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The onset of an edge crack in compressive layers of a ceramic laminate undergoing residual 
stresses is predicted using the stress–energy coupled criterion based on the data of the 
tensile strength and the toughness of the material under consideration. The proposed 
criterion does not contain any adjustable parameter, which is its indisputable advantage. 
The results of predictions of the edge crack nucleation are in a very good agreement with 
the experimental observations of this phenomenon. They allow us to recover and even 
to improve slightly an approximate formula to estimate the critical layer thickness as a 
function of the compressive residual stress that was proposed some years ago.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Ceramics are brittle materials and several attempts to improve their apparent toughness have been made [1]. The most 
common approach is to fabricate laminates to promote crack deflection in order to delay the final ruin of the structure. 
This can be achieved by using weak interfaces including layers of pyrocarbon, for instance [2–4]. Another approach consists 
in adding thin interphases of a porous ceramic between the dense layers [5–7]. More recently, the idea was to create 
strong compressive residual stresses in some intermediate layers in order to trap the growing cracks in the compressive 
layers [8–11]. This latter method seems most effective, but the onset of an edge crack is observed, under some conditions, 
in the layers undergoing a strong compressive residual stress [8–12].

To predict the onset of such an edge crack, the coupled criterion [13,14] allows getting rid of any assumption on the 
existence of flaws able to trigger cracking [12]. There is no adjustable parameter in the coupled criterion, whereas in the 
other case the flaw size is selected so as to fit with the experimental measures. This choice is somewhat arbitrary, because 
it does not rely on micrographic observations. Moreover, the flaw approach analyzes the early stage of the edge cracking 
and assumes a further crack growth in depth and along the specimen faces (channeling) to reach the observable state, while 
with the coupled criterion we make the assumption that the crack appears almost simultaneously all around the specimen 
and then grows in depth.
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Fig. 1. The simplified 3-layer laminate and a schematic view of the edge crack with depth a in a cross section of the sample.

Table 1
Material data. E: Young’s modulus, ν: Poisson’s ratio, α: coefficient of thermal expansion, σc: tensile 
strength, K Ic: material toughness.

Material E (GPa) ν α × 106 (K−1) σc (MPa) K Ic (MPa mm1/2)

ATZ (1) 390 0.22 9.8 422 101.2
AMZ (2) 280 0.22 8.0 90 82.2

Fig. 2. The compressive residual in-plane stress σ
(2)
R far from the free surface and the out-of-plane tension σ(x) near the free surface in the AMZ layer.

2. The model

We consider a simplified symmetric ceramic laminate made of two outer layers of ATZ (thickness t1) and one inner 
layer of AMZ (thickness t2) with an edge crack of depth a running all around the specimen in the middle of the AMZ layer 
(Fig. 1). ATZ and AMZ are two different kinds of alumina-toughened zirconia, their elastic and fracture parameters are those 
given in [15] (Table 1).

The specimen length and width are L = 4 mm, the total thickness is 2t1 + t2. The thicknesses t1 and t2 vary respectively 
from 0.4 mm to 1.5 mm and from 0.04 mm to 0.15 mm, so that the ratio 2t1/t2 remains constant and equal to 20. As a 
consequence, for a given change of temperature �θ during cooling, the layers are subjected to an in-plane bi-axial state of 
stress that remains unchanged for the various thicknesses [10,15], with:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ
(1)
R = E(1)∗ (α(2) − α(1))�θ

E(1)∗
E(2)∗

2t1
t2

+ 1

σ
(2)
R = −E(2)∗ (α(2) − α(1))�θ

E(2)∗
E(1)∗

t2
2t1

+ 1
with E(i)∗ = E(i)

1 − ν(i)
for i = 1,2

(1)

For �θ = −1000 K, this gives σ (1)
R = 31.2 MPa and σ (2)

R = −624 MPa, where the upper index denotes the material: (1) for 
ATZ and (2) for AMZ as in Table 1.

Due to its small thickness, the AMZ layer undergoes a high compressive residual stress. Near the free edge, the stress 
distribution is perturbed and exhibits a strongly localized out-of-plane tensile component (Fig. 2), of the same order of 
magnitude as |σ (2)

R | [12], which can trigger cracking.
FE calculations are carried out in a quarter of the cross section (because of symmetries) under the assumption of plane 

strain. For this geometry, it is a reasonable assumption compared to full 3D calculations [16]. For each pair of thicknesses, 
the crack length a is varied from 0 to 0.5 mm by unbuttoning nodes. The change in potential energy δW P(a) between the 
cracked and uncracked states is computed as a function of the crack length a as well as the out-of-plane tensile stress σ(x)
along the presupposed crack path (i.e. for 0 ≤ x ≤ a, x is the distance to the free surface, Fig. 2) prior to fracture.

3. The coupled criterion

The coupled criterion states that crack onset occurs if two conditions are fulfilled simultaneously; the first one specifies 
that there is enough available energy to create a crack and the second that the tensile stress is greater than the tensile 
strength all along the presupposed new crack path:
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Fig. 3. The coupled criterion for t2 = 0.05 mm and �θ = −1000 K. Energy condition: dashed line, stress condition: solid line (see Eq. (5)).{−δW P(a) ≥ G(2)
c a

σ(x) ≥ σ
(2)
c for 0 ≤ x ≤ a

(2)

where δW P(a) is the change in potential energy between the cracked and uncracked states and where G(2)
c (MPa mm) and 

σ
(2)
c are respectively the toughness and the tensile strength of AMZ. The toughness G(2)

c relies on K (2)
Ic (Table 1) through the 

Irwin formula (E(2) and ν(2) are the Young modulus and the Poisson ratio of AMZ):

G(2)
c = 1 − ν(2)2

E(2)
K (2)2

Ic = 0.023 MPa mm (3)

Using the incremental energy release rate G inc(a) (MPa mm)

G inc(a) = −δW P(a)/a (4)

and pointing out that σ(x) is a decreasing function of x, (2) can be rewritten in a simple manner:

G inc(a)

G(2)
c

≥ 1 and
σ(a)

σ
(2)
c

≥ 1 (5)

In this system of inequalities, the crack length a is up to now an unknown and there are two parameters, the intensity of 
the load, i.e. the temperature change �θ , and the AMZ layer thickness t2.

4. Edge cracking

It is very convenient to plot the two conditions (5) in the same graph, as shown in Fig. 3. In the first case (Fig. 3, 
t2 = 0.05 mm), the stress condition (solid line) holds for a ≤ 0.027 mm (point 1), but the energy condition (dashed line) 
is nowhere fulfilled. Thus no edge cracking can appear. In the second case (Fig. 4, t2 = 0.07 mm), the stress condition 
(solid line) holds for a ≤ 0.038 mm (point 1) and the energy one (dashed line) for 0.014 ≤ a ≤ 0.079 mm (points 2 and 3). 
Obviously, the two conditions are fulfilled in the range 0.014–0.038 mm (between points 1 and 2), and edge cracking can 
occur. Moreover, according to this coupled criterion, it is clear that the crack likely appears for a cooling amplitude |�θ |
smaller than 1000 K.

Note in these two figures that the tensile stress σ(x) is very large, but drops rapidly away from the surface.
It is even possible to determine the cooling amplitude |�θ | that causes edge cracking for different AMZ layer thicknesses. 

It decreases as the layer thickness increases (Fig. 5).
A comparison can be carried out with the formula proposed by Ho et al. [8] derived when neglecting the elastic mis-

match between the two components (see [12]):

t(2)
c = K (2)2

Ic

Cσ
(2)2
R

with C = 0.34 (6)

here t(2)
c is the critical AMZ thickness above which edge cracking occurs for a given compressive residual stress σ (2)

R .
In the following table (Table 2), the constant C is recalculated using (6) for each AMZ layer thickness t2 at crack initiation, 

keeping in mind that the ratio 2t1/t2 remains constant. In this calculation, the residual stress σ (2) depends on the cooling 
R
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Fig. 4. The coupled criterion for t2 = 0.07 mm and �θ = −1000 K. Energy condition: dashed line, stress condition: solid line (see Eq. (5)).

Fig. 5. The cooling amplitude |�θ | that triggers edge cracking as a function of the AMZ layer thickness for a constant thickness ratio 2t1/t2 = 20.

Table 2
Comparison with [8]. Here |�θ | is the cooling amplitude that triggers cracking as a function of the 
AMZ layer thickness t2 and σ (2)

R is the corresponding residual stress.

t2 (mm) |�θ | (K) σ
(2)
R (MPa) C

0.04 1180 −736 0.312
0.05 1055 −655 0.315
0.06 960 −599 0.314
0.07 890 −555 0.313
0.08 830 −518 0.315
0.09 785 −490 0.313
0.10 745 −465 0.313
0.11 710 −443 0.313
0.12 680 −424 0.313
0.13 655 −409 0.311
0.14 630 −393 0.312
0.15 615 −384 0.306

amplitude triggering the crack onset. A constant value emerges clearly, the resulting average is C̄ = 0.31, not far from the 
value proposed by Ho et al., but still slightly smaller. It means that the critical thickness predicted by the coupled criterion 
is a bit larger (+10%). This is qualitatively in agreement with a remark found in [12,17], but still below the experimental 
observations made there.
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Fig. 6. The dimensionless incremental energy release rate G inc(a)/G(2)
c (dashed line), the dimensionless energy release rate G(a)/G(2)

c (dotted line) and the 
dimensionless tensile stress σ(a)/σ

(2)
c (solid line) for t2 = 0.05 mm and �θ = −1055 K corresponding to the edge crack onset.

5. The growth of the edge crack

Once an edge crack is created, the further growth can be analyzed using the classical Griffith criterion based on the 
energy release rate G(a) (MPa mm):

G(a) = −∂W P(a)

∂a
(7)

According to Griffith, crack growth occurs if G(a) ≥ G(2)
c .

The dimensionless energy release rate G(a)/G(2)
c is plotted in Fig. 6 (dotted line) for t2 = 0.05 mm and �θ = 1055 K, 

corresponding to the edge crack onset. The two conditions (5) hold true at a single point a = 0.023 mm (point 1). Moreover, 
it is clear that the crack onset is mainly governed by the energy condition since at this point the stress condition is well 
above the threshold (point 2).

At point a = 0.023 mm, G(a) = G(2)
c and G(a) is a decreasing function of the crack length a (it can be shown that if 

∂G inc(a)/∂a = 0 at a point then G(a) = G inc(a) at this point); as a consequence, the point under consideration is an arrest 
point.

If cooling is going on with an increasing temperature amplitude, the curves are shifted upward (Fig. 7). The first one 
corresponds to the crack onset �θ = −1055 K and a crack length a = 0.023 mm, as already mentioned. The next one is for 
�θ = −1300 K and it is clear that, between the two states, crack growth is stable and follows the temperature change, now 
a = 0.037 mm. Even for an unrealistic temperature change, as �θ = −1500 K, the crack growth is still stable and the crack 
length reaches the value a = 0.048 mm. Clearly, an edge cracking cannot lead to a complete ruin of the specimen under 
realistic thermal loads.

Other calculations have been carried out with t1 = 0.54 mm, t2 = 0.095 mm and t1 = 0.57 mm, t2 = 0.06 mm cor-
responding to the stacking sequences B and C in [10,12] but with the simplified geometry of Fig. 1. Edge cracking is 
predicted to occur for �θB = −790 K and �θC = −965 K respectively. There is a wide gap in temperature showing that 
edge cracking occurs much earlier in structure B than in structure C. This is qualitatively in agreement with the obser-
vations reported in [12], for the same thermal treatment structure B exhibits an edge crack while structure C does not. 
Nevertheless, in [12] the corresponding theoretical temperature drop is �θ ≈ −1180 K (derived from the thermal strain 
mismatch �ε = (α(2) − α(1))�θ reported to be �ε = 2.12 · 10−3), leading to higher residual stresses than predicted here. It 
does not seem possible to invoke the present simplified geometry to explain the discrepancy. Indeed, the same stress levels 
are reached in the present geometry for �θB = −1137 K and �θC = −1153 K respectively, not so far from −1180 K. But 
the exact residual stress state in the laminate is difficult to determine precisely. There is no direct measure and numerical 
results are based on the assumption of a stress-free state around 1200 ◦C. The indentation tests made on the ATZ layers [10]
show that the FE calculations tend to overestimate the stress values based on this hypothesis.

Note that the predictions are again mainly governed by the energy condition (Fig. 6) and they are sensitive to the 
measured value of the toughness. If K (2)

Ic is increased by 10%, then according to Table 1 and (3), G(2)
c = 0.028 MPa · mm and 

the temperature changes leading to cracking are shifted toward �θB = −870 K and �θC = −1065 K.
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Fig. 7. The dimensionless energy release rate G(a)/G(2)
c for different cooling amplitudes.

Fig. 8. The dimensionless incremental energy release rate G inc(a)/G(2)
c (dashed line), the dimensionless energy release rate G(a)/G(2)

c (dotted line), and the 
dimensionless tensile stress σ(a)/σ

(2)
c (solid line) for t2 = 0.05 mm and �θ = −1220 K, corresponding to the edge crack onset.

6. Energy-governed and stress-governed edge cracking

The title of this section may seem ambiguous for a criterion where the two conditions in energy and stress are necessary. 
The distinction between the two concepts is based on the question of which of these two conditions is reached first in a 
monotonic thermal loading, the other one becoming predominant in order to fulfill the criterion. In Fig. 6, it is clear that 
the stress condition is fulfilled first and that the final load level is mainly determined by the energy condition, this is why 
it is called energy-governed cracking. Instead, we will see in the example below that the energy condition is reached first 
and that the thermal load must continue to increase to meet the stress condition. We are in the presence of the so-called 
stress-governed cracking.

Let us consider again the case illustrated in Fig. 6 and suppose, for the aim of the discussion, that the tensile strength 
of AMZ is higher than its current value: σ (2)

c = 422 MPa (the tensile strength of ATZ). The solid line representing the 
dimensionless tensile stress is moved to the left far beyond point 1 in Fig. 6, while the dashed line, the dimensionless 
incremental energy release rate, is unchanged. Thus, there is no longer any point fulfilling the two conditions (5), edge 
cracking cannot occur for �θ = −1055 K and the thermal load must be increased, i.e. cooling must go on, for finding a new 
solution (Fig. 8). This is achieved for �θ = −1220 K and a = 0.01 mm (point 1). The situation (Fig. 8) is now different from 
the previous one (Fig. 6). At point a = 0.01 mm, the energy release rate (dotted line) is strictly greater than the material’s 
toughness G(a) > G(2)

c (point 2) and the crack grows (arrow) in an unstable manner up to point 3 (a = 0.032 mm), where 
G(a) drops below G(2)

c . Point 3 is the first possible arrest point, but the crack can even grow a little bit further if part or all 
of the additional energy generated between points 1 and 3 (where G(a) > G(2)

c ) is consumed by fracture. Again the crack 
does not extend far in depth except for considering an unrealistically large cooling.
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7. Conclusion

The 2D coupled criterion is quite simple to use and has proved to be rather effective in the prediction of edge cracking 
in ceramic laminates. But it is clear that a more striking confirmation of the model would require knowing better the state 
of residual stresses in the sample after heat treatment. The present prediction is achieved with very little information: the 
elastic moduli of the layers, their coefficient of thermal expansion, the toughness and the tensile strength of the compressive 
layer. There is no adjustable parameter and there is no need for an assumption on the presence of surface defects to initiate 
fracture. This may seem surprising, but if the presence of a major flaw far larger than the others is excluded – this case 
should be treated separately –, it must be pointed out that the values of the material’s parameters used in the analysis are 
of course homogenized. Their measure takes into account a population of distributed micro-defects; thus the presence of 
flaws is not totally absent from this analysis, but averaged somewhat, like E(2) , K (2)

Ic and σ (2)
c are.
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