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We modify the Green operator involved in Fourier-based computational schemes in 
elasticity, in 2D and 3D. The new operator is derived by expressing continuum mechanics 
in terms of centered differences on a rotated grid. Using the modified Green operator 
leads, in all systems investigated, to more accurate strain and stress fields than using 
the discretizations proposed by Moulinec and Suquet (1994) [1] or Willot and Pellegrini 
(2008) [2]. Moreover, we compared the convergence rates of the “direct” and “accelerated” 
FFT schemes with the different discretizations. The discretization method proposed in this 
work allows for much faster FFT schemes with respect to two criteria: stress equilibrium 
and effective elastic moduli.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fourier-based algorithms, or “FFT” methods for short, are an efficient approach for computing the mechanical response 
of composites. Initially restricted to linear-elastic media, FFT tools are nowadays employed to treat more involved problems, 
ranging from viscoplasticity [3] to crack propagation [4]. In FFT methods, the microstructure is defined by 2D or 3D images 
and the local stress and strain tensors are computed along each pixel or “voxel” in the image. Coupled with automatic 
or semi-automatic image segmentation techniques [5], this allows for the computation of the mechanical response of a 
material directly from experimental acquisitions, like focused ion beam or 3D microtomography techniques [6]. The latter 
often deliver images containing billions of voxels, for which FFT methods are efficient [7,8]. This allows one to take into 
account representative volume elements of materials which are multiscale by nature such as concrete or mortar [9]. From a 
practical viewpoint, the simplicity of FFT methods is attractive to researchers and engineers who need not be experts in the 
underlying numerical methods to use them. Nowadays, FFT tools are available not only as academic or free softwares [10,11]
but also as commercial ones [12].

In the past years, progress has been made in the understanding of FFT algorithms. Vondřejc and co-workers have recently 
shown that the original method of Moulinec and Suquet [1] corresponds, under one technical assumption, to a particular 
choice of approximation space and optimization method [13] (see also [14]). This property allows one to derive other FFT 
schemes that use standard optimization algorithms, such as the conjugate gradient method. In this regard, making use of 
variational formulations, efficient numerical methods have been proposed that combine FFTs with an underlying gradient 
descent algorithm [15,16].
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Different approximation spaces or discretization methods have also been proposed, where, contrary to the original 
scheme, the fields are not trigonometric polynomials anymore. Brisard and Dormieux introduced “energy-based” FFT 
schemes that rely on Galerkin approximations of Hashin and Shtrikman’s variational principle [16,14] and derived mod-
ified Green operators consistent with the new formulation. They obtained improved convergence properties and local 
fields devoid of the spurious oscillations observed in the original FFT scheme [14,17]. In the context of conductivity, ac-
curate local fields and improved convergence rates have also been obtained from modified Green operators based on 
finite-differences [18]. These results follow earlier works where continuum mechanics are expressed by centered [19,20]
or “forward and backward” finite differences [2].

This work focuses on the effect of discretization in FFT methods. It is organized as follows. We first recall the equations of 
elasticity in the continuum (Section 2). We give the Lippmann–Schwinger equations and the “direct” and “accelerated” FFT 
schemes in Section 3. In Section 4, a general formulation of the Green operator is derived that incorporates methods in [2], 
and a new discretization scheme is proposed. The accuracy of the local stress and strain fields are examined in Section 5
whereas the convergence rates of the various FFT methods are investigated in Section 6. We conclude in Section 7.

2. Microstructure and material elastic response

We are concerned with solving the equations of linear elasticity in a square or cubic domain Ω = [−1/2; 1/2]d in 
dimension d (d = 2 or 3):

σi j(x) = Cij,kl(x)ε(x), ∂iσi j(x) ≡ 0, εi j(x) = (1/2)
[
∂iu j(x) + ∂ jui(x)

]
(1)

where ε(x) is the strain field, σ (x) the stress field, u(x) the displacement vector field, C(x) the local elasticity tensor and 
x is a point in Ω . Tensorial components refer to a system of Cartesian coordinates (e1; e2) in 2D and (e1; e2; e3) in 3D. The 
material has an isotropic local elastic response that reads:

Cij,kl(x) = λ(x)δi jδkl + μ(x)(δikδ jl + δilδ jk) (2)

where δ is the Kronecker symbol and λ(x) and μ(x) are constant-per-phase Lamé’s first and second coefficients. The local 
bulk modulus κ = λ + (2/d)μ and the elastic moduli take on values:

λ(x) = λα, κ(x) = κα, μ(x) = μα

in phase α. For simplicity, we restrict ourselves to binary media and, by convention, α = 1 is the matrix and α = 2 the in-
clusions. Hereafter, we fix Poisson’s ratios in each phase to ν1 = ν2 = 0.25 so that, in 3D and 2D [21], we have μα/κα = 0.6. 
The contrast of properties χ reads:

χ = κ2

κ1
= μ2

μ1
= λ2

λ1
(3)

where 0 ≤ χ ≤ ∞. In the matrix, we also fix κ1 = 1 (d = 2 or 3), μ1 = 0.6 (d = 2 or 3), λ1 = 0.4 (d = 2), λ1 = 0.6 (d = 3), 
so that the local properties of the material are parametrized by one unique variable, the contrast of properties χ . In 3D, 
the Young modulus is E1 = 3/2 in the matrix and E2 = 3χ/2 in the inclusion. The medium is porous when χ = 0 and 
rigidly-reinforced when χ = ∞.

Periodic boundary conditions are applied with the material subjected to an overall strain loading ε:

σi j(x)n j(x) − # (x ∈ ∂Ω),
〈
εkl(x)

〉 = εkl (4)

where n is the normal at the boundary ∂Ω of the domain Ω , oriented outward, −# denotes anti-periodicity and 〈·〉 denotes 
the spatial mean over Ω . The resulting effective elastic tensor C̃ is computed from:〈

σi j(x)
〉 = C̃i j,klεkl (5)

3. Lippmann–Schwinger equation and FFT methods

Fourier methods are by principle based on the Lippmann–Schwinger equations. The latter follow from (1) and (4) as [22]:

τi j(x) = σi j(x) − C0
i j,klεkl(x), εi j(x) = εi j −

∫
x′

ddx′Gij,kl
(
x′ − x

)
τkl

(
x′) (6)

where we have introduced a homogeneous “reference” elasticity tensor C0 and its associated polarization field τ and Green 
operator G. In the above we assume 〈G〉 = 0 so that ε = 〈ε(x)〉 holds. The Green operator has, in the Fourier domain, the 
closed form [23]:

Gij,kl(q) = {
qi

[
qmC0 qn

]−1
ql

}
(7)
mj,kn sym
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where q 
= 0 are the Fourier wave vectors and the subscript sym indicates minor symmetrization with respect to the variables 
(i, j) and (k, l). Hereafter, we assume that C0 is a symmetric, positive-definite, isotropic tensor defined by its bulk (κ0) and 
shear (μ0) moduli, or Lamé coefficient (λ0). Accordingly, when q 
= 0, the Green operator G is also symmetric definite and 
we have:

Gij,kl(q) = 1

μ0

[(
qiql

|q|2 δ jk

)
sym

− λ0 + μ0

λ0 + 2μ0

qiq jqkql

|q|4
]

(8)

The “direct scheme” [1] consists in applying Eqs. (6) iteratively as:

εk=0 ≡ ε, εk+1 = ε −G ∗ (
σ −C

0 : εk) (k ≥ 0) (9)

In Moulinec and Suquet’s method, the convolution product (∗) above is computed as an algebraic product in the Fourier 
domain, making use of (8). Discrete Fourier transforms are used to switch between the space Ω and Fourier domain F . 
This amounts to representing the strain field as a trigonometric polynomial [13] of the form:

ε(x) = 1

Ld

∑
q∈F

ε(q)eiq·x (10)

where ε(q) is the discrete Fourier transform of ε(x). Accordingly:

ε(q) =
∑
x∈Ω

ε(x)e−iq·x (11)

Similar forms are used for the stress and displacement fields. In practice, the domain Ω is discretized on a square or cubic 
grid of Ld voxels and the operator G(q) in (7) is evaluated along equispaced Fourier modes:

qi = 2πmi

L
, mi =

{
{ 1 − (L/2), . . . , L/2, (L even)

−(L − 1)/2, . . . , (L − 1)/2, (L odd)
(12)

As noted in [24], when L is even, the relation:

G(q)∗ = G(−q) (13)

where G(q)∗ is the complex conjugate of G(q), is not verified when one of the components of q is equal to the highest 
frequency qi = π (i.e. mi = L/2). As a consequence, the backward Fourier transform of G(q)τ (q) used to compute the strain 
field has non-zero imaginary part even if τ (x) is purely real. To fix this problem, we follow [24] and set:

G(q) = (
C

0)−1
, if qi = π for some i (14)

This choice enforces σ (q) = 0 at the concerned Fourier modes. In doing so, the strain field ε in (10) is not strictly-speaking 
irrotational, because of the lack of constraint at high Fourier modes for the strain field. We briefly mention another option 
that we explored in this work. It consists in forcing the symmetry by replacing G(q) with:

G(q)∗ +G(−q)

2
(15)

when one of the components of q equals π , which enforces ε(q) = 0 at the highest modes. Numerical experiments indicate 
that the choice for G(q) at the highest frequencies has little influence on the convergence rate, except at small resolution. 
When L < 128 pixels, faster convergence was achieved with the choice G(q) = (C0)−1. Furthermore, in the 2D example 
studied in this work, the choice G(q) = (C0)−1 led to smaller oscillations, consistently with observations in [24]. The use 
of (15) was therefore not pursued further. We emphasize that, when L is odd, this discrepancy disappears and no special 
treatment is needed.

Refined FFT algorithms have been introduced to overcome the slow convergence rate of the direct scheme, observed for 
highly-contrasted composites, most notably the “accelerated scheme” [25] and “augmented Lagrangian” [26] methods. In 
this work, we use the extension of the accelerated scheme to elasticity [26,27]:

εk+1 = εk + 2
(
C+C

0)−1 :C0 : [ε − εk −G ∗ (
C : εk −C

0 : εk)] (16)

The convergence rates of the accelerated and direct schemes depend on the choice of the reference tensor C0. For the 
accelerated scheme the optimal choice is [25,27]:

κ0 =
√

κ1κ2, μ0 =
√

μ1μ2 (17)

For the direct scheme, upper bounds on the eigenvalues of the Green operator suggest the choice [27]:

κ0 = β
(
κ1 + κ2), μ0 = β

(
μ1 + μ2) (18)

with β = 1/2.
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4. Discretization and approximation space

In this section, we derive the expression of a modified Green operator G′ that replaces G defined in (8) and (12). We 
give it in a form that includes previously-proposed modified operators [2] and also introduce a new one.

4.1. Two dimensions

In the following, we assume that the strain and stress fields are defined on a grid of points in 2D, one per pixel. Eqs. (10)
and (11) are used to apply discrete Fourier transforms, but we do not postulate a representation in the continuum anymore. 
The equilibrium and strain admissibility conditions (1) are approximated by means of finite differences on which we apply 
the discrete transforms (10) and (11). In [2], this results in the following form:

k∗
i (q)σi j(q) = 0, εi j(q) = (1/2)

[
ki(q)u j(q) + k j(q)ui(q)

]
(19)

where k and k∗ represent “discrete” gradient and divergence operators, respectively. In the centered scheme, one takes k
equal to:

kC
i (q) = i sin(qi) (20)

whereas in scheme [2], one chooses, for k:

kW
i (q) = eiqi − 1 (21)

These expressions correspond, respectively, to the centered scheme:

∂ jσi j(x) ≈ σi j(x + e j) − σi j(x − e j)

2
, ∂ jui(x) ≈ ui(x + e j) − ui(x − e j)

2
(22)

and to the forward-and-backward difference scheme:

∂ jσi j(x) ≈ σi j(x) − σi j(x − e j), ∂ jui(x) ≈ ui(x + e j) − ui(x) (23)

Using (19), the resulting Green operator reads:

G ′
i j,kl(q) = {

ki(q)
[
km(q)C0

mj,knk∗
n(q)

]−1
k∗

l (q)
}

sym (24)

which is homogeneous in k, so that, with ri = ki/|k|:

G ′
i j,kl(q) = (λ0 + 2μ0)(rir∗

l δ jk)sym − λ0 Re(rir∗
j )Re(rkr∗

l ) − μ0rir j(rkrl)
∗

μ0[2(λ0 + μ0) − λ0|r2
1 + r2

2|2] (25)

where Re(·) denotes the real part of the enclosed quantity. The denominator on the right-hand side is strictly positive due 
to the triangle inequality. Hereafter, the operator G′ is denoted by GC when k = kC and by GW when k = kW. Note that 
the operator G in (8) is recovered from (25) by setting ki(q) = iqi . Now the Green operator G′ is complex and follows the 
minor and major symmetries:

G ′
i j,kl(q) = G ′

ji,kl(q) = G ′
i j,lk(q), G ′

i j,kl(q) = [
G ′

kl,i j(q)
]∗

(26)

Furthermore we have:

G
C,W(q)∗ =G

C,W(−q) (27)

for the schemes (22) and (23), including when qi = π and when L is even, because kC,W
i is real at the frequency qi = π . 

Therefore, the fix (14) in Section 3 is not necessary. However, a problem of a different nature arises when using the centered 
scheme (20) when L is even. Eq. (25) does not define the Green operator GC at the three frequencies q = (π ; 0), (0; π)

and (π ; π), for which kC(q) = 0. This is because the second equation in (22) has in general non-unique solutions for the 
displacement field u(x). Indeed, when L is even, the displacement is defined up to a linear combination of 2-voxels periodic 
fields. They are given by the following 8 independent fields:

v1
m(x) = δmn, v2

m(x) = (−1)iδmn, v3
m(x) = (−1) jδmn, v4

m(x) = (−1)i+ jδmn

x =
(

i

L
; j

L

)
, i, j = 1 − L

2
, . . . ,

L

2
, n = 1,2 (28)

The operator GC remains finite when q approaches one of the modes (π ; 0), (0; π) or (π ; π), but can not be continuously 
extended at these modes. To fix this problem, we set, for the centered scheme:
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Fig. 1. A pixel with edges parallel to the Cartesian axis (e1; e2). Superimposed: 45◦-rotated basis (f1; f2). The strain and stress fields are evaluated at the 
pixel center x (square). The displacement and the divergence of the stress field lie along the pixel corners (disks).

GC
i j,kl(q) = 0, if L is even and (qi = 0 or qi = π) for all i (29)

which enforces ε(q) = 0 at the highest frequencies. The strain field ε(x) is accordingly admissible, and the stress field 
σ (x) is divergence-free, in the sense of (22). We explored the alternate choice GC(q) = (C0)−1 in (29). Almost identical 
convergence rates and oscillations were observed for the two options, however the choice GC(q) = (C0)−1 does not produce 
an irrotational strain field and is not considered further. We emphasize that no special treatment is required for the operator 
G

W at high frequencies since kW 
= 0 when q 
= 0.
By substituting G with GC or GW in (9) and (16), we derive “direct” and “accelerated” schemes that solve (22) or (23). 

In the limit of very fine resolution, we have GC,W(q) ≈ G(q) when q → 0, which guarantees that the strain and stress fields 
do not depend on the employed discretization. This property holds for any choice of k such as k ∼ iq when q → 0.

On the one hand, derivatives are estimated more locally in the forward-and-backward scheme (21) than in the centered 
scheme (20), which is important along interfaces. On the other hand, the forward-and-backward scheme does not treat 
symmetrically the two angle bisectors e1 + e2 and e1 − e2 [2]. In a domain containing a single centered disc, the scheme 
produces fields that break the axial symmetries of the problem. In fact, the discretization (23) is actually one of four possible 
choices, all of them breaking the symmetries. Attempts to force the symmetry by averaging over the four Green operators 
or over the fields themselves, as proposed in [2], are not explored in this work. The former method indeed leads to less 
accurate “diffuse” local fields. The latter necessitates to run four different computations, in 2D, instead of one, which is 
cumbersome.

In the rest of this section, we derive a discrete scheme in 2D different from (22) and (23). In this scheme, the displace-
ment field is evaluated at the 4 corners of the pixels and the strain and stress fields are evaluated at the centers of the 
pixels. We first express these fields in the 45◦-rotated basis:

f1 = e1 + e2√
2

, f2 = e2 − e1√
2

(30)

by:

ui = RiI uI , εi j = RiIεI J R ′
J j, σi j = RiIσI J R ′

J j, Ri J = 1 − 2δi1δ J 2√
2

(31)

where uppercase indices refer to components in the rotated grid. We discretize (1) in the rotated basis by the centered 
differences (see Fig. 1):

σI J (x) = C I J ,K L(x)εK L(x) (32a)

σI1(x) − σI1(x − √
2f1) + σI2

(
x + f2 − f1√

2

)
− σI2

(
x − f1 + f2√

2

)
= 0 (32b)

εK L(x) = 1

2
√

2

[
uK

(
x + fL√

2

)
− uK

(
x − fL√

2

)
+ uL

(
x + fK√

2

)
− uL

(
x − fK√

2

)]
(32c)

where x lie at the centers of the pixels and x ± fI/
√

2 lie at the corners. Expressing back (32) in the original Cartesian grid 
(e1; e2) and applying the backward discrete Fourier transform (10) we arrive again at (19) with the following expression 
for k:

kR
i (q) = i

2
tan

(
qi

2

)(
1 + eiq1

)(
1 + eiq2

)
(33)

We denote by GR the corresponding Green operator, derived by substituting k = kR in (25). The operator GR is real and 
also verifies:

G
R(q) = G

R(−q) (34)

However, when L is even, kR = 0 when q = (π ; π) and GR is not defined by (25) at this frequency. Again, this is because 
(32c) gives the displacement field up to linear combinations of the 4 independent fields v1,4 (see (28)). Accordingly we set:
1,2
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G
R(q) = 0, when L is even, d = 2,q1 = q2 = π (35)

which enforces strain compatibility and stress equilibrium, in the sense of (32).

4.2. Three dimensions

We follow the same methodology in 3D. The equilibrium and strain admissibility conditions (19) are unchanged, as well

as the expression for the vectors kC,W in (20) and (21) resulting from (22) and (23). In 3D, we also extend (33) as:

kR
i (q) = i

4
tan

(
qi

2

)(
1 + eiq1

)(
1 + eiq2

)(
1 + eiq3

)
(36)

for the rotated scheme. The strain and stress fields are now evaluated at the centers of the voxels and the displacement field 
at their corners. Derivatives of the displacement are estimated by differences at opposite corners. For the strain components 
ε11 and ε12:

ε11(x) ≈ 1

4

∑
m=±1
n=±1

[
u1

(
x + e1 + me2 + ne3

2

)
− u1

(
x − e1 − me2 − ne3

2

)]
(37a)

ε12(x) ≈ 1

8

∑
m=±1
n=±1

[
u2

(
x + e1 + me2 + ne3

2

)
− u2

(
x − e1 − me2 − ne3

2

)

+ u1

(
x + e2 + me1 + ne3

2

)
− u1

(
x − e2 − me1 − ne3

2

)]
(37b)

where x lie at the center of a voxel. The expression for the strain component ε22 (resp. ε33) is obtained after exchanging 
the indicia 1 and 2 (resp. 1 and 3) in (37a). The component ε23 (resp. ε13) is derived from (37b) by exchanging the indicia 
3 and 1 (resp. 3 and 2). Stress divergence is discretized in a similar manner. Its first component reads:

∂iσi1(x) ≈
∑

m=±1
n=±1

[
σ11

(
x + e1 + me2 + ne3

2

)
− σ11

(
x − e1 − me2 − ne3

2

)

+ σ12

(
x + e2 + me1 + ne3

2

)
− σ12

(
x − e2 − me1 − ne3

2

)
+ σ13

(
x + e3 + me1 + ne2

2

)
− σ13

(
x − e3 − me1 − ne2

2

)]
(38)

where x lie at one of the edges of a voxel. The components ∂iσi2 and ∂iσi3 are obtained from (38) by circular permutations 
of the indicia 1, 2 and 3. We note that (37) and (38) are the natural generalization of (32) to d = 3, expressed in the 
Cartesian basis (e1; e2; e3).

In 3D, Eq. (24) yields, for the Green operator:

G ′
i j,kl(q) = (λ0 + 2μ0)(rir∗

l δ jk)sym + λ0[(rir∗
l s jk)sym − Re(rir∗

j )Re(rkr∗
l )] − μ0rir jr∗

k r∗
l

μ0[2(λ0 + μ0) − λ0|r2
1 + r2

2 + r2
3|2] (39)

where again ri = ki/|k| and s is the symmetric second-order tensor:

s j j = 4 Im
(
rir

∗
k

)2
, s jk = −4 Im

(
rkr∗

j

)
Im

(
rkr∗

i

)
, i 
= j 
= k 
= i (40)

with Im(·) the imaginary part of the enclosed complex quantity. Like in 2D, the operator G′ follows minor and major 
symmetries (26).

Again, the operators GC, GW and GR are derived using the expression for G′ in (39) with k = kC, kW and kR, respectively. 
The symmetries (27) and (34) are verified in 3D as well. But again, a special treatment is needed for GC and GR when L is 
even, at the modes q for which kC,R(q) = 0. Like in 2D, the displacement is undefined at these frequencies and the Fourier 
coefficients of the strain field are zero and so we set GC,R = 0 at these frequencies. More precisely, we apply (29) when 
d = 3 and, for the rotated scheme:

G
R(q) = 0, if L is even, d = 3 and qi = q j = π with i 
= j (41)

The operators GC, GW and GR are, in 2D and 3D, periodic functions where, contrary to G, high frequencies are cut. 
Accordingly, we expect faster convergence rates for schemes using operators derived from finite differences and more exact 
local fields, as was previously observed in the conductivity problem [18]. We also expect higher accuracy for the local fields 
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Fig. 2. Elementary periodic domain Ω = [−1/2; 1/2]2 containing a square inclusion with elastic moduli μ2, κ2 (top-left, shown in white) embedded in a 
matrix (shown in gray) with elastic moduli μ1, κ1.

when employing GR rather than the other discrete operators GW and GC. First, the operator GR is based on centered 
differences which are more precise than forward and backward differences, used in GW. Second, derivatives are evaluated 
more locally when using GR rather than GC. Indeed, the latter are computed at points separated by 2 voxels for GC instead 
of 

√
2 (in 2D) or 

√
3 voxels (in 3D) for GR.

The above considerations guided the choice for the discretization Schemes (37) and (38), leading to kR and GR. Clearly, 
many other choices are possible, and Eq. (39) gives a general class of Green operators based on finite-differences. The latter 
depend on the choice for the complex vector k. However, a systematic investigation of such discrete schemes is beyond the 
scope of the present study.

In the rest of this study, we estimate the accuracy of the local fields and of the effective properties predicted by the 
various schemes, as well as their convergence rates. We denote by DS and AS the direct and accelerated schemes defined 
by (9) and (16) respectively, when G is used. We denote by DSC, DSW, DSR and ASC, ASW and ASR, the same algorithms ob-
tained by substituting G with GC,W,R respectively. We emphasize that, for a given Green operator, the direct and accelerated 
schemes produce the same strain and stress fields, up to round-off errors.

5. Local strain and stress fields accuracy

5.1. Two-dimensional case

Hereafter we consider the 2D ‘four-cell’ microstructure, where the periodic domain Ω is divided into 4 identical squares 
of surface fraction 25%. Its non-trivial solution with singular fields at the corners makes it a good benchmark for numerical 
schemes. Furthermore, the microstructure is discretized exactly at any resolution, provided L is even. In the following, we 
make use of a simplified version of the four-cell microstructure made of a single quasi-rigid square inclusion embedded in 
a matrix (Fig. 2). We set the contrast to χ = 103. The material is subjected to the macroscopic strain loading:

εi j = 1

2
(δi1δ j2 + δ j1δi2) (42)

We determine the strain and stress fields predicted by FFT schemes when using the Green operators G or GC,W,R. The fields 
are computed using the accelerated scheme (16) at discretizations L = 512, 1024 and 2048. Iterations are stopped when the 
strain and stress fields maximum variation over two iterations in any pixel is less than 2 × 10−13. These variations are the 
effect of round-off errors in double precision floating point numbers. These computations allow us to compare the effect of 
the discretization, independently of the algorithm used for convergence.

We focus on the stress component σ12(x) parallel to the applied loading in a small region [−0.04; 0.04]2 around the 
corner of the inclusion (Fig. 3). At low resolution L = 512, numerical methods predict values as large as 10.1 in a few pixels, 
because of the singularity of the stress field at the corner. To highlight the field patterns, we threshold out the values above 
3.5, which amount to 0.24% of the pixels. Using the same color scale for all images, the smallest stress value, equal to 1.5, 
is shown in dark blue whereas the highest, equal to 3.5, is in dark red. Green, yellow and orange lie in-between.

As expected, in the limit of very fine resolution, all methods tend to the same local stress field, as shown by the similar 
field maps obtained at resolution L = 2048. However, use of the Green operator G leads to spurious oscillations along 
the interfaces of the inclusion, up to resolutions as big as 20482 pixels, a side-effect noticed in [18] in conductivity. The 
oscillations do not disappear after computing local averages of the fields (not shown).

Strong oscillations are produced by schemes using G
C as well, not only in the quasi-rigid inclusion, but also in the matrix. 

We observe checkerboard patterns in the former, and vertical and horizontal alignments in the latter, at resolution 10242. 
These oscillations are greatly reduced by the use of GW. Still, due to the non-symmetric nature of GW, the stress is not 
correctly estimated along a line of width 1 pixel oriented upward from the inclusion corner. Similar patterns are observed, in 
other directions, along the three other corners of the inclusion (not shown). These issues are solved when using GR which 
produces a stress field that respects the symmetries of the problem. Furthermore, use of GR greatly reduces oscillations 
compared to G and GC.

5.2. Three-dimensional case

In this section, we consider a 3D material analogous to the four-cell microstructure in 2D. We divide the periodic domain 
into 8 identical cubes of volume fraction 12.5%. One is the inclusion, the other 7 are the matrix. To highlight the symmetries 
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Fig. 3. (Color online.) Stress component σ12(x) predicted by the various FFT schemes at the three resolutions L = 512, 1024 and 2048 (left to right) in the 
region [−0.04; 0.04]2. The center of the region is the bottom-left corner of the square inclusion in Fig. 2.

of the problem, we assume the inclusion is centered in the domain Ω and contained in the region [−1/4; 1/4]3. Again, we 
apply a macroscopic strain loading of the form (42). The inclusion is quasi-rigid compared to the matrix with contrast of 
properties χ = 103. We compute the strain and stress fields predicted by each Green operator using the accelerated scheme. 
As in Section 5.1 we let the iterations converge up to round-off errors in double precision.

A 2D section of the stress component σ12(x) is represented in Fig. 4. The section is a cut parallel to one of the faces of 
the inclusion, normal to e3, of equation x3 = −0.2461. The section intersects the inclusion, but is very close to the interface 
with the matrix. Again, to highlight the field patterns, we threshold out values of the field greater than 8.5, this time less 
than 0.04% of the voxels, and represent all field using the same color scale.

At high resolution L = 1024, the fields resulting from the use of G and GC,W,R are close to one another. However, 
stress patterns near the corners of the inclusion are less pronounced with G than with the other methods. At smaller 
resolutions L = 256 and L = 512, the stress fields predicted by G are notably different from the others, suggesting slower 
size-convergence with this operator. Furthermore, the field maps computed at resolution L = 512 confirms the results ob-
tained in 2D: strong oscillations are observed inside the inclusion when using G and GC. The two methods produce artificial 
patterns directed vertically and horizontally, close to the interface. Conversely, the fields produced by GW and GR have the 
smallest oscillations, but that of GW are not symmetric. When L = 256, indeed, the stress field near the top-left corner of 
the inclusion stands out from that in the other corners. This effect only slowly disappears when L is increased. The solution 
resulting from the use of GR does not suffer from this problem. As in 2D, it produces symmetric fields. Furthermore, the 
latter are close to one another at all resolutions and contain almost no oscillations.

5.3. Periodic array of spheres

Contrary to the previous sections, we now consider a microstructure without singularities (edges or corners) and focus on 
the effect of the Green operator discretization on the effective elastic properties. In the rest of this section, the elementary 
domain Ω contains one spherical inclusion of volume fraction 20%, so that the material is a periodic array of spheres. 
The spheres are very soft with contrast of properties χ = 10−4. We compute the effective elastic modulus C̃11,11 produced 
by either G or GC,W,R at increasing resolutions L = 32, 64, 128, 256 and 512. Again, we use the accelerated scheme and 
iterations are stopped when the stress field maximum variation over two iterations in any pixel is less than 2 × 10−10. 
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Fig. 4. (Color online.) 2D section of the stress component σ12(x) along the plane x3 = −0.2461 predicted by the various FFT schemes at the three resolutions 
L = 256, L = 512 and L = 1024 (left to right). The section is parallel to one of the faces of the inclusion and close to the interface with the matrix.

Fig. 5. (Color online.) Apparent elastic modulus C̃11,11 estimated by FFT methods using the Green operators G and GC,W,R (black and red), at increasing 
resolution L. Orange: estimate in [28]; violet: estimate of the asymptotic effective modulus ̃C11,11 using FFT data.

Results are shown in Fig. 5 and are compared with the analytical estimate in [28]. When the resolution increases, the 
effective elastic modulus C̃11,11 increases up to a limit value that we estimate to about 1.208 ± 0.001, for all schemes. As 
observed in other studies [7], very large systems are needed to compute this estimate at a high precision.

This is especially true of the Green operator G which has the slowest convergence with respect to the system size. At 
fixed resolution, the error on the predictions given by G is about 2 times larger than the one provided by GR, which, among 
all methods, gives the best estimate. The operators GC and GW stand in-between. This is another indication of the benefits 
of the operator GR.
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Fig. 6. (Color online.) Number of iterations N(E0) required to achieve convergence, as a function of the reference Young modulus E0, for the accelerated 
schemes AS and ASC,W,R using various Green operators. Convergence is achieved when the precision η = 10−8 is reached. The microstructures is a Boolean 
model of quasi-porous spheres with χ = 10−5.

6. Convergence rate

6.1. Convergence rate with respect to stress equilibrium

In this section, we estimate the rates of convergence of the direct and accelerated schemes DS, DSC,W,R, AS and ASC,W,R, 
that use the various Green operators. All schemes enforce stress equilibrium at convergence only, therefore we follow [27]
and consider a criterion based on the L2-norm:

η = ‖div(σ )‖2

‖〈σ 〉‖ = 1

‖〈σ 〉‖

√√√√ 1

|Ω|
∫
Ω

ddx
∣∣div(σ )

∣∣2 = 1

‖〈σ 〉‖
√∑

q

∣∣k(q) · σ (q)
∣∣2

(43)

where η � 1 is the precision and the normalizing factor ‖〈σ 〉‖ is the Frobenius norm:∥∥〈σ 〉∥∥2 =
∑
i, j

〈
σi j(x)

〉2
In (43) we set k = kC,W,R for the schemes using GC,W,R and k = iq when using the Green operator G, so that k ·σ (q) is the 
divergence of the stress field in the Fourier domain, estimated according to the various discretization schemes.

We now estimate the convergence rates on a random microstructure. In the following, the domain Ω is a (periodized) 
Boolean model of spheres of resolution L = 64 and volume fraction 17%, below the percolation threshold of the spheres — 
of about 29% [29]. To obtain meaningful comparisons, we use the same randomly-generated microstructure for all schemes. 
This particular configuration contains 743 spheres of diameter 5 voxels, about 13 times smaller than the size of Ω .

Taking ν0 = ν1 = ν2 = 0.25 for the reference Poisson ratio, we compute numerically the number of iterations N(E0)

required to reach the precision η ≤ 10−8, for varying reference Young moduli E0, in the range 0 < E0 < 1. We consider 
the Boolean model of spheres with contrast χ = 10−5 and the various accelerated schemes AS and ASC,W,R (Fig. 6). Within 
the range 0 < E0 � 0.03, the number of iterations N(E0) is about the same for all accelerated schemes. When E0 > 0.03, 
however, N(E0) is a strongly increasing function of E0 for scheme AS, contrary to the other schemes ASC,W,R. For the latter, 
N(E0) decreases with E0 up to a local minimum, beyond which variations are much less sensitive to E0. One unique local 
minimum around E0 ≈ 0.09 is found for scheme ASR, whereas the schemes ASW and ASC exhibit two local minima.

The effect of the Poisson ratio is also investigated numerically. We let ν0 = 0.25 ±0.01 and 0.25 ±0.05 for various values 
of E0 with χ = 10−5 and observe a strong increase of the number of iterations N(E0), for the schemes AS and ASC,W,R. 
The same behavior is observed for the direct scheme DS and DSC,W,R with χ = 10−2. Therefore, in the following, we fix 
the Poisson ratio to ν0 = 0.25 for the reference tensor, for all schemes and all contrast of properties χ . This leaves one 
parameter, E0, to optimize on. We use the gradient descent method to determine a local minimum of N(E0) for arbitrary 
contrast and scheme DS, DSC,W,R, AS and ASC,W,R. As above, N(E0) is the number of iterations necessary to reach η ≤ 10−8. 
We choose E0 = 0.51(E1 + E2) for schemes DS, DSC,W,R and E0 = √

E1 E2 for schemes AS and ASC,W,R as initial guess for 
E0, suggested by (18) and (17). At each step, we determine if E0 is to be increased or decreased, by comparing N(E0) with 
N(E0 + δE0) where δE0 = 0.01E0. It frequently happens that N(E0) = N(E0 + δE0). In that case, we compare the values of 
the precision η after N(E0) iterations and follow the direction that minimizes η. Iterations are stopped whenever N(E0) is 
unchanged after two descent steps.

The gradient descent method determines a local minimum rather than the global minimum, which is sub-optimal. To 
check the validity of the results, further numerical investigations are carried out for χ = 10−2, 102 and schemes DS and 
DSC,W,R. The method predicts the global minimum in these cases. This also holds for schemes AS and ASW,R with χ = 10−5, 
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Fig. 7. (Color online.) Optimal reference Young modulus E0 as a function of the contrast of properties χ , for the various FFT methods, in log–log scale. Direct 
schemes: black and red (nearly superimposed to one another); accelerated schemes: blue and green. Results for a porous material (χ = 0) are indicated at 
the left of the graph. The material is a Boolean model of spheres with volume fraction 17%.

Fig. 8. (Color online.) Number of iterations as a function of the contrast of properties χ , for the various FFT methods, in log–log scale. Direct schemes: black 
and red; accelerated schemes: blue and green. Results for a porous material (χ = 0) are indicated at the left of the graph. The material is a Boolean model 
of spheres with volume fraction 17%.

105, but not for scheme ASC with χ = 10−5. However, in this case the number of iterations N(E0) are very similar at the 
two local minima, as shown in Fig. 6. In the following, the results given by the gradient descent method are used as-is.

Results for the optimal reference E0 are indicated in Fig. 7. For the direct scheme, the optimal reference follows (18)
with 0.5003 ≤ β ≤ 0.509, independently of the Green operator used. Values of β smaller than 1/2 lead to non-converging 
schemes. For the accelerated schemes, the situation is less simple, and differs depending on the Green operator in use. For 
the scheme AS with Green operator G, the choice (17) is optimal except in the region χ ≤ 10−3 where the value of E0 tend 
to a small constant of about 0.01. Similar behavior is found for the schemes ASC,R for which:

E0 ≈ E0
1 + √

χ (44)

with E0
1 = 0.07 for ASC and E0

1 = 0.12 for ASR. Similar behavior has been observed numerically in [18], in the context of 
conductivity. For the scheme ASW that uses GW, the optimal choice for E0 follows the same pattern as above with E0

1 = 0.7
except in the region 10−4 ≤ χ ≤ 10−1. This behavior is an effect of the presence of two local minima, similar to that shown 
in Fig. 6 for χ = 10−5.

Convergence rates, computed with optimized reference, are represented in Fig. 8 as a function of the contrast, in log–log 
scale. Results for χ = 0 (strictly porous media) have been included in the same graph (left point). As is well-established [26,
30], the number of iterations in the direct scheme DS scales as χ when χ � 1 and 1/χ when χ � 1. For the accelerated 
scheme AS, the number of iterations is smaller and follows √χ when χ � 1 and 1/

√
χ when χ � 1, with one exception. 

At very high contrast of properties χ < 10−6, including at χ = 0, convergence is reached after a finite number of iterations, 
about 1,300. This particular behavior is presumably sensitive to the value chosen for the requested precision η = 10−8.

When χ < 1, the schemes DSC,W,R and ASC,W,R, that use GC,W,R, converge after a number of iterations not exceeding 430. 
As shown in Fig. 8, the number of iterations is nearly constant in the range 0 ≤ χ ≤ 10−5. As expected, the accelerated 
schemes ASC,W,R are faster than the direct schemes DSC,W,R, with scheme ASR proving the fastest. With this scheme and 
when χ < 1, the number of iterations is at most 168. Again, these results are qualitatively similar with that given in [18] in 
the context of conductivity.
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Fig. 9. (Color online.) Estimate of the elastic modulus C̃11,11 as a function of the number iterations performed, for a 3D Boolean model of quasi-porous 
spheres. Black symbols: accelerated schemes AS, ASC, ASW; red: scheme ASR (orange: Hashin and Shtrikman’s upper bound).

Fig. 10. (Color online.) Estimate of the elastic modulus C̃11,11 as a function of the number iterations performed, for a 3D Boolean model of quasi-rigid 
spheres. Black lines: accelerated schemes AS, ASC, ASW; red: scheme ASR.

For rigidly-reinforced media (χ > 1), the number of iterations of schemes DSC,W,R and ASC,W,R follow the same powerlaw 
behaviors, with respect to χ , as that of DS or AS. In all considered schemes, the number of iterations continuously increases 
with the contrast. Differences are observed between the various accelerated schemes AS and ASC,W,R, with ASR the fastest. 
The use of Green operators associated with the problem for the strain field, as undertaken here, results in convergence 
properties that are worse in the region χ > 1 than when χ < 1. In this respect, benefits are to be expected from the use of 
dual Green operators [18], associated with the problem for the stress fields.

6.2. Convergence rate with respect to the effective elastic moduli

In this section, we focus on the accelerated schemes AS and ASC,W,R and examine the rate of convergence of the various 
schemes with respect to the effective elastic moduli. We consider the same Boolean microstructure as given in Section 6 but 
discretized on higher resolution grids of 2563 and 5123 voxels. The volume fraction of the spheres are respectively 16.82% 
and 16.85%. For simplicity, the contrast of properties take on two values χ = 10−4 and χ = 104, so that the spheres are 
quasi-porous or quasi-rigid.

We perform iterations of the schemes AS and ASC,W,R using the optimized reference moduli found in the previous 
section, on the lower resolution grid. We apply the macroscopic strain loading:

εi j = δi1δ j1

At each iteration and for each scheme, we compute the elastic modulus C̃11,11, derived from the mean 〈σ11〉 of the stress 
component σ11. The convergence rate toward the elastic modulus is represented in Fig. 9 for quasi-porous spheres with L =
512 and in Fig. 10 for quasi-rigid spheres with L = 256. In Fig. 9, for the sake of clarity, the elastic moduli are represented 
by symbols once every 5 iterations, except for the first five iterations of the scheme ASR which are all represented. Dotted 
lines are guide to the eyes. In the porous case, much better convergence is obtained with scheme ASR than with schemes AS 
and ASC,W, as shown in Fig. 9. The estimate for C̃11,11 predicted by AS and ASC,W present strong oscillations that are much 
reduced with ASR. After about 7 iterations, the estimate given by ASR is valid to a relative precision of 10−2. To achieve the 
same precision, more than 50 iterations are needed for schemes AS and ASC,W.



244 F. Willot / C. R. Mecanique 343 (2015) 232–245
The situation is notably different for quasi-rigid spheres (Fig. 10). For all schemes, a much higher number of iterations 
is required to determine the elastic modulus C̃11,11 with a precision of 10−2. The slower convergence rate follows that 
observed in Section 6, where convergence is much poorer for χ > 1 than for χ < 1, and where ASR is less advantageous 
compared to the other schemes. Nevertheless, in this case also, as shown in Fig. 10, smaller oscillations are observed in the 
estimate for C̃11,11 when using ASR rather than schemes AS or ASC,W.

7. Conclusion

In this work, a novel discretization method has been proposed in 2D and 3D for use in Fourier-based schemes. The core 
of the proposed scheme is a simple modification of the Green operator in the Fourier domain. The results obtained confirm 
those achieved in the context of conductivity [18]. Compared to schemes using trigonometric polynomials as approximation 
space, or to other finite-differences methods, superior convergence rates have been observed in terms of local stress equi-
librium, but also in terms of effective properties. More importantly, the solution for the local fields, predicted by the new 
discretization scheme is found to be more accurate than that of other methods, especially at the vicinity of interfaces. This 
property is important when applying FFT methods to solve more complex problems like large strain deformation [31]. The 
new method also provides better estimates for the effective elastic moduli. Furthermore, its estimates does not depend on 
the reference medium, because the scheme is based on a finite-differences discretization of continuum mechanics.

Although not explored in this work, the modified Green operator can be used with most other FFT iterative solvers, like 
the “augmented Lagrangian” [32] or with FFT algorithms that are less sensitive to the reference [15,16], leading to the same 
local fields.
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