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This is a discussion of the present understanding of transition to turbulence in parallel 
flows, based upon the idea that it arises from a subcritical instability. The result is 
a coupled set of equations, one amplitude equation in the direction of translational 
invariance of the geometry coupled with the standard Reynolds equation for the average 
transfer of momentum. It helps to understand a basic feature of the transition in parallel 
flows, namely that turbulence manifests itself in localised domains growing at a constant 
speed depending on the Reynolds number.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Historical introduction

The transition to turbulence is observed in flows when their speed with respect to the walls increases beyond a certain 
limit. This transition is generally attributed to the fact that, beyond this critical speed, the flow becomes unstable, an idea 
that can be traced back to a founding paper in fluid mechanics by Osborne Reynolds in 1883 [1]. How important it was, 
this paper was not written very clearly and its conclusions were somewhat ambiguous. Perhaps this explains why part of its 
message has been more or less forgotten over the years. To take an example, by reading a review on the transition in parallel 
flows [2] one sometimes finds the word “instability” in tentative explanations of the occurrence of localised structures, but 
without any clear definition of what is meant there. To explain that a fluid crosses the boundary of a turbulent spot in both 
the laminar-to-turbulent and turbulent-to-laminar directions Coles writes that there should be “some kind of strong local 
instability in the vorticity-bearing ambient flow”, a rather wide (and unexplained) extrapolation of what is understood as 
an instability. This seems to imply that unstable fluctuations are carried by fluid velocity, which is incorrect for the flow 
considered in that paper (spirals in Taylor–Couette flows) at finite Reynolds numbers and where the advection of vorticity 
by the fluid is far from perfect, since such an advection exists in the inviscid limit only. Coles seems to imply that turbulence 
can grow only as the result of an instability, although I argue below that localised turbulent structures grow by a process 
of contamination and not by an instability, local or not. Therefore it seems pertinent to reconsider first what is meant by 
instability in the context of fluid mechanics and in parallel flows.

Stability theory is almost as old as Science as we know it and it kept a strong relationship to fluid mechanics from 
its very beginning. 2300 years ago Archimedes of Syracuse (Sicily) solved the problem of stability of what we would call 
2D floating bodies with a parabolic cross section [3]. Using a geometrical method he proved that, if the floating body is a 
parabolic cylinder of uniform mass density cut horizontally above a certain height, its vertical equilibrium becomes unstable 
against tilting. Archimedes even found the new equilibrium positions. This was the beginning of studies of stability in 
fluid mechanics. As it is out of question to review here the whole history of the field, I jump to another very significant 
development of this idea of stability in fluid mechanics.
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The next step we shall mention is the explanation of how wind excites waves on the surface of the sea. The theory 
of waves without wind begins in Newton’s Principia, where it was shown that the wave speed is proportional to the 
square root of the wavelength. This result was established (without solving anything like a partial differential equation) by 
neglecting the air, windy or not, and by neglecting nonlinear effects, this being correct, as pointed by Newton, whenever 
the slope of the surface is small. This does not explain the obvious relationship between the wind strength and the wave 
height. A first link between water waves and wind was established by Kelvin and by Helmholtz almost two centuries after 
the Principia. In separate works they considered the dynamics of small-amplitude fluctuations of the sea surface under 
the effect of a wind blowing at uniform speed, all this done in the framework of inviscid fluid dynamics. Although the 
instability of the fluctuations derived in this way is weak, there is presently no good theory explaining how the linear 
Kelvin–Helmholtz instability is saturated by dissipation phenomena (mostly by wave breaking [4]).

This theory of Kelvin–Helmholtz instability in the linear approximation made the model of many subsequent studies 
of linear stability, culminating with the thesis by Werner Heisenberg in 1924 under the guidance of Sommerfeld. In this 
masterpiece of WKB analysis, Heisenberg [5] showed that, with viscosity included, the plane Poiseuille flow is linearly 
unstable above a critical Reynolds number, although it is always linearly stable without viscosity. In 1966, Iordanskii and 
Kulikovskii [6] showed that this flow is convectively, not absolutely, unstable. Although Heisenberg explained his paradoxical 
result (friction is responsible for instability), it met a strong opposition and various (incorrect) proofs of its “erroneous” 
character were published.

With the advent of artificial flight and motorcar industry, fluid mechanics became an applied science with many chal-
lenges to meet. Therefore the understanding of real flows at moderate to large Reynolds numbers became an urgent matter. 
Reynolds [1] himself set the stage by studying the experimental transition to turbulence in pipe flows. This led him to 
introduce what is now called the Reynolds number. He tried to show that the transition occurs at a well defined value of 
this number, a point hard to make in this case, because the transition is subcritical. As reported below, Reynolds, although 
he was not by far clear in his statement, seemed to make a distinction between subcritical and supercritical bifurcation. 
Moreover, he was well aware that fluctuations, if of sufficient amplitude, change the mean structure of the flow, introducing 
so a feedback between this mean flow (if driven by a constant pressure gradient), its Reynolds number, and the turbulent 
fluctuations. The Reynolds equation relates the mean velocity, the pressure and the Reynolds stress (which can be seen 
as the contribution of the turbulent fluctuations to the flux of momentum, another name for the stress—this has been 
rediscovered several times since in various forms.)

Somehow, Reynolds was first to consider the problem of the sub- or supercritical character of the bifurcation to turbu-
lence in parallel flows. After reporting his experiments of transition to turbulence in a pipe he gave a hint that it could not 
be the result of a linear instability. He asked the question (the last one in a list of six): “Did the eddies make their first 
appearance as small and then increase gradually with the velocity, or did they come suddenly?”

His (unclear) answer was:
“The bearing of the last query may not be obvious; but, as will appear in the sequel, its importance was such that in 

spite of satisfactory answers to all the other queries, a negative answer to this in respect of one particular class of motion 
led to the reconsideration of the supposed cause of instability and eventually to the discovery of the instability caused by 
fluid friction.”

2. From Reynolds to Landau: subcritical vs supercritical bifurcation

After Reynolds’ work, many experimental studies put in evidence that parallel flows bifurcate to turbulence via a regime, 
at intermediate Reynolds number, such that turbulence is localised in well-separated domains having received various 
names. In careful studies Emmons [7] showed that a Blasius boundary layer shows beyond a range of Reynolds number 
what are called now “Emmons spots” growing with a well-defined arrowhead shape surrounded by laminar flow and tur-
bulent inside (although with recognisable roll structures of axis in the streamwise direction).

This coexistence of laminar and turbulent domains (turbulent flashes in the words of Reynolds) was unexplained at 
the time of those observations. Such a coexistence can be stationary, in the Taylor–Couette case, for instance. In a paper 
presented at a Conference at Los Alamos in 1985 [8], I related this coexistence to the subcritical character of the bifurcation.

As this notion of a subcritical bifurcation is going to be central for the developments to come, it should be made more 
precise. A supercritical instability is an instability growing slowly near a threshold and saturating at a finite amplitude 
tending to zero as the threshold is reached from above, supposing that above the threshold there is a linear instability 
and none below. That the instability is sub- or supercritical depends on nonlinear effects. Qualitatively, “subcritical” means 
that the growth of the amplitude of the fluctuations tends to increase even more their rate of growth. On the contrary 
fluctuations of finite, even small amplitude have a negative effect on the rate of growth in the case of a “supercritical” 
bifurcation. However this addition of a nonlinear rate of instability to an already linearly unstable fluctuation does not 
exhaust all possibilities, because there are examples of flows that remain linearly stable for all values of the Reynolds 
number, like plane Couette flow or pipe Poiseuille flow. Nevertheless this kind of flow is subcritically unstable, like flows 
becoming linearly unstable at a given Reynolds number, this being the case of the plane Poiseuille flow. They can be 
considered as subcritical because for Reynolds number above a certain threshold, a turbulent state can exist with steady 
statistical properties, whereas below this threshold, only the laminar state can maintain itself forever. Somehow, in this case, 
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the upper threshold is at infinite Reynolds number, a threshold defined as the Reynolds number where infinitesimally small 
perturbations allow a transition to the turbulent steady state.

In 1944, Landau [9] did introduce the distinction between sub- and supercritical bifurcation in fluid mechanics, limited 
to time-dependent perturbations only. My 1985 paper extended this to time- and space-dependent perturbations. The paper 
[8] explained that, in extended structures like parallel flows, subcritical transitions can lead to domains with a different 
behaviour, turbulent and laminar for example, like two different thermodynamic phases of the same substance, liquid and 
vapour can coexist at the same temperature and pressure. I developed various ideas connected to that. In a finite range of 
parameters, the fronts separating two different “phases” are pinned on the underlying lattice if one of the phase is a steady 
periodic pattern and the other the laminar state, as observed in Bénard–Marangoni thermal convection with hexagons. If 
the transition is from a laminar to a turbulent state, it belongs to the class of directed percolation at the onset. A thorough 
review of the present knowledge of the subject, both in experiments and in theory, has been given by Paul Manneville in 
two recent publications [10].

Returning to the problem of defining as precisely as possible what is meant by a subcritical instability, one could take a 
heuristic view: from our point of view the most significant property of subcritical bifurcations is that in a range of param-
eters (the Reynolds number here) there is more than one solution to the fluid equations, usually the laminar one and the 
turbulent one. By “solution” here one implies steady solutions, like the uniform state and the hexagons in Bénerd–Marangoni 
convection, or solutions that are time dependent, but with stationary properties on (time) average, like in the coexistence 
of steady Couette flow and the inside of a turbulent spot, which is stationary only on average. The connection between 
this property and what is meant usually by stability is rather loose. One thinks to stability with respect to finite-amplitude 
perturbations, but this is not so well defined. For instance, the Couette flow is linearly stable for any Reynolds number, 
and—presumably—unstable against finite-amplitude perturbations of vanishingly small amplitude as the Reynolds number 
tends to infinity. Practically this property is irrelevant because it is experimentally impossible to reach Reynolds numbers of 
the order of a few thousand without making the Couette flow turbulent if not highly turbulent. A more significant property 
related to the “practical” onset of turbulence in Couette as well as in others flows with a subcritical transition to turbu-
lence is the onset of growth of turbulent domains, which yields a well-defined criterion for the transition to turbulence, 
independent of the amplitude of the initial perturbation [10,11].

3. Turbulence and chaos theory

In principle turbulence is described by chaos theory. In its usual meaning, this theory concerns dynamical systems with 
a phase space of finite dimension, and so it does not help much to describe large-scale turbulent structures involving a 
phase space of very large dimension. When the oscillations are stable, periodic or quasiperiodic dynamics can synchronise 
by phase diffusion in large domains. The time needed for oscillations to get spatially in tune grows like the square of the 
size of the domain becoming synchronised, as verified in Marseilles [12] for the Bénard–von Kármán oscillations in the wake 
of a cylinder. This idea of synchronisation of interacting oscillating systems goes back to Huygens, who synchronised weakly 
interacting clocks. However, if the local dynamics is chaotic, no synchronisation does take place spontaneously. A large 
system, if chaotic in time and without external time dependent forcing, has to be chaotic in space too: the strength of the 
coupling coming from the large-distance interaction, measured by the inverse time needed to synchronise, decays like 1/L2

for L large (L size of the domain, this is the phase diffusion effect discussed by Kuramoto [13]), although the trajectories of a 
chaotic system are unstable with a constant, size-independent rate of growth. This excludes the synchronisation (same time 
dependence everywhere) of large chaotic systems. In more technical terms, the Lyapunov divergence of chaotic trajectories 
always wins over the synchronisation by next-neighbour interaction as L increases.

Before chaos theory, linear stability analysis dominated the subject of theoretical fluid mechanics. From the point of 
view of dynamical systems, it yields the first term in Landau’s amplitude expansion (written below), an example of Poincaré 
normal form near the instability threshold of self-oscillating systems (Poincaré–Andronov bifurcation). An early attempt 
in 1944 to rationalise a nonlinear theory of fluid instabilities is due to Landau [9] but it had seemingly little impact in 
fluid mechanics and Poincaré was ignored. Landau defines clearly the notion of subcritical vs. supercritical instability (the 
wording we use in the present paper, words introduced years after Landau’s paper who used instead “hard” for subcritical 
and “soft” for supercritical). Landau draws an instability diagram in control parameter/amplitude coordinates. Notice that the 
idea of subcritical instability is older and can be traced back to Poincaré’s PhD thesis (1878) [14], in which he introduced 
the general notion (and the French word “nœud-col”, translated later in reverse order as “saddle-node”) for this kind of 
bifurcation.

Generally speaking, modern (and not so modern!) theory of dynamical systems was largely ignored in theoretical works 
on fluid mechanics. This lack of interest ended after Ruelle and Takens [15] suggested a (deep) connection between non-
trivial results of dynamical systems theory and the transition to turbulence. Ruelle’s theory dealt with systems of a few 
degrees of freedom, not the situation of parallel flows. In a pipe, for instance, one expects the number of degrees of free-
dom to grow (at large but finite Reynolds number) proportional to the pipe length (a point already made by Landau). 
Therefore the use of dynamical system theory is not so straightforward because of the a priori very large number of degrees 
of freedom at large Reynolds numbers.
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4. Phase coexistence in thermodynamics and occurrence of turbulent spots in transition flows

Hopefully the previous developments have shown that one has to use ideas beyond chaos theory in its usual meaning to 
understand the transition to turbulence in parallel flows (and so in systems with many degrees of freedom). I suggested in 
[8] an analogy between thermodynamic phases and the coexisting laminar and turbulent state. This analogy should not hide 
deep differences however. At the deepest level (perhaps), one can say that thermodynamics, at least in its modern sense, 
is a way to understand and describe equilibrium properties of system of many atoms and molecules. Thanks to Boltzmann 
and Gibbs, we know how to make the connection between the underlying Newtonian dynamics of atoms and molecules and 
the macroscopic properties of matter via the Liouville invariant measure. Nothing like that is available for turbulence: no 
formal (or informal!) expression like the Liouville measure exists for the turbulent fluctuations related to the Navier–Stokes 
equation (equation which is the qualitative equivalent in turbulent flows of Newtonian dynamics in assemblies of many 
interacting particles). The only known “exact” method for connecting quantitatively the properties of a turbulent flow to the 
fundamental equations is the direct numerical solution to those equations at large Reynolds numbers, a numerical solution 
that is beyond our capabilities of today. However we expect that some qualitative features of turbulence can be captured by 
guesses like the one proposed in [8] for the transition to turbulence in parallel flows.

Compared to usual thermodynamics, the coarse graining involved by taking a turbulent phase as homogeneous requires 
averaging over length and time scales bigger than the one of the turbulent fluctuations. Even at quite large Reynolds num-
bers, the dominant scales in the turbulent fluctuations are still macroscopic, like the diameter of a pipe or the thickness of 
a boundary layer. This leads to significant differences in the transition process compared to thermodynamical phase tran-
sitions, where the coarse graining is made on invisibly small scales of space and time. Another difference is the possibility 
of stable Gibbs-like critical nuclei in non-equilibrium systems, as was pointed out first by Boris Malomed [16], although 
the Gibbs critical nucleus in thermodynamics (a drop of liquid in supercooled vapour for instance) is always unstable, as 
proved by Gibbs. Lastly, as I point out below, there is a fundamental difference between time-dependent fluctuations in 
turbulence and the ones in equilibrium thermodynamics, a difference related to the time-reversal symmetry in the sense of 
Onsager.

To describe the coexistence of domains with a different inner structure, like turbulent and laminar, one has to assume 
a space-dependent “order parameter” going continuously from a constant value deep in the laminar state to another one 
deep in the turbulent state. This order parameter could be (for instance) the mean square velocity of fluctuations. Although 
the transition layer from turbulent to laminar in experiments is of the order of the size of the turbulent structures (or 
vortices), the derivation of amplitude equations assumes that this transition occurs on a long space scale, likely not a 
crucial assumption. That it is not crucial follows from a comparison with transitions in equilibrium statistical mechanics: 
the liquid/vapour interface, outside of the neighbourhood of the critical point, is of order of the size of the molecules. 
Nevertheless, Maxwell and van der Waals [17] managed to understand its physical properties (particularly when deriving 
Laplace’s pressure jump across a curved interface) by using a phase field model where the transition layer is assumed 
to be much thicker than molecular scales. This assumption of a thick transition layer helped to connect the theory of 
subcritical transitions to the amplitude equations with a slow space and time dependence as developed by Segel and 
by Newell–Whitehead for Rayleigh–Bénard thermal convection, a case of supercritical transition to a steady state. In this 
case, the amplitude equation is derived rigorously for a Rayleigh number slightly above the instability threshold, a limit 
with no possible equivalent in parallel flows, where either there is no threshold for linear stability or where there is no 
secondary parameter, like in Bénard–Marangoni instability, allowing one to derive the amplitude equation in a subcritical 
situation close to supercriticity. Somehow I assumed that this amplitude equation approach continues to work for subcritical 
transitions to time-dependent and even chaotic/turbulent states. This introduces a new ingredient in Landau’s amplitude 
equation for fluid instabilities as he restricted himself to instabilities of uniform average amplitude in space, whereas I took 
into account the possibility of (slowly) space-dependent averages.

In Chapter 3 in Fluid Mechanics [18] Landau considers the instability of a steady flow against time periodic perturbations 
in the form v = A(t) f (x, y, z) and he gives an equation for the amplitude A(t) = constant × eγ t eiωt near the limit of linear 
stability, namely when γ is small.

The Poincaré normal form (or Landau equation) for the expansion of d|A|2
dt in powers of the amplitude reads:

d|A|2
dt

= 2γ |A|2 − α|A|4 (1)

It is not obvious to imagine a physical situation in a fluid such that Landau’s theory applies without taking into account 
a possible space dependence of the amplitude. However such an amplitude equation in its original form applies when the 
extent in space of the unstable fluctuations is bounded (and so well defined near the threshold), like the oscillations in 
the wake of a sphere slightly above a critical Reynolds number of about 40, where a Poincaré–Andronov bifurcation takes 
place. The case of extended structures was considered by Segel and by Newell–Whitehead [19] in the same framework of 
amplitude equation for the Rayleigh–Bénard instability, where one has:

1) a supercritical instability,
2) a bifurcation from a steady state to another steady state like for instance in Euler’s Elastica or Archimedes floating 

parabola. The frequency ω of the oscillations is set to zero in this case.
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From Landau’s equation (1), one may define what is meant by supercritical and subcritical instability for space-indepen-
dent solutions.

The case of a supercritical instability is the one where:

1) the coefficient γ of the linear term (with respect to |A|2) on the right-hand side of (1) is a smooth function of the 
Reynolds number crossing zero for a critical value Rc of this number and so becomes positive but small for R slightly 
larger than Rc ;

2) α, called Landau’s coefficient, is positive. In this case, the steady stable solution to (1) is |A|2 = 2γ
α , which is small 

for γ small, which justifies that the right-hand side of (1) is limited to terms linear and quadratic with respect to 
|A|2, because for γ small, the next-order cubic (with respect to |A|2) term is negligible compared to the terms written 
explicitely.

The case of parallel flows is such that this situation is almost never met: Point one together with point two above are 
never true for a given parallel flow instability. Particularly, α is always negative. To alleviate that, one could think of carrying 
an expansion in powers of the amplitudes of all unstable modes. This is, I believe, a hopeless (and useless) task. Landau 
(section 28 of reference [18]) seems to imply that localised structures in flows above a certain Reynolds number are due 
to the fact that this flow is convectively unstable. This is debatable: a Poiseuille flow in a circular pipe is linearly stable at 
all Reynolds numbers. Although a plane Poiseuille flow is linearly unstable for Reynolds bigger than 5770, turbulent spots 
are convected and grow at smaller values of the Reynolds number, somewhere between 1000 and 2000, depending on the 
experimental conditions. Moreover, it is unclear if a concept borrowed from linear stability theory (convective vs. absolute 
instability) has any meaning in a strongly nonlinear system, with many interacting modes of finite amplitude. Lastly, there 
is a major difference between observations and the predictions based on linear theory: in this approach the amplitude of 
the fluctuations continues to grow with time in the convected region, although in the turbulent spots, the amplitude inside 
individual spots does not grow, only their size grows.

5. The reaction diffusion model with noise

The basic idea for taking into account a possible slow dependence of the amplitude of fluctuations with respect to 
space is derived from the theory of Segel–Newell–Whitehead. It amounts to add to the Landau amplitude equation a space-
diffusion term, a convective term and a multiplicative noise with the result:

∂ E

∂t
= −∂V

∂ E
+ U · ∇E + Dij

∂ E

∂xi∂x j
+ ζ(x, t)E (2)

where Dij is a positive definite matrix, U a vector giving the average velocity of convection of turbulence by the mean flow. 
The trickiest points in this “general” formulation are the definition of the potential function V (E) and the meaning of E
(instead of |A|2 in Landau’s theory, but still a function of space and time), considered later. The writing of the term − ∂V

∂ E is 
inspired by the right-hand side of Landau’s equation (1): a somewhat “natural” extension of this equation is to assume this 
gradient flow structure of the deterministic and local part of the generalised amplitude equation. A possible form of V (·) is

∂V

∂ E
= v2 E2(E − E0)(E − E1)

where the constants v and E0,1 depend on the Reynolds number. With such a linear, quadratic and cubic power (with 
respect to E) in the Taylor expansion of V (·) near E = 0, one may have two minima of this potential, one at E = 0 repre-
senting the linearly stable laminar state (because of the positiveness of the coefficient v2), the other at a finite value of E
represents the turbulent state.

For the Bénard–Marangoni instability near threshold, the equation above without the noise term and without advection 
may be derived from the basic equations. This instability is known to be weakly subcritical and to be described by three 
coupled amplitude equations, one for each mode at an angle of 2π/3 of the two others. In that case one finds a saddle-
node bifurcation from the state without convection to two non-equivalent states with convection, one—stable—with an 
upward flow in the centre of the hexagons, another one—unstable—with a downward flow there and lastly the laminar state 
without hexagons at all, this one coexisting with the stable hexagons only in a finite range of values of the imposed temper-
ature difference. One of the linearly stable states has a lower V (·) than the other and should be, in principle selected—for 
instance—by the direction of motion of an interface separating the two states (stable hexagons and no hexagons a all). 
However, as I predicted and as was observed [11], the front separating the two states is pinned on the hexagonal structure 
in a range of parameters.

Besides situations where this pinning is present, the interface separating the two phases (laminar and turbulent) moves 
generically at constant speed, a quite general property of solutions to the reaction–diffusion equations such as (2). This 
constant speed of the front is in good agreement with many observations on parallel flows, done in particular by Wygnanski 
et al. [20].
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6. Remarks on the various terms in equation (2)

In the Landau theory, the amplitude A is well defined; it is the amplitude of the time-periodic solution representing 
unstable fluctuations of fluid velocity. In the far more complex case we have in mind, this cannot represent the amplitude 
of regular oscillations, but instead some quantity related to the amplitude of local turbulence. The simplest way to extend a 
definition of |A|2 to turbulence is to take the mean square value of the velocity fluctuations as the amplitude. However this 
introduces an unwanted property: in a pipe flow this mean square value depends on the location in the turbulent region 
on the short scale, like the radial distance. We do not intend to describe this radial dependence, as the amplitude equation 
aims at describing the “large-scale” structure of the coexisting turbulent and laminar domains. For instance in the classical 
case of the Rayleigh–Bénard convection near onset, the amplitude equation is for an amplitude depending on the horizontal 
coordinates, not on the vertical coordinate. In the case of a pipe flow, the order parameter E should be understood as the 
mean square velocity fluctuations averaged in the radial and azimuthal directions, making it a function of the longitudinal 
distance only. This question is tightly related to the discussion below on the meaning of the coordinates xi , x j , etc., as they 
appear in Eq. (2).

In Eq. (2), we left undefined what are the coordinates labelled xi , x j , etc. In the concrete situations we are thinking 
about, the transition to turbulence is there because of the friction of the fluid with the walls. For instance in the pipe flow 
of Reynolds experiments, this friction is with the cylindrical inner surface of the pipe, in plane Poiseuille flow this is with 
the two parallel plates, etc. In those situations there are two geometrical elements to be accounted for: first there is a 
length scale, the diameter of the pipe, the gap between the plates, the thickness of the Blasius boundary layer, etc. next 
there is one or two directions of translational invariance, the pipe length, the spanwise and streamwise directions in plane 
Poiseuille flow, etc. As the amplitude equation concerns the large-scale features of the turbulence, the intrinsic length scale 
cannot appear in the amplitude equation which has not the resolution power necessary for this intrinsic scale. Therefore, the 
coordinates xi , x j , etc. which appear in the equation above are the coordinates in the direction of translational invariance 
(or quasi-invariance in Blasius boundary layers) like along the pipe in circular Poiseuille flow. However, this program fails 
in one respect, because the thickness of the transition layer is not much bigger than the intrinsic length. It is actually 
of the same order of magnitude. A similar situation is met in thermodynamics: the vapour–liquid transition layer has a 
thickness of the order of the size of molecules, except close to the critical point. Nevertheless, it is possible to find the 
equilibrium shape of an interface between the two phases by using macroscopic concepts like the Laplace equation for the 
capillary drop of pressure across the interface and by writing the constraint of uniform pressure in each of the two phases. 
The equivalent program for finding the evolution of localised turbulent structures in parallel flows is to find first the local 
Reynolds number and the local amplitude E of the turbulent fluctuations by looking at their relation at the minima of the 
potential V (·). This gives the information needed to determine the local speed of displacement of the interface between 
the laminar and turbulent domains: this speed is defined by a local solution to Eq. (2). In general, the local minima of 
V (·) do not satisfy the constraint that V (·) takes there the same value in the turbulent phase and in the laminar one. This 
difference in the values of V (·) on both sides yields the speed of displacement of the interface. In the laminar and turbulent 
phase, one has to solve the Reynolds equation for the momentum balance, including Reynolds stress on the turbulent side. 
This makes sense in the limit where the turbulent spot is far bigger than the intrinsic length scale (radius of the pipe in 
pipe flows, gap thickness in plane Poiseuille flow, etc.). In this limit one has to solve Darcy-like (for plane Poiseuille flow) 
equation on both sides with an imposed pressure gradient at infinity and a condition of continuity of the velocity across the 
laminar/turbulent interface. This yields at the end a well-defined method for finding in a concrete way the time dependence 
of a turbulent domain. However this program does not work so simply for reasons outlined below.

All the discussion above neglected the noise term in the equation. One can expect that it becomes relevant when the 
difference of potential between the two “phases” is small and that it is washed out when this difference becomes bigger. 
I suggested [8] that, because of this sensitivity to noise near threshold, the propagation of the front near the transition 
between receding and advancing fronts belongs to the class of directed percolation, something that is at least qualitatively 
true because near this transition there is a tendency for the growing turbulent domain to split spontaneously into disjoint 
pieces, as it would follow from this scenario of directed percolation. This addition of a noise term to the diffusion equation 
is implicit in [8]: such a noise is necessary to the scenario of directed percolation discussed there. Chaté and Manneville 
[21] have studied a model equation where this noise is intrinsic, the equations being deterministic, but with a “steady” 
stochastic/chaotic part with steady average properties. This deterministic noise plays the same role as a random noise given 
from outside and, in this model, one observes a transition belonging to the directed percolation universality class, believed 
to be a generic scenario (independent of the details) with universal exponents [22]. Such a noise term has been also added 
[23] explicitely in models aimed at describing this transition in deterministic systems without added noise.

Another question concerns the derivation of a reaction–diffusion equation like (2) from the basic fluid equations. This 
question deserves of course to be considered, but with a grain of salt. We all know, thanks to the effort of generations 
of scientists, that fluid mechanics is actually described by a well-defined partial differential equation, the Navier–Stokes 
equation. One should point out however that, even though this equation is well known, it does not help much to compute 
simple turbulent flows, either in the situation of fully developed turbulence or with the more modest (?) aim to understand 
how a simple flow like plane Poiseuille flow goes from laminar to turbulent. This implies that one has to introduce in one 
way or another some statistical ideas to obtain results in this direction. The model for such a statistical theory is, of course, 
the very successful theory of statistical physics relying on Boltzmann ergodic assumption. This theory avoids the impossible 
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task of solving the equation of motion of 1024 particles to understand how a droplet of water evaporate or condense the 
vapour around. Unfortunately there is no such a thing like the ergodic assumption for nonequilibrium systems like a fluid 
at Reynolds number above a few thousands. This leaves us with the possibility of using various analogies to understand 
what is observed in real fluids. I used in [8] and above in the present paper the idea of a reaction-diffusion system with 
a potential depending on the Reynolds number and on the amplitude of the turbulent fluctuations. This can be at best 
a metaphor of the real properties of solutions vis-à-vis the Navier–Stokes equation, well known to have no variational 
structure (and so to be without potential function). After all one needs two things to understand the existence of turbulent 
spots. First there has to be for the same value of the Reynolds number two possible statistically steady solutions: the laminar 
one and the turbulent steady one. The existence of a potential function V (·) is not really needed to have this property of 
multiple solutions (in this sense) at the same Reynolds number. The potential function is necessary only to decide which 
state (laminar or turbulent) invades the other one if the two states share a common interface. This last point may have an 
answer without comparing two potential values. One can imagine to solve numerically the time-dependent Navier–Stokes 
equations with a laminar phase in a half-space and the turbulent state in the other half-space. In principle the numerical 
study could determine the direction of motion of the interface without having to compare the value of a potential V (·) on 
both sides. If the two states on each side are infinitely extended, in the long time the front will move at constant speed, 
unless the Reynolds number is exactly at a critical value.

The last term on the right-hand side of Eq. (2) is the noise term. This makes the equation for the growth (or decay) 
of turbulent structures different from a standard (= noiseless) reaction-diffusion equation. It is explained by the fact that, 
in the domain where E is not zero, there is turbulence although there is none in the laminar domain where E is zero. 
Therefore, in order to represent this turbulent noise, the simplest assumption is to take a noise term proportional to E , 
as done in the equation above. Moreover, the noise source ζ(x, t) can be taken as white Gaussian, likely an idealisation 
of what is this noise in concrete situations of fluid mechanics. However imperfect is this choice of noise, this is a way to 
take into account the randomness in space and time of turbulent fluctuations, something needed if one wants to describe 
real turbulent flows. Said in another way, a purely deterministic picture of turbulence is in principle possible, because—after 
all—turbulent flows obey the deterministic Navier–Stokes equation, but it is very hard to put in evidence with this equation 
the randomness existing in real turbulence: as already pointed out, in turbulence there is nothing like an explicit Liouville 
invariant measure like in classical mechanics.

The introduction of this noise term has non-trivial consequences. Equation (2) without the noise term describes a gradi-
ent flow, when it is written as

∂ E

∂t
= −δF

δE
(3)

where δ
δ

is a Fréchet derivative, and where the functional F is such that:

F (a) =
∫
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(

1

2
Dij

∂a

∂xi

∂a

∂x j
+ V (a)

)

As shown in [24], because of this gradient flow structure, the fluctuations term without the multiplicative factor E yields a 
probabilistic set of solutions to Eq. (2) that are time-reversible, namely such that time correlations satisfy the equality

〈
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(
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)
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(

E(t2)
)〉 = 〈

f
(

E(t2)
)

g
(

E(t1)
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with f (·) and g(·) different smooth functions. Other similar equalities hold for multitime correlations. If those equalities 
are satisfied, by analysing a solution of Eq. (2) with the noise not multiplied by E , there is no way of deciding what is the 
direction of time. On the contrary, one expects that the fluctuations due to turbulence do not have this property of time 
reversal symmetry. This is exactly what happens with the prefactor E in front of the noise: because of it the time-reversal 
symmetry is broken. This remark is significant because the scenario of transition to turbulence by directed percolation (time 
being one of the directions) is not compatible with time-reversal symmetry. Another consequence of the existence of this 
noise term and of its dependence on the amplitude E is the observed property (particularly obvious for Emmons spots) that 
the structure of the spots lacks completely symmetry between their upstream and downstream part: the cross flow across 
the turbulence/laminar boundary makes the boundary different if the flow goes from turbulent to laminar or the reverse. 
This is an indirect manifestation of the lack of time-reversal symmetry.

In thermodynamics, the growth of a phase at the expense of another is not ruled by the difference between the local 
values of the thermodynamic parameters and their value at the steady coexistence. In real thermodynamics, this growth 
is ruled by the release of conserved quantities (energy and mass) across the transition layer. This can be the (latent) heat 
release in a solid growing in a melt, or the release of one chemical species when a solid grows in a liquid mixture. So 
it seems of interest to look at the case of the growth (or decay) or turbulent domains in the light of what happens in 
thermodynamics. The equations for the growth or decay of a thermodynamic phase in another phase are the Fourier heat 
equation or the Fick equation for the diffusion of concentration. Both equations are to be solved with a boundary condition 
on the interface between the two phases, the Stefan condition expressing the conservation of energy or the conservation 
of mass of the chemical species. The Stefan condition for the energy states that the velocity of the front multiplied by 
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the latent heat is exactly the difference between the heat fluxes across the interface. In the case of a growing or receding 
interface between two states, laminar and turbulent, a boundary condition exists also. This is the problem considered below.

In the case of expanding (or receding) turbulent domains, the Reynolds number is defined locally by the solution to the 
equation for the pressure and the average horizontal fluid velocity. This equation averaged on time becomes the Reynolds 
equation including a part proportional to the square of the velocity fluctuations, the Reynolds stress. This indicates how to 
define the “order parameter” E: it has to be related to the Reynolds stress, namely proportional to the pair correlations 
of the turbulent velocity fluctuations. The part of this tensor relevant for the Reynolds equation for the large-scale flow 
around a turbulent spot is the one with indices of coordinates in the direction normal to the short (vertical) scale. The 
simplest choice is to take for E the trace of the velocity–velocity correlation in the horizontal direction and averaged on 
the vertical direction. On the other hand, the potential V (·) is also dependent on the Reynolds number, and so on the 
average flow velocity in the turbulent domain. Instead of a single reaction–diffusion equation for the amplitude one finds 
a set of coupled equations for the function E and for the mean flow, including the Reynolds equation for the average 
pressure and Reynolds stress. If one does not consider the inner structure of the transition region between laminar and 
turbulent, the only information pertinent for the structure of the turbulent domain is the relationship between the local 
Reynolds number and the local value of E , which is given in principle, if one knows the potential V (·), by minimising this 
one at the fixed local Reynolds number. This Reynolds number is determined itself by solving Reynolds equation with the 
value of the Reynolds stress derived from E . Such a program was carried out for explaining steady spirals observed in the 
Taylor–Couette experiment [25]. It explained how the spirals stop growing when their widths reach a value which brings to 
zero the azimuthal velocity of expansion of the spiral width because of the feedback between turbulence and the properties 
of the mean flow. In this case the geometry is such that the feedback between the mean azimuthal flow and the growing 
width of the spiral is simple to describe analytically. In the more complex situation of, for instance, Emmons spots growing 
in a boundary layer, the coupling between the mean flow and the spot is more difficult to describe mathematically.

Let us make a few comments on the large-scale flow produced by a growing turbulent spot in a parallel flow. This 
makes sense at scales much larger than the intrinsic length of the problem: fundamentally the large-scale flow extends 
inside the turbulent spots and outside with an extension of the order of magnitude of the size of the turbulent spot. If 
the flow outside of the turbulent spot is described by Darcy’s equation, it cannot show any vortex, as solutions of Darcy’s 
equation are potential velocity fields. However, it could be that the real situation is more complex because the size of the 
turbulent spot is not much bigger than the small length scale of the problem, namely the gap between the two plates in a 
Poiseuille or Couette flow. In this respect it could be of interest to look at the “large-scale” flow outside of an Emmons spot, 
because the horizontal (in-plane) size of a Blasius boundary layer can be much bigger than its vertical (normal to the plate) 
thickness.

Another significant difference between the coexistence of two phases in thermodynamics and in parallel flows is that, 
in thermodynamics, the localised steady solution of a phase in the other (the Gibbs nucleus) is always unstable, although 
one observes in parallel flows stable localised structures non expanding and filled with turbulent fluctuations. This sharp 
difference can be explained in two different ways (not necessarily incompatible): first in non-variational systems [16] with 
a subcritical bifurcation one may have a stable nucleus of one phase within the other. Next, in flows, there is a possible 
stabilisation of the critical nucleus by the large scale feedback flow as was observed and predicted for Taylor–Couette spirals 
[25]. In this respect it would be of interest to know if such localised turbulent structures have actually (as one can believe) 
a finite number of degrees of freedom by staying localised in space: the existing models [16] of stable localised structures 
imply that this structure has time periodic oscillations, not a chaotic dynamics.

7. Conclusion

To conclude this exposition of various points related to the transition to turbulence in parallel flows, one can only hope 
that a rational theory based on the idea of subcritical transition and of the growth or decay by contamination of turbulent 
domains may account quantitatively for observations going back, for some, to Reynolds. It would be also of interest to look 
at the possible analytical representation of this transition by using the available models of turbulence based on various 
modellings of the turbulent transfer relying on assumed relations between the Reynolds stress and the average properties 
of the flow. In this respect it would be very important to have multiple steady solutions for given parallel flows in such 
turbulent models. The next step would be to look at the coexistence of different steady solutions in a given geometry, like 
downstream and upstream in a pipe.
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