r, ζ, t) defined by

Bz(r, ζ, t) :=
r∫

0

Bz(s, ζ, t)s ds (17)

so that third equation of (13) is written as

∂2 Bz

∂r2
− Bz = μ0r Jθ

whereas the integral boundary condition gives 
∫ R

0 Bz(s, ζ, t)r dr = Bz(R, ζ, t) = 0. Hence, one equivalently replaces the third 
equation of (13) by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r
∂2 Bz

∂r2
− ∂Bz

∂r
= μ0r2 Jθ

Bz(R, ζ, t) = 0
∂Bz

∂r
(0, ζ, t) = 0

(18)

A variational formulation for Bz(r, ζ, t) is given by: find Bz ∈ V such that:

−
Z∫

0

R∫

0

∂Bz

∂r

∂v

∂r
r dr dζ + R

Z∫

0

∂Bz

∂r
v(R, ζ, t)dζ −

Z∫

0

R∫

0

∂Bz

∂r
v dr dζ = μ0

Z∫

0

R∫

0

r2 Jθ v dr dζ, ∀v ∈ V (19)

The advantage of this formulation is that only U := ∂Bz
∂r is involved and can be chosen as a new unknown. Moreover, the 

boundary condition ∂Bz
∂r (0, ζ, t) = 0 is handled (in a weak way) through the integration by parts.

Remark 5.2. Solving a variational formulation in U leaves an indetermination in the computation of Bz . Indeed, Bz is a priori
determined up to an additive constant. Using the boundary condition Bz(R, ζ, t) = 0 allows us to uniquely determine Bz , 
for instance by choosing Bz(r, ζ, t) = ∫ r

R U (r, ζ, t) ds.

The variational formulations for unknowns Er and Eθ are straightforward and similar to the one of Er . From these 
variational formulations, one derives the finite-element conforming P1 and P2 approximations in an efficient way by using 
the FreeFem++ package [31]. The Vlasov equation is solved as in Section 4 by a particle method. The coupling between the 
P1 finite-element approximation and the particle method is performed following the classical assignment and interpolation 
procedures [1,32]. Nevertheless, the coupling is less standard for the P2 finite element. We will briefly describe it. Let us 
denote by {ai = (ri, ζi)} the set of mesh vertices where the mesh values ρM and JM are needed, namely the vertices and the 
middle of the edges of the triangular mesh. Let χi be the finite element basis functions and let M be the mass matrix with 
entries Mi, j = ∫

Ω
χi χ jr dr dζ . The values of the charge and the current densities at the nodes of the mesh are defined by

∑
j

Mi, jρ
M(a j, t) =

∫

Ω

ρ(x, t)χir dr dζ = q
∑

k∈Kai

wkχi
(
xk(t)

)

and
∑

j

Mi, j JM(ai, t) =
∫

Ω

J(x, t)χir dr dζ = q
∑

k∈Kai

wkvk(t)χi
(
xk(t)

)

where Kai denotes the set of particles located in the element that has ai as a vertex. Since 
∑

i χi ≡ 1, this procedure 
preserves the total charge and the total current of particles.

Our aim is now to show on this example how the use of data mining techniques will help us to compare the P1 and 
P2 finite-element method. As in the previous example, we collect in a database all the numerical results computed by the 
two methods. Since they have not the same degrees of freedom, we chose to keep in the database the common data, that 
is the quantities computed at the vertices of the mesh. This excludes, for the P2 finite element, the quantities computed at 
the middle of the edges of the mesh. Hence, our database is composed by
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Table 1
Respective proportions of the “P1 vs. P2” categories.

Count Percent

Different Order 6522 86.3
Same Order 1035 13.7

vi
r, vi

θ , vi
ζ , Ei

r, Ei
z, Bi

z, E i
r , E i

θ ,ρ
i, J i

r, J i
θ , J i

ζ , F i
r, F i

θ , F i
z (i = 1,2) (20)

computed at each time step and for each node of the mesh, the exponent i specifying here the P1 or P2 finite-element 
approximations.

Our objective is to appreciate the difference of accuracy between P1 and P2 solutions. To this end, we have to determine 
if there exist rows in the database such that P1 method would provide a better approximation than the P2 finite-element 
one or, at least, an equivalent one. In the absence of the exact solution, we cannot determine what “better approximation” 
means. So we try to identify subgroups in the database such that the numerical approximations computed by P1 and P2
finite elements are of “the same order”.

For this example, let us restrict ourselves to the radial component of the electrical field Er . To identify the approximations 
of “the same order”, we will only keep in the database the rows such that neither E1

r nor E2
r are too small. This is to eliminate 

two possible situations:

• the case where E1
r is small with respect to E2

r or reciprocally. This case means that E1
r and E2

r are not of “the same 
order”;

• the case where E1
r and E2

r are both small. Again, in absence of the exact solution, this corresponds to the situation 
where we cannot determine if E1

r and E2
r are or not of “the same order”.

In terms of numerical values, each component E1
r and E2

r is assumed to be “small” at a given time step tn and for a given 
node (r j, ζk), if its value is smaller than 5% of the maximum of all the values of E1

r and E2
r respectively. The threshold of 5% 

is arbitrary yet reasonable, and a sensitivity study about this choice is on progress. Applying this rule allows us to extract 
from the database the rows one has to explore.

At this time, we have to define the notion of “same numerical order”. For this purpose, we introduce a qualitative 
binomial variable “P1 vs. P2” as follows:

P1 vs. P2 ≡
∣∣∣∣∣

Same Order, if
∣∣E2

r − E1
r

∣∣ ≤ α

Different Order, if not
(21)

where α denotes a given threshold. In these conditions, the value “Same Order” of “P1 vs. P2” will allow us to detect 
and characterize situations where using P2 finite-element method does not improve significantly the computation of E1

r . 
Now, taking in this example the threshold α = 0.65, which corresponds to 5% of the maximum of the absolute difference 
between E1

r and E2
r , we process data mining techniques to qualify the two different categories of the target variable (i.e.

the variable to be explained) “P1 vs. P2”. Results in Table 1 show that the dataset contains a non-negligible quantity of 
elements (almost 14%) such that P1 vs. P2 is of the same order.

Now, to qualify these 14% of “Same Order” elements, we could process data mining techniques, guided by what we are 
aiming to verify. In this example, one can use, among others, a decision tree, as in Section 4. The first segmentation that 
appears on the decision tree highlights the most discriminated predictor variable. One can observe that the time is detected 
as this predictor, with a corresponding computed optimal threshold equal to the 42nd time step over a hundred computed. 
This means that when the time is smaller than the 42nd time step, the corresponding blue node in the decision tree is very 
homogeneous regarding the variable “Same Order”. More precisely, almost 80% of the elements of this node have this value 
for the target variable “P1 vs. P2”. We can then conclude that for time steps smaller than the 42nd one, the implementation 
of P2 finite elements was over qualified and then, the cost of the computation could not be justified anymore. At the 
opposite, when one considers time steps that are greater than the 42nd, the corresponding cluster, which is the other node 
in the decision tree (see Fig. 2), is constituted by more than 98% of rows that correspond to the value “Different Order” 
of the target variable “P1 vs. P2”. Obviously, this kind of investigation needs to be deepened and generalized. This is our 
current and future work. Nevertheless, this illustrates to our opinion how data mining can contribute to solving efficiently 
Vlasov–Maxwell equations.

6. Conclusion

In this paper, we have proposed to use data mining methods to evaluate numerical solutions of Vlasov–Maxwell equa-
tions. After a brief presentation of the data mining principles, we gave two examples to illustrate how this idea can be 
processed.

In a first example, we focused our study to the case of asymptotic paraxial models. Our aim was to determine the role 
of the different powers in the asymptotic expansion, considering the two first models M1 and M2. The results we have 
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Fig. 2. (Color online.) Decision tree.

obtained suggest that data mining techniques can be applied to the analysis of Vlasov–Maxwell approximations as it is 
applied in a lot of other domains.

In a second part, we gave an example of comparisons between two numerical methods that approximate the Vlasov–
Maxwell equations. We described the mathematical model and the variational formulation. Then, we constructed a database 
made of the numerical results obtained by a P1 and a P2 finite-element method, coupled with a particle method. Based on 
Decision Tree techniques, we identified and characterized the elements such that the evaluation between the two methods 
gave similar numerical results.

Obviously, the conclusion we got on these two error evaluations is yet partial and needs to be confirmed, for instance 
by investigating other variables. Moreover, we have to keep in mind that conclusions are also to be guided by the human 
expertise, that has to be involved in the data exploration. It also basically depends on the purpose of the performed analysis. 
However, this illustrates how data mining can actually help to evaluate several kinds of errors for Vlasov–Maxwell equations.
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