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The effect of an imposed magnetic field on Rayleigh–Bénard three-dimensional natural 
convection was investigated numerically. The cubical cavity is heated from below and 
cooled from above, and the remaining side walls are insulated. The magnetic field is tilted 
at an angle α about the horizontal. Flow field and heat transfer were predicted for fluid 
with Pr = 0.71 and a wide range of governing parameters such as a Rayleigh number 
between 5 × 104 and 105, a Hartmann number between 0 and 60, and an inclination angle 
between 0◦ and 360◦. When a magnetic field is applied on a non-conducting fluid within a 
cubical cavity, whether the natural convection is promoted or damped is found to depend 
on both the direction and the magnitude of the magnetic field. The average Nusselt number 
decreased with an increase of the Hartmann number and increased with an increase of 
the Rayleigh number. The maximum heat transfer rate was observed for α = 30◦ and 
Ha = 10, while heat transfer was poor for the vertical direction of the magnetic field. The 
dependence of the promotion or damping efficiency on α and Ha is also discussed in terms 
of isocontours and isosurfaces in sight of the dynamic and thermal behaviour of the flow.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Buoyancy-driven flows heated from below, known as Rayleigh–Bénard (RB) phenomena, have always received consider-
able attention due to their wide variety of applications in engineering and technology [1–3]. RB convection is an extensively 
studied system for investigating instabilities, bifurcation, spatiotemporal chaos, and turbulence [4].

In many scientific and industrial applications, it is often necessary to control convective flows induced by natural con-
vection in order to achieve specific outcomes. Such control can be achieved using an imposed external magnetic field, and 
this falls under what is called magnetoconvection.

Magnetoconvection in enclosures particularly has applications in solar technologies, crystal growth in liquids, material 
manufacturing technology, nuclear reactor insulation, haemodialysis, etc. It also occurs under many circumstances and plays 
an important role in geophysics, astrophysics, aerodynamics, engineering, and industries [5–7]. Most of the early works on 
magnetoconvection are summarized in a book by Ozoe [8]. Flow modes as well as heat transfer characteristics associated 
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Nomenclature

a thermal diffusivity (m2/s)
B dimensional magnetic induction (Tesla)
E electrical field (V · m−1)
g acceleration of gravity (m · s−2)
H height of the enclosure (m)
L length of the enclosure (m)
Ha Hartmann number (Ha = BL(σ /μ)1/2)
J electric current
Nu average Nusselt number, defined in Eq. (12)
p pressure (N/m2)
P dimensionless pressure, P = pL2/ρa2

Pr Prandtl number, Pr = ν/a
Gr Grashof number, Gr = Ra

Pr
Ra Rayleigh number, Ra = gL3βT (TH − TC)/(νa)

RaC critical Rayleigh number
TC cold wall temperature (K)
TH hot wall temperature (K)
T temperature (K)
τ dimensional time (s)
U , V , W velocity components in x, y, z directions 

(m · s−1)

u, v, w dimensionless velocity components in x, y, z
directions

x, y, z dimensionless Cartesian coordinates

Greek symbols

β coefficient of thermal expansion (K−1)
� difference value
θ dimensionless temperature, θ = (T − T0)/ 

(TH − TC)

ν kinematics viscosity (m2 · s−1)
μ dynamic viscosity (kg · m−1 · s−1)
ρ fluid density (kg · m−3)
t dimensionless time, t = τa/L2

Φ dimensionless variable (u, v , p, θ )
σ electrical conductivity (�−1 · m)

Subscripts

max maximum
0 reference value
C cold
H hot

with Rayleigh–Bénard magnetoconvection (RBM) have been a subject of interest to engineers and scientists for many years 
[9–11].

Magnetoconvection in enclosures has continued to be a very active area for scientists during the past few decades. For 
example, Alchaar et al. [12] studied numerically the RBM flow within a shallow cavity filled with an electrically conducting 
fluid under a uniform magnetic field. The investigation covers the range of the Rayleigh number, Ra, from 1.8 × 103 to 
3 × 104, of the Hartmann number, Ha, from 0 to 35, with an aspect ratio of the cavity of 6. The authors showed that 
the magnetic field reduces the convective heat transfer through the cavity. Furthermore, the numerical results indicate that 
the magnetic field, as expected, inhibits the onset of convection. Sophy et al. [13] analysed the magnetoconvection flow 
in a differentially heated square cavity for Rayleigh numbers ranging from 103 to 105. They demonstrated that a great 
modification of the flow pattern occurs when the maximum value of the magnetic field is beyond a critical one. Ece and 
Büyük [14] examined the effects of the applied magnetic field in an inclined rectangular enclosure heated from the left 
vertical wall and cooled from the top wall, on the heat transfer rate and the flow patterns. They argued that the flow 
characteristics and therefore the convection heat transfer depend strongly upon the strength and direction of the magnetic 
field, the aspect ratio and the inclination of the enclosure. Therefore, the magnetic field significantly reduces the heat 
transfer rate by suppressing the convection currents.

The effects of a magnetic field on the buoyancy-driven convection in differentially heated square enclosure have been 
studied by Pirmohammadi et al. [9]. They approved that the heat transfer mechanisms and the flow patterns within the 
enclosure depend strongly upon both the strength of the magnetic field as well as the Rayleigh number. It was concluded 
that the magnetic field considerably decreases the average Nusselt number. In another work, the same authors, conducted 
a steady, laminar, RBM in a tilted enclosure filled with liquid gallium [15]. It is shown that for a given inclination angle 
of the cavity, as the value of the Hartmann number increases, the heat transfer rate diminishes. Furthermore, it is found 
that at high Ra values, the average Nusselt number depends strongly on the inclination angle for relatively small values 
of the Hartmann number. From a numerical study viewpoint, the works of Lo [16] disclosed that, for a constant value of 
the Grashof number within a differentially heated cavity with a transverse magnetic field, the heat transfer rate is at its 
maximum for higher Pr values and in the absence of magnetic field (Ha = 0), while it is lower with increasing the strength 
of the external magnetic field in the lower region of the Prandtl number.

In the above-mentioned studies, two-dimensional models were used to simulate a magnetoconvection flow inside en-
closures. However, depending on the dimensions of the cavity, significant three-dimensional effects can arise. The literature 
was relatively scarce in what concerns research work dealing with magnetoconvection in three-dimensional configurations. 
Nowadays, with the advent of computer technology, numerical studies of heat transfers and fluid flows within 3D enclosures 
are becoming feasible and more common. For instance, three-dimensional magnetoconvection in a cubic enclosure heated 
from one wall and cooled from an opposing one have been performed by Ozoe and Okada as soon as 1989 [17]. Their re-
sults showed that horizontal magnetic fields are the most effective in suppressing convection. In contrast, vertical magnetic 
fields are found to be least effective.
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Fig. 1. (Colour online.) Three-dimensional Rayleigh–Bénard configuration.

Mobner and Muller [18] studied the influence of uniform magnetic fields of arbitrary direction on three-dimensional nat-
ural convection in liquid metals. The convection can be driven by horizontal or vertical temperature gradients. For a vertical 
temperature gradient, the authors demonstrated the fact that the number of convection rolls depends on both the Rayleigh 
and the Hartmann parameters. Increasing the Rayleigh and Hartmann numbers’ values augments the number of convection 
rolls in the enclosure. Piazza and Ciofalo [19] discussed 3D magnetoconvection in a liquid-metal-filled cubic enclosure for 
which a uniform magnetic field was applied orthogonally to the gravity vector. The effects of the Hartmann number and of 
the wall conductance ratio were investigated. In particular, they concluded that increasing Ha suppressed convective mo-
tions and exalted the square shape of the circulation cells. Kenjereš and Hanjalić [20] reported a numerical study of the 
effects of magnitude and distribution of an external magnetic field on the reorganization of convective structures and heat 
transfer in thermal convection in electrically conductive fluids. The results reveal, in the case of RB convection, that a verti-
cal homogeneous magnetic field causes a strong reduction in both the integral and the local heat transfer coefficients, while 
in a spanwise field the effect is weaker. Xu et al. [21] experimentally showed that natural convection in a three-dimensional 
enclosure filled with gallium and differentially heated is suppressed with an imposed magnetic field, and the damping effect 
increases as the magnetic field’s strength increases. The convection of a paramagnetic fluid under a strong magnetic field 
in a cubical enclosure heated and cooled from two opposite walls has been investigated experimentally and numerically 
by Bednarz et al. [22]. A transverse horizontal magnetic field is applied to the system. The authors argued that by using a 
strong magnetic field, convection could be suppressed or inverted with different combinations of the two main body forces. 
The effect of a magnetic field on the onset of time-periodic convection was addressed numerically by Henry et al. [23] in 
a three-dimensional enclosure. The authors demonstrated the large dependencies of both the critical Grashof number and 
the frequency at the Hopf bifurcation point on the imposed magnetic field. Recently, Varshney and Baig [24] investigated 
the effect of constant transverse magnetic field on rotating Rayleigh–Bénard convection of an electrically conducting fluid 
(Pr = 0.01). Among several results, the authors demonstrated the production of anisotropy if a transverse magnetic field was 
applied to the cavity.

Among the studies mentioned above, several works refer to the magnetoconvection flow inside enclosures for which the 
direction of the applied magnetic field is usually kept parallel or orthogonal to the thermal gradient. However, some works 
revealed that magnetic field direction has effects on the flow and heat transfer rates in a cavity. For example, Sivasankaran 
and Ho [25] studied the natural convection of maximum density water in the presence of a magnetic field with temperature-
dependent properties in a cavity and argued that the external magnetic field direction is an important parameter for fluid 
flow as well as for heat transfer. Recently, Bouabdallah and Bessaih [26] carried out an investigation to analyse the effect of 
a magnetic field on a three-dimensional fluid flow and heat transfer during solidification from a melt in a cubic enclosure. 
The results exhibited a strong relationship between the interface shape, the magnitude and orientation of the magnetic 
field.

To the author’s knowledge, studies have thus far addressed three-dimensional RBM under an applied magnetic field for 
which the direction is changed. The objective of the present paper is therefore to predict the effect of the direction of the 
magnetic field on three-dimensional Rayleigh–Bénard convection. In particular, the effects of the magnetic field parameter 
(Ha) and of the Rayleigh number (Ra) on the relevant flow variables are described in detail.

2. Physical model and mathematical formulation

Fig. 1 displays schematically the configuration of the three-dimensional enclosure considered in this study. The enclosure 
with length L is heated from below at TH and cooled from above at TC; the remaining vertical walls are assumed thermally 
adiabatic. It is further assumed that the Boussinesq approximation is valid for the buoyancy force. The cubic enclosure is 
filled with a viscous, incompressible and electrically conducting fluid which is permeated by a uniform magnetic field B
with magnitude proportional to Ha at an inclined angle α from the horizontal plane.
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∇ · V = 0 (1)

∂V

∂τ
+ (V · ∇)V = − 1

ρ
∇p + ν∇2 V − β(T − TC)g + 1

ρ
J × B (2)

∂T

∂τ
+ (V · ∇T ) = a∇2T (3)

where the electric current J is given by:

J = σ(E + V × B) (4)

Here V (u, v, w) is the fluid velocity vector, B(Bx, 0, Bz) is the external magnetic field, E is the electric field, p is pressure, 
and T is the fluid’s temperature. ∇ is the gradient operator and ρ denotes the density of the fluid, whereas ν , a, and β are 
the cinematic viscosity, the thermal diffusivity coefficient, and the thermal expansion coefficient, respectively. The electric 
conductivity of the electric fluid is noted by σ . As the electric field vanishes everywhere in the cavity, the effect of E is 
neglected. In addition, the magnetic Reynolds number is assumed to be small so that the induced magnetic field can be ne-
glected. Under the above assumption, the usual three-dimensional governing equations for the unsteady magnetoconvection 
flow, in dimensionless form, can be written as:

∂u

∂x
+ ∂v

∂ y
+ ∂ w

∂z
= 0 (5)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂ y
+ w

∂u

∂z
= −∂ p

∂x
+ Pr

(
∂2u

∂x2
+ ∂2u

∂ y2
+ ∂2u

∂z2

)
+ Pr Ha2(−u sin2 α + w sinα cosα

)
(6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂ y
+ w

∂v

∂z
= −∂ p

∂ y
+ Pr

(
∂2 v

∂x2
+ ∂2 v

∂ y2
+ ∂2 v

∂z2

)
+ Ra Pr θ − Ha2 v (7)

∂ w

∂t
+ u

∂ w

∂x
+ v

∂ w

∂ y
+ w

∂ w

∂z
= −∂ p

∂ y
+ Pr

(
∂2 w

∂x2
+ ∂2 w

∂ y2
+ ∂2 w

∂z2

)
+ Ra Pr θ + Pr Ha2(u sinα cosα − w cos2 α

)
(8)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂ y
+ w

∂θ

∂z
= ∂2θ

∂x2
+ ∂2θ

∂ y2
+ ∂2θ

∂z2
(9)

The boundary conditions, in the present study, are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = v = w = 0 on all walls

θ(x, y,0) = +0.5; θ(x, y,1) = −0.5 at 0 ≤ x, y ≤ 1

∂θ

∂x

∣∣∣∣
x=0

= ∂θ

∂x

∣∣∣∣
x=1

= 0 at 0 ≤ y, z ≤ 1

∂θ

∂x

∣∣∣∣
y=0

= ∂θ

∂x

∣∣∣∣
y=1

= 0 at 0 ≤ x, z ≤ 1

(10)

Here x, y, and z are dimensionless coordinates varying along the horizontal and vertical directions, respectively; u, v , and w
are the dimensionless velocity components in the x-, y-, and z-directions, respectively; θ is the dimensionless temperature, 
and p is the dimensionless pressure.

The following changes of variables are implemented in the equations above:

x = X

L
, y = Y

L
, z = Z

L
, u = U L

a
, v = V L

a
, w = W L

a
, θ = T − T0

TH − T0

p = P L2

ρa2
, Pr = ν

a

Ra = gβ�T H3

aν
, Ha = BL

(
σ

μ

)1/2

(11)

The reference temperature T0 is chosen equal to (TH + TC)/2. B is the amplitude of the external magnetic field B controlled 
by the Hartmann number, which represents the ratio between Lorentz forces produced by the interaction of the current 
density J with the applied magnetic field and the viscosity forces.
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Table 1
Grid independence tests for, Ra = 105, Ha = 30, and an inclination angle of the magnetic field about the horizontal direction α = 60◦ .

Grid Nu (% Dev.) Umax (% Dev.) Wmax (% Dev.)

32 1.9147 0.13 15.5747 −0.11 14.6956 1.76
48 1.9131 0.04 15.5888 −0.02 14.7384 −0.27
64 1.9125 0.01 15.5993 0.04 14.7344 −0.01
80 1.9122 – 15.5927 – 14.7361 –

Table 2
Comparison of the predicted Nusselt number Nu on the left or right walls of the cavity taken from Rudraiah et al. [6] and from Sathiyamoorthy and
Chamkha et al. (HFF) [31] for the 2D case versus the present work.

Gr Ha Nu [Ref. 6] Nu [Ref. 31] Nu [PTW]
Case 2D Case 2D Case 3D

2 × 104 0 2.5288 2.5439 2.3439
10 2.2234 2.2385 2.0789
10 1.0110 1.0066 1.0064

2 × 105 0 4.9198 5.0245 4.9116
10 4.8053 4.9131 4.7164

100 1.4317 1.4292 1.4171

3. Numerical method and validation

3.1. Method of solution

The governing nonlinear differential Eqs. (5)–(9), with the relevant boundary condition Eq. (10), have been solved nu-
merically using the same methodology as that explained in details in previous works [27,28]. A staggered non-uniform 
mesh with second-order accurate finite volume method and the QUICK scheme have been used to minimize the numerical 
diffusion for the advective terms. Iterations are carried out until the normalized residuals of the mass, momentum and 
temperature equation become less than 10−8, i.e. 

∑
i, j |Φ it

i, j − Φ it−1
i, j |2 < 10−8. The generic variable Φ stands for u, v , w , 

p and θ ; it indicates the iteration level; the subscript sequence (i, j, k) represents the space coordinates x, y, and z. Sim-
ulations were performed by using a finite volume home FORTRAN code named “NASIM” developed by the second author, 
which uses the numerical methodology described above.

3.2. Grid independency

Grid independence tests were performed using four grids involving 32, 48, 64, and 80 nodes in each direction (x, y, or z) 
of the cubic enclosure at Ra = 105, Ha = 30, and for the angle of inclination of 30◦ as shown in Table 1. The intermediate 
grid in each case was used since the solution obtained is very close to the solution for the finest grid (803) based on a 
comparison of the Nusselt numbers and u- and v-component velocity extrema (U max and W max in the mid plane y = 0.5). 
In order to ensure a compromise between the accuracy of the results and the CPU time, the numerical solutions presented 
in this study were acquired from a 48 × 48 × 48 grid system. Such a grid presents very small differences compared to the 
finest one, and further increase in the number of grids produced essentially the same results as seen in Table 1.

3.3. Code validation

3.3.1. Critical Rayleigh number
The onset of Rayleigh–Bénard convection in an enclosure has also been investigated by several authors analytically, in 

terms of the linear stability theory, and numerically. For this purpose, we predicted numerically (with the help of the 
well-known mean-square method which will not be explained here for brevity) the Rac values corresponding to the onset 
of Rayleigh–Bénard convection when Ha = 0. According to the 2D-RB convection in a square cavity, our computed results 
reveal a value of 2585.82, which is in good agreement with the one obtained by Gelfgat [29] with a deviation of about 0.03%. 
On another hand, we obtain Rac = 3325.87 in the 3D RB convection, which is validated against the Rac value reported by 
Xiaowen Shan [30]. This result reveals a very good agreement.

3.3.2. 3D magnetoconvection tests
Furthermore, due to the luck of 3D-magnetoconvection benchmarks in the open literature, a second test has been also 

performed with an imposed magnetic field, and our results were compared to those of Rudraiah et al. [6] and to those of 
Sathiyamoorthy and Chamkha [31] in the 2D case. Computations have been carried out for various values of Ha (0–100 for 
a horizontally applied magnetic field, α = 0◦) and for two values of the Grashof number Gr = 2 × 104 and 2 × 105 and 
Pr = 0.054 (liquid metals), as seen in Table 2. The results are close together, meaning that the 2D assumption remains valid. 
Generally, both 2D and 3D flows trend towards a large similarity, in particular for integral quantities.
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Fig. 2. (Colour online.) w-Velocity component profiles versus x-abscissa at the mid-plane (y = 0.5) for (a) α = 0◦ , (b) α = 30◦ , (c) α = 90◦ , for different 
Rayleigh and Hartmann numbers.

Fig. 3. (Colour online.) Velocity component profiles as a function of coordinates (a) w(x), and (b) u(z) at the mid-plane (y = 0.5) for Ra = 105 and an 
inclination angle α = 0◦ .

4. Results and discussion

4.1. Choice of study parameters

In order to justify the choice of the selected parameters in the present study for convenience and brevity, we simply 
analyze the w-velocity component profiles in the vertical mid-plane y = 0.5. For this purpose, Fig. 2 exhibits the w-velocity 
component versus the x-abscissa for different Rayleigh and Hartmann numbers, and three different inclinations, namely 0◦ , 
30◦ , and 90◦ about the horizontal plane at mid-plane y = 0.5. This figure shows the combined effects of the three governed 
parameters Ra, Ha, and the inclination angle α. Firstly, as seen from this figure, the magnitude of the velocity component 
in the z direction is enhanced in regions near the vertical walls, because there is a strong upward heat transfer transport. 
Usually, the convection becomes dominant by increasing Ra; this is not the case here (see Fig. 2a) as expected, because the 
imposed magnetic field tends to reduce significantly the buoyancy forces. In addition, as shown in Fig. 2b, the w-profile is 
inversed. Another configuration that demonstrates a different aspect of the flow when a vertical magnetic field is imposed 
(α = 90◦ , Fig. 2c) is obtained for the same set of parameter (Ha, Ra). These observations deduced from Fig. 2 suggest that 
there is a kind of competition between the buoyancy effects represented by the Rayleigh number and the electromagnetic 
effects accounted for by the Hartmann number. For these reasons, an appropriate parameter choice is required, as conducted 
at the beginning of this study, to perform future numerical investigations.

4.2. RB magnetoconvection flow: case of a horizontal magnetic field

Typical components velocity profiles at the mid-plane (y = 0.5) in the case of an imposed horizontal magnetic field 
(α = 0◦) at fixed Rayleigh number (Ra = 105) and for different Hartmann values are shown in Fig. 3. Variations of both w-
and u-velocity components versus x- and z-abscissa are drawn in Fig. 3a and Fig. 3b, respectively. We observe that for all 
the values of Ha considered in the range 10–60, by steps of 10, the magnitude of the velocity components decreases with 
increasing the magnetic field’s intensity. As expected, with increasing the magnetic field, the strength of the recirculation 
flow vanishes. This is due to the fact that the magnetic forces become important when the intensity of the magnetic field 
is enhanced. Thus, the created Lorentz forces oppose progressively the buoyancy forces due to heating. On the other hand, 
w- and u-profiles reveal a perfect center symmetric trend for both x and z centerlines.
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Fig. 4. (Colour online.) Temperature profiles at the mid-plane y = 0.5 versus (a) the x-abscissa at the centerline z = 0.5, and (b) the z-abscissa at the 
centerline x = 0.5 for different Hartmann numbers in the range from 0 to 60 for Ra = 105 and α = 0◦ .

Fig. 5. Variation of the average Nusselt number versus the Hartmann numbers in the range from 0 to 60 for Ra = 105 and α = 0◦ .

In Fig. 4, the temperature profiles along both the horizontal axis and the vertical axis are presented at the mid-plane 
y = 0.5 and for seven Hartmann number values. Similar temperature profiles are observed for higher-magnitude fields 
corresponding to Ha = 30, 40, 50, and 60, as shown in Fig. 4a. This subfigure shows that the left half of the axis is cold, 
while the right one is hot. This is because the right half axis is crossed by a hot ascending flow driven by the vertical 
component of the velocity vector (w) as mentioned earlier in Fig. 3. Negative dimensionless temperature values mean that 
the temperature therein is significantly lower than the reference temperature ((TC + TH)/2). However, a low magnetic field 
intensity (Ha = 0 and 20) shows a discernible effect on the temperature profile. In fact, the passage of Ha = 0 to 10 results 
in inverted profiles, while Ha = 20 reflects a different behavior, as expected. Furthermore, for lower values of Ha, the vertical 
centerline is heated along its lower half and on the contrary is cooled by its upper half. This is attributed to the enhanced 
role of convection in heat transport at the vicinity of the heated bottom wall. In addition, sudden variations in temperature 
profiles (Fig. 4b) in the vicinity of active horizontal walls explain important gradients in these places. Temperature profiles 
become linear when Ha increases sufficiently.

From this stage on, we can highlight the stabilization of the flow by increasing Ha. The influence of the Hartmann 
number on the average Nusselt number is presented in Fig. 5. This figure shows that the maximal heat transfer rate in the 
cavity diminishes up to Ha = 10, after which it increases, reaching a maximum value at Ha equal to 15, then decreases 
monotonously again up to Ha = 30. A new maximum is reached for Ha = 35, then the heat transfer rate decreases again, 
indicating a considerable reduction in the average Nusselt number at high Ha numbers. The occurrence of these two peaks 
may be due to the local occurrence of instabilities and bifurcation phenomena according to these values of the Hartmann 
number.

4.3. Magnetic field inclination effects

4.3.1. On flow patterns
In the following, we analyze the impact on the flow structure and heat transfer caused by a change in the direction of 

the magnetic field. For this purpose, w-velocity component profiles, as a function of the x-abscissa, have been depicted in 
Fig. 6 in the mid-plane y = 0.5 and for four different inclinations, namely, α = 0◦ , 30◦ , 60◦ , and 90◦ . Three values of the 
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Fig. 6. (Colour online.) Velocity component profile w(x) at the mid-plane (y = 0.5) for different inclination angles α = 0◦ , 30◦ , 60◦ and 90◦ for various 
Hartmann numbers: (a) Ha = 10, (b) Ha = 30, and (c) Ha = 60.

Hartmann number (Ha = 10, 30, and 60) have been chosen and investigated. From Fig. 6, one can observe that regardless 
of the behaviour of these components, their magnitude decreases considerably by increasing the intensity of the magnetic 
field. First, if the Rayleigh–Bénard configuration is considered (α = 0◦), the heated particles localized at the bottom wall 
move to the left wall and migrate upward along the vertical wall. This motion is attributed to the positive w-component 
values, as seen in Fig. 6a. The colder particles are driven close to the ceiling and then downwards throughout the right 
vertical wall: the w-component takes negative values. Inclinations 30◦ and 60◦ show similar behaviors.

According to Eqs. (6) and (8), the components of the Lorentz force, in the vertical plane, are symmetric functions of sinα
and cosα values of the two complementary angles 30◦ and 60◦ . Except for the lower values of Ha, there is either upward 
or downward movement of hot or cold particles under the only effect of the w-component, as can be seen in Fig. 6b and 
Fig. 6c.

Once more, we are interested in analysing the velocity isocontours by taking into account the combined effects of Ha, 
Ra, and of the tilt. Fig. 7 exhibits the u- and w-velocity isocontours for Ha = 30 and Ra = 7.5 × 104 for different inclinations 
of the magnetic field in the mid-plane y = 0.5. As seen in Fig. 7, both u- and w-isocontours related to the RB configuration 
(α = 0◦) reveal different shapes compared to those for the rest of the inclinations. This is because the inertia of the flow 
has decreased markedly. For the rest of the inclinations (α = 30◦ and 90◦), the flow stabilizes under the effect of Ha, which 
results in a rise of hot particles helped by the positive w-component followed by a downward movement of cold particles 
along the vertical walls using the u-velocity component. Hence, one can see two counter-rotating rollers revealing these 
movements in opposite directions.

With increasing the intensity of the magnetic field and the heating, as seen in Fig. 8, a major change in the flow’s 
structure then appears at the differentially heated configuration (α = 90◦). In order to see the three-dimensional flow 
circulation within the enclosure (Fig. 8 shows some w-velocity component pathlines in the cubic enclosure for Ra = 5 ×104, 
105, two values of the Hartmann number, Ha = 10 and 60, and three different inclinations (α = 0◦ , 30◦ , and 90◦). As seen 
from this figure, the w-velocity component pathlines originating at the hot bottom wall (the point of origin is indicated 
by a filled circle at the hot wall: A (0.1, 0.1, 0.1)) passing through the fluid, and terminating at the cold wall (the point of 
termination is indicated by a filled circle at the cold wall: B (0.9, 0.9, 0.9)). The trajectories are colored in accordance to 
the vertical w-velocity magnitude. Hot walls always act as sources, while cold walls act as sinks for energy and motion. 
Generally, as can be seen from these subfigures, pathlines originate at the hot wall, pass through the fluid, and terminate 
at the cold wall; they are not necessarily closed curves. Due to RB instability encored at α = 0◦ and Ha = 10, Fig. 8a makes 
complicated spiral loops inside the fluid region, and finally terminates at the cold wall. When the intensity of the heating 
and magnetic field magnitude are kept unchanged, increasing the inclination of the magnetic field with respect to the 
horizontal (α = 30◦), the flow becomes symmetrical about the central vertical plane, so that the pathlines should be mirror 
images.

This becomes more marked if the differential heated cavity configuration is concerned (α = 90◦). As expected, increas-
ing the magnetic field magnitude (Fig. 8d–f) provides strength stabilization and organization of pathlines. In addition, the 
w-velocity component of the fluid in the boundary layers near the two vertical walls is higher than the velocities along the 
cavity centre, as can be seen in Fig. 8d–e. This is because the hot fluid travels up the heated wall and then along the top 
ceiling toward the cold wall. A relatively colder fluid travels down the cold wall and then proceeds along the bottom heated 
wall toward the hot wall. According to the differentially heated cavity (90◦), two distinct counter-clockwise circulating flows 
are generated, as seen in Fig. 8f.

To analyse the three-dimensionality nature of the flow, the isosurfaces of the transverse velocity component v for a 
specific value (−0.4) and a fixed inclination of 30◦ are shown in Fig. 9. From this figure, we can see an anti-symmetric 
structure about the mid-plane y = 0.5 for Ha = 60. This means that the three-dimensional effects are present and that the 
two-dimensional model can be a good approximation.
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Fig. 7. (Colour online.) Velocity component isocontours at the vertical mid-plane y = 0.5 and different inclination angles α = 0◦ , 30◦ , and α = 90◦ for 
Ha = 30 and Ra = 7.5 × 104: (a)–(c) u-isocontours, and (d)–(f) w-isocontours.

Fig. 8. (Colour online.) Fluid particle pathlines for different inclination angles α = 0◦ , 30◦ and 90◦ for (a)–(c) Ha = 10 and Ra = 5 × 104, and (d)–(f) Ha = 60
and Ra = 105.
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Fig. 9. (Colour online.) Isosurfaces of the transverse velocity component v for a specific value (−0.4) and a fixed inclination angle of 30◦ .

Fig. 10. (Colour online.) Temperature isosurfaces at the vertical mid-plane (y = 0.5) for three different inclination angles α = 0◦ , 30◦ and 90◦ for Hartmann 
numbers Ha = 30 and 7.5 × 104.

4.3.2. On the temperature field
We are interested now in the temperature distribution of the central axis of the cavity, localized at mid-plane y = 0.5, 

under the effects of changes in the direction of the magnetic field. In fact, Fig. 10 shows three-dimensional isotherms in 
the cavity for Ha = 30, α = 0◦ , 30◦ , 90◦ , and for a fixed Rayleigh number Ra = 7.5 × 104. According to the Rayleigh–Bénard 
configuration (α = 0◦), the thermal gradient is high near the active sides due to three-dimensional instabilities. Once the 
magnetic field is inclined at 30◦ , one can observe a reversal flow illustrated by the fact that the heated and cooled parts are 
exchanged. When the magnetic field is applied in the vertical direction (α = 90◦), we can see a significant distortion of the 
temperature isosurfaces.

4.3.3. On heat transfer
The heat transfer rate across the fluid layer can be expressed in terms of average Nusselt number at the bottom wall 

(z = 0) as:

Nu = − 1

AR

1∫
0

1∫
0

∂θ

∂z

∣∣∣∣
z=0

dxdy (12)

In the following, we propose to quantify the heat transfer rate with the help of the average Nusselt number. For this 
purpose, Fig. 11 shows the variations of the average Nusselt number as a function of several parameters, namely Ha, Ra, and 
the inclination angle of the magnetic field about the horizontal direction. Fig. 11a illustrates the variation of the average 
Nusselt number versus all possible inclinations of the magnetic field. The optimal heat transfer rate appears when the mag-
netic field becomes vertical (α = 90◦). For this inclination, both buoyancy and magnetic forces act upward, corresponding 
to the aiding situation. A 33% rise in the average transfer rate was recorded (from Fig. 11a) between the two inclinations 
(α = 0◦ and 90◦) for Ha = 60. Furthermore, as expected, the same figure exhibits a perfect symmetric profile of Nu by 
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Fig. 11. (Colour online.) Variation of the average Nusselt number versus the inclination angle in the range from 0 to 120◦ for different Hartmann numbers.

scanning the magnetic field orientation from 0◦ up to 360◦ . This is due to the symmetry of the magnetic force components 
about the z vertical axis. In addition, this trend demonstrates the robustness of the numerical method to take into account 
the orientation of the magnetic field, which is the reason why the study has been restricted to orientations of the prime 
quadrant. For other pairs of values (Ha, Ra), as shown in Fig. 11b, there is a particular behaviour of the Nu profile at Ha = 10
and Ra = 5 × 104. As mentioned earlier, according to these parameters, the flow undergoes a special regime characterized 
by instabilities and bifurcations. Only an increase of 8.6% has been estimated for this case. An analysis of Fig. 11b shows 
that with the increase of the intensity of the magnetic field Ha to 30, away from the bifurcation, Nu grows again to achieve 
about 21%. When an increase in the magnetic field is applied, for a fixed Ra number, a net reduction in heat transfer is 
imminent.

5. Conclusion

The effects of both the intensity and the orientation of the imposed magnetic field on the flow structure and the heat 
transfer rate within a cubical enclosure cavity heated from below have been investigated in the present study. Initially a 
suitable choice of study parameters has been performed to avoid complex situations due to instability and bifurcations.

The case of a horizontal field is first considered. Flow patterns have been analyzed in terms of typical components of 
the velocity profiles at the mid-plane (y = 0.5) for a fixed value of the Rayleigh number (Ra = 105) and different Hartmann 
values ranging from 0 to 30. Two contra-rotating rolls that are induced near the bottom and the ceiling in the opposite 
direction of the enclosure, except that corresponding to Ha = 20, which presents a strange behaviour, are observed. Temper-
ature isosurfaces exhibit complex shapes due to the dominance of the convection effects in the absence of a magnetic field. 
The presence of a magnetic field is reflected by the distortion of the isosurfaces shapes not only in the center of cavity, but 
also at the vicinity of each side. The effect of the magnetic field is found to decrease the heat transfer rate considerably. 
In fact, the average Nusselt number profile presents two picks that may be due to the local occurrence of instabilities and 
bifurcation phenomena.

In second stage, the effect of the magnetic field inclination is concerned. It is obvious that this is related to the orien-
tation of the magnetic force that can help or oppose the buoyant force. Given the symmetry property of the Lorentz force, 
the study has been restricted to orientations of the prime quadrant (0◦–90◦). For fixed values of Ha and Ra, the increasing 
inclination of the magnetic field with respect to the horizontal direction makes the flow undergoing a symmetrical shape 
about the central vertical plane, so the pathlines should be mirror images.

An optimal heat transfer rate appears when the magnetic field becomes vertical (α = 90◦). For this inclination, both 
buoyancy and magnetic forces act upward, corresponding to an aiding situation. A 33% rise in the average transfer rate was 
recorded between the two inclinations (α = 0◦ and 90◦) for Ha = 60. A particular behaviour of the Nu profile at Ha = 10
and Ra = 5 × 104 is observed. Only an increase of 8.6% has been estimated for this case. By increasing the magnetic field Ha
to 30, away from the bifurcation, Nu grows again to achieve about 21%. When an increase in the magnetic field is applied, 
for a fixed Ra number, a net reduction in heat transfer is imminent.
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