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The modeling of the linear free vibration of a sandwich structure including viscoelastic 
layers yields a complex nonlinear eigenvalue problem. In this paper, the sensitivity of 
eigensolutions is computed using a homotopy-based asymptotic numerical method, then 
a first-order automatic differentiation. The generality of the proposed method enables 
us to consider any analytical frequency-dependent viscoelastic law in the modeling and 
the sensitivity computation. Its application potential is demonstrated by computing the 
sensitivity of eigenmodes, eigenfrequencies and modal loss factors of sandwich beams and 
plates to various perturbations.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La modélisation des vibrations linéaires libres d’une structure sandwich comportant 
des couches visco-élastiques conduit à un problème aux valeurs propres non linéaires 
complexes. Dans cet article, la sensibilité des solutions propres est calculée en utilisant 
une méthode asymptotique numérique, puis une différentiation automatique d’ordre un. 
La généralité de la méthode proposée permet de considérer toute loi visco-élastique 
analytique avec dépendance en fréquence dans la modélisation et le calcul de sensibilité. 
Son potentiel applicatif est démontré en calculant la sensibilité des valeurs et vecteurs 
propres, et des facteurs de perte modaux de poutres et plaques sandwich à différentes 
perturbations.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The vibrations of mechanical structures may induce undesirable phenomena such as fatigue and noise. These may be 
reduced incorporating passive damping in the structures through viscoelastic materials to augment energy dissipation and 
to avoid the resonance phenomenon. Viscoelastic laminated sandwich structures allow for passive damping [1,2]. Their 
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modeling should take into account nonlinear viscoelastic laws, geometric nonlinearities of thin structures and complex 
kinematics. In its automated version “Diamant” [3,4], the Asymptotic Numerical Method (ANM) [5] enables one to obtain 
an accurate solution to complex nonlinear eigenvalue problems [2], whatever the analytical nonlinear frequency-dependent 
viscoelastic law [6]. Sensitivity analysis of the dynamic behavior of sandwich structures is an important issue for optimal 
design. To the best of our knowledge, numerical methods [7–11] are concerned with linear eigenvalue problems only, 
and very few studies [10] are devoted to the sensitivity of vibration eigenmodes. None of these methods addresses the 
complex nonlinear eigenvalue problems arising in dynamic modeling of the viscoelastic sandwich structures involving a 
frequency-dependent law.

Based on Automatic Differentiation (AD) [12,13], our sensitivity method relies on the homotopy-based ANM algorithm 
[6] for the solution of the complex nonlinear eigenvalue problem, and on a first-order differentiation of their solutions. 
Sandwich structure modeling, AD and sensitivity implementation are introduced in Section 2. Some sensitivity results on 
eigenfrequencies, eigenmodes and loss factors are presented in Section 3 for sandwich beams and plates submitted to 
perturbations of the layer heights or the shear modulus, or to stiffness perturbations. Frequency-dependent viscoelastic 
models with small-to-moderate loss factors for the core are considered.

2. Sensitivity method

Assuming that the eigensolution satisfies u(x, t) = u(x) eiωt , the modeling of the linear free vibration of a sandwich 
structure including viscoelastic layers results in the complex nonlinear eigenvalue problem [2](

K (ω) − ω2M
)
u = 0 (1)

where ω2, u, and M denote the eigenvalue, the eigenmode, and the mass matrix, respectively. When the sandwich structure 
is made of isotropic materials, the frequency-dependent stiffness matrix K (ω) may be written as

K (ω) = K0 + E(ω)Kv (2)

where E(ω) is the complex Young modulus of the core, K0 (related to the delayed elasticity) and Kv are real constant 
stiffness matrices. The stiffness and mass matrices are issued from a finite-element method and depend on geometrical and 
material parameters such as layer heights or Young moduli. The sensitivity of the eigensolutions to parameter perturbations 
is thus a key issue.

ANM continuation procedure Let λ be equal to ω2. The frequency-dependent eigenvalue problem (1)–(2) written under the 
residual form

R(u, λ) = (
K0 + E(ω)Kv − λM

)
u = 0 (3)

is solved using the homotopy approach described in detail in [6]. In a nutshell, the homotopy (4)

R(u, λ,a) = S(u, λ) + aT (u, λ) = 0, for a ∈ [0,1] (4)

is driven from the solution (uS , λS ) to the “undamped” real eigenvalue problem S(uS , λS ) = [K0 − λSM]uS = 0, for a = 0, 
to the solution (u, λ) to the residual problem (3), for a = 1. The term T (u, λ) = E(ω)Kvu contains the nonlinearities. The 
branch of solutions (u(a), λ(a)) is calculated using truncated Taylor series, which requires a higher-order differentiation of 
S and T .

Automatic differentiation AD [12] is obviously the more practicable approach for higher-order derivative computations, pro-
viding generality, efficiency, accuracy, and ease of use. Indeed, it views any computer code as a sequence of computational 
statements (assignments, elementary operations, and intrinsic functions), control and do-loop statements. Higher-order AD is 
performed through operator overloading as the vehicle to attach derivative computations to operators and intrinsic functions. 
The differentiation of the code is performed applying the chain rule to the computational statements, and the operations 
they contain. The interested reader is referred to the Diamanlab software [14] and the references therein for an AD imple-
mentation of the ANM.

Sensitivity of the complex eigensolutions The complex eigensolution (u, λ) being known from the ANM computation, its 
sensitivity (ud, λd) with respect to some parameter p is computed from a first-order differentiation of (3), and evaluated in 
the direction δp. This system is closed by differentiating the orthonormality condition uT Mu = 1 with respect to p. More 
precisely, the sensitivity (ud, λd) is evaluated from (5), then (6)(

uTM
)
ud = −(1/2)uTMdu (5)

{R1|λd=1}λd = −{R1|λd=0} (6)

where Md is the tangent linear matrix computed with respect to p, {R1|λd=1} is the first-order derivative of R with respect 
to λ, and {R1|λd=0} contains the first-order derivatives with respect to p and u evaluated in the directions δp and ud. 
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Table 1
Eigenfrequency and modal loss factor sensitivities to a 20% perturbation of the core height. Cantilever sandwich beam, constant modulus model.

ω ωd (ω + ωd) ωp η ηd (η + ηd) ηp

65.80 −1.32 64.48 64.58 2.45E−01 1.99E−02 2.65E−01 2.63E−01
300.62 −6.47 294.15 294.96 2.32E−01 −1.01E−02 2.21E−01 2.22E−01
750.79 −11.09 739.70 741.24 1.52E−01 −1.61E−02 1.36E−01 1.38E−01

Table 2
Sensitivity of eigenfrequencies and modal loss factors to a perturbation of 20% of the core height hc, the face height hf or the shear modulus Gc . Al/PVB/Al 
cantilever.

Param. ω ωd (ω + ωd) ωp η ηd (η + ηd) ηp

hc 82.07 7.98E−1 82.86 82.87 1.40E−03 2.80E−04 1.68E−03 1.66E−03
506.29 3.39 509.68 509.66 5.19E−03 9.12E−04 6.10E−03 6.13E−03

1387.92 3.86 1391.78 1391.68 8.83E−03 1.44E−03 1.03E−02 1.03E−02

hf 82.07 15.50 97.57 97.56 1.40E−03 1.82E−04 1.59E−03 1.56E−03
506.29 94.32 600.61 600.32 5.19E−03 5.86E−04 5.77E−03 5.80E−03

1387.92 253.88 1641.80 1640.20 8.83E−03 8.88E−04 9.72E−03 9.80E−03

Gc 82.07 −3.38E−03 82.06 82.07 1.40E−03 2.42E−05 1.43E−03 1.40E−03
506.29 1.48E−02 506.30 506.29 5.19E−03 −5.02E−05 5.14E−03 5.18E−03

1387.92 1.34E−01 1388.05 1387.93 8.83E−03 −8.54E−05 8.75E−03 8.82E−03

Table 3
Sensitivity of eigenfrequencies and modal loss factors to a 20% perturbation of the core height hc or the shear modulus G∗

c . Al/ISD112/Al plate.

Param. ω ωd (ω + ωd) ωp η ηd (η + ηd) ηp

hc 43.10 −0.95 42.15 41.74 4.36E−01 2.62E−02 4.62E−01 4.38E−01
55.75 −0.72 55.03 54.49 3.51E−01 1.37E−02 3.65E−01 3.55E−01

110.57 −1.41 109.16 108.46 2.86E−01 1.01E−02 2.96E−01 3.00E−01

G∗
c 43.10 2.88 45.98 45.32 4.36E−01 4.49E−02 4.81E−01 4.50E−01

55.75 3.17 58.92 58.10 3.51E−01 2.32E−02 3.75E−01 3.61E−01
110.57 5.58 116.15 114.86 2.86E−01 −9.76E−03 2.76E−01 2.81E−01

The second equation is established following arguments similar to those developed for the ANM [13]. Contrarily to the 
ANM sensitivity methods presented in [15,16], the derivatives in the modeling parameters are uncoupled from the ANM 
higher-order derivatives in the path parameter. This significantly simplifies the computer implementation since the same 
operator overloading library can be used for both differentiation stages.

Very little work is needed to take into account a particular viscoelastic law or to operate a sensitivity computation 
with respect to any input parameter of the code. Derivative computations as well as the whole process were systemati-
cally verified through Taylor tests [16]. These compare the derivative evaluated thanks to AD to first-order finite difference 
approximations, assuming sufficiently small perturbations.

3. Numerical results

Our sensitivity approach is illustrated by the transverse free vibration of three-layer sandwich beams and plates with 
viscoelastic cores. The kinematic model is based on a classical zigzag model coupling the Kirchhoff–Love plate theory in 
the elastic faces and the Mindlin plate theory in the viscoelastic core [17]. Thus, a common transverse displacement of the 
layers and the continuity of the displacement at the interfaces are assumed. A four-node plate element, see [18], is chosen 
for the sandwich plate discretization using a finite-element method. Classical linear and cubic shape functions are used for 
the interpolation of the rotation of the core and the transverse displacement, respectively. The ANM is carried out with a 
truncature order of 30 for the series, and a threshold of 1 × 10−6 for the residual. Different kinds of nonlinear viscoelastic 
laws are considered to demonstrate the abilities of the method.

Tables 1, 2 and 3 present eigenfrequencies ω and modal loss factors η computed using the ANM, and their sensitivities 
ωd and ηd to a perturbation of δp = 20% of the parameter p under study evaluated using (5)–(6). For the sake of comparison, 
tables also report the eigenfrequencies ωp and the modal loss factors ηp computed using the ANM and the parameter p +δp.

Constant viscoelastic model for the core The sensitivity approach is validated on the classical cantilever viscoelastic beam 
[18,19], the parameters of which are reported in Table 4. Elastic faces are in aluminum (Al). Table 1 presents eigenfrequen-
cies ω and modal loss factors η and their sensitivities ωd and ηd evaluated with respect to a perturbation of 20% of the 
core height. The eigenfrequencies ωp and the modal loss factors ηp are computed with a core height equal to 1.2hc. A good 
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Table 4
Geometrical and material characteristics of the cantilever sandwich beam, aluminum faces and constant core modulus model.

Elastic faces Viscoelastic core Dimensions

Young modulus 6.9 × 1010 Pa Young modulus E0(1 + iηc) Length L = 177.8 mm
E0 = 1794 × 103 Pa, ηc = 0.6 Width l = 12.7 mm

Poisson coeff. 0.3 Poisson coeff. νc = 0.3 Mesh 100 elements
Density 2766 kg m−3 Density 968.1 kg m−3

Height hf = 1.524 mm Height hc = 0.127 mm

Table 5
Geometrical and material characteristics of the Al/ISD112/Al plate.

Elastic faces Viscoelastic core Dimensions

Young modulus 6.89 × 1010 Pa Shear modulus Eq. (8) Length L = 348 mm
Poisson coeff. 0.3 Poisson coeff. νc = 0.5 Width l = 304.8 mm
Density 2740 kg m−3 Density 1600 kg m−3 Mesh 32 × 28 elements
Height hf = 0.762 mm Height hc = 0.254 mm

Fig. 1. (Color online.) Real and imaginary parts of the first two eigenmodes and their sensitivities to a perturbation of 20% of the stiffness element at 
x = L/4. Al/PVB/Al cantilever.

agreement exists between our first-order approximations ω + ωd and η + ηd, and perturbed solutions ωp and ηp. Similar 
results were obtained for ηc = 1.5.

Fractional-derivative viscoelastic model The cantilever beam [20] is made of a polyvinyl butyral (PVB) core layered between 
aluminum elastic faces. Elastic faces are described in Table 4. The frequency-dependent shear modulus of the PVB core 
satisfies

Gc(ω) = G∞ + (G0 − G∞)
[
1 + (iωτ)1−α

]−β
(7)

with G0 = 479 × 103 Pa, G∞ = 2.35 × 108 Pa, τ = 0.3979, α = 0.46 and β = 0.1946. The Poisson coefficient, the density and 
the height of the core are equal to 0.4, 999 kg m−3 and hc = 0.127 mm, respectively. A perturbation of 20% of the parameter 
under study is applied. One notices that eigenfrequencies and loss factors are less sensitive to a perturbation of the shear 
modulus of the core. Moreover, eigenfrequencies are more sensitive than loss factors to a perturbation of the elastic face 
heights. This is an expected result, since the damping of sandwich structures with thin soft viscoelastic core is mainly due 
to the shear deformation taking place in the core.

Our sensitivity method applies to eigenmodes. Perturbations of the stiffness matrix Kv are introduced at the element 
level Ke of the assembly process by adding a null perturbation pKe . The stiffness matrix built during the assembly process 
is differentiated with respect to pKe and evaluated in the direction δKe , the dimension of which is equal to the number 
of mesh elements. The real and imaginary parts of the first two eigenmodes and their sensitivities are plotted in Fig. 1
for a perturbation of 20% of the stiffness element at x = L/4 (i.e. 1% of the beam). One notices that the local effect of the 
perturbation is more visible on the real part Re(wd) of the eigenmode sensitivity.

Generalized Maxwell model A sandwich plate with a 3M ISD112 core is studied under CFCF boundary conditions (C: 
clamped, F: free) [18]. Based on the generalized Maxwell model, the frequency-dependent shear modulus of the core at 
20 ◦C verifies

G∗
c (ω) = G0

(
1 +

3∑
j=1

Δ jω

ω − iω j

)
(8)

where the shear modulus of the delayed elasticity G0 = 0.5 ×106, and the fitted parameters are Δ1 = 2.8164, Δ2 = 13.1162, 
Δ3 = 45.46655, and ω1 = 31.1176, ω2 = 446.4542 and ω3 = 5502.5318 [21]. Other geometrical and material characteristics 
are indicated in Table 5. Table 3 presents sensitivity analysis results performed with respect to the height and the shear 
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Fig. 2. (Color online.) First eigenmode (upper row), sensitivity to a 40% perturbation applied at point (L/2, l/2) (middle row), sensitivity to a 40% perturba-
tion applied at points (L/4, l/2) and (3L/4, l/2) (lower row). Left: Real parts. Right: Imaginary parts. Al/ISD112/Al plate.

modulus of the core. The interpretation is similar to what has been discussed for the sandwich beam. Some eigenmode 
sensitivities to local stiffness perturbations are plotted in Fig. 2. A very small perturbation is applied to the stiffness matrix 
when a unique element stiffness matrix is considered, because each element represents about 0.11% of the plate area. As in 
the sandwich beam case, local effects of the perturbation are more visible on the real part of wd of the eigenmode. Similar 
results were obtained for CCCC, SSSS, and CSCS boundary conditions (S: Simply supported).

4. Conclusion

This article presents a method for the sensitivity analysis of complex nonlinear eigensolutions, with applications to vis-
coelastic sandwich beams and plates, and different viscoelastic laws. The sensitivity of modal parameters (frequency and 
loss factor) as well as the sensitivity of eigenmodes are computed with respect to a perturbation of some material charac-
teristics or local perturbations of the stiffness matrix. Numerical results demonstrate that our first-order approximations are 
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in good agreement with direct computations. Following [22,23], such an accurate method provides useful qualitative and 
quantitative information about eigenmode sensitivity for further active damping and patch location studies, for instance.
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