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The tests leading to the determination of the strength of brittle materials show a very 
wide scattering and a noticeable difference between flexural and tensile strengths. The 
corresponding statistics are usually described by the Weibull law, which only partly 
explained the observed difference. From a theoretical point of view, the coupled criterion 
reaches the same conclusion, the flexural strength is higher than the tensile one. It is 
shown that these two approaches complement to give a satisfying explanation of the 
difference between the flexural and tensile strengths. Moreover, according to the coupled 
criterion, the tensile strength appears to be the only material parameter.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Determining the strength of a brittle material is based on tensile or flexural tests on unnotched specimens (Fig. 1) [1].
The role of randomly distributed defects is decisive, leading to a large scattering in the measurements. The statistics are 

usually described by the Weibull law [2]. It leads to a significant difference between the measurements made in bending 
and tension. The flexural strength is higher than the tensile one. Indeed, for two samples of the same size, only one half of 
the sample is stressed in bending while the whole is in tension, then fewer defects are involved in bending. Nevertheless, 
the Weibull law often underestimates the flexural strength.

From a theoretical point of view, in fracture mechanics, the crack nucleation cannot be predicted by the well-known 
Griffith law. This latter only allows deciding whether a pre-existing crack can grow or not. The problem of the initiation of a 
new crack in brittle materials has been the subject of many studies since the 70s. They enter into a theory baptized, since 
the end of the 90s, Finite Fracture Mechanics [3,4]. Among them, the coupled criterion proposed in 2002 [5] seems to be 
one of the most promising and has proven its effectiveness in particular to predict the failure of v-notched specimens. It 
is based on the simultaneous fulfilment of a stress and an energy conditions. It leads to a similar conclusion on the ratio 
between the flexural and the tensile strengths.

The aim of this work is to analyze both approach and to show that they are not contradictory. They even complement 
to give a satisfying explanation of the difference between the flexural and tensile strengths.

2. The statistical Weibull model

In brittle materials, the Weibull law [2,6,7] provides a statistical approach of the failure of a specimen of volume V
undergoing a uniaxial stress field σ . It relies on the theory of the weakest link. Under a uniform tension σ = σ̄ = Constant, 
the failure probability is
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Fig. 1. Four different loadings to measure the strength of a brittle material: (a) uniform tension, (b) pure bending, (c) 3-point bending, (d) 4-point bending.

PT(σ , V ) = 1 − exp
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Where m is the Weibull modulus and σ0, V 0 a pair of scaling parameters such that

PT(σ0, V 0) = 1 − 1

e
� 0.632 (2)

Here and further in the document, the indices “T, B, PB, 3P-B, 4P-B” hold respectively for tension, bending, pure bending, 
3-point bending and 4-point bending.

For a uniaxial but non-uniform stress field σ , the Weibull law takes the following form

P (σ , V ) = 1 − exp
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0
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Where V ′ (involved in the integral) is the tested volume of the specimen.
For a pure bending loading, the tensile stress linearly decreases through the thickness from a maximum value σmax on 

the face of the specimen under tension to −σmax on the opposite face under compression

σ(x) = σmax

(
1 − 2x2

h

)
(4)

Where h is the thickness of the specimen.
Thus, in a pure bending loading, only one half of the specimen of volume V (see (1)) is under tension and V ′ is the 

volume defined by 0 ≤ x2 ≤ h/2, as a consequence (3) gives

σW = σmax

[2(m + 1)]1/m
and PPB(σ ) = 1 − exp

(
−

(
σW

σ0

)m)
(5)

Then the ratio RPB between the flexural σ PB
c and the tensile σ T

c strengths for a pure bending can be obtained considering

PT(σ , V ) = PPB(σ , V ) ⇒ RPB = σ PB
c

σ T
c

= σmax

σ̄
= [

2(m + 1)
]1/m

(6)

Similar relations can be derived for the 3- and 4-point bending tests [8]

R3P-B = [
2(m + 1)2]1/m; R4P-B =

[
6(m + 1)2

m + 3

]1/m

(7)

Surprisingly, the ratio R in (6) and (7) does not depend on the specimen thickness h.
Fig. 2 shows a comparison between (6) and (7) for various Weibull modulus m. A noticeable property of these three 

curves is that R → 1 as m → ∞, i.e. as the scattering decreases and finally vanishes, the law becoming entirely deterministic.
Data from manufacturers are available for different materials (E is the Young modulus, ν the Poisson ratio, K Ic the 

toughness of the material):

– Alumina AD998 [9], E = 370 GPa, ν = 0.22, K Ic = 4.5 MPa√m, σ T
c = 248 MPa, σ B

c = 375 MPa, m = 21 [10].

– Polymer PR520 [11,12], E = 4 GPa, ν = 0.4, K Ic = 2.2 MPa√m, σ T
c = 82.1 MPa, σ B

c = 153.1 MPa, m = 16 [8].

– Silicon carbide SA [13], E = 430 GPa, ν = 0.14, K Ic = 4.6 MPa√m, σ T
c = 234 MPa, σ 4P-B

c = 380 MPa, σ 3P-B
c = 550 MPa, 

m = 10.
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Fig. 2. The ratio R between the flexural strength and the tensile strength as a function of the Weibull modulus m: pure bending (solid line), 4-point bending 
(dashed line), 3-point bending (dotted line).

Fig. 3. Schematic view of a specimen embedding a crack with length a.

Note that it has not been possible to determine in the data sheets of the polymer and alumina cases, the type of bending 
test carried out to provide the flexural strength (index “B” alone). And even when 4-point bending is mentioned (SiC), two 
standards are available depending on the inner span length [14] and it is difficult to know which one is referred to, but it 
probably does not make a big difference.

The above values of R vs. m are plotted in Fig. 2, where it clearly appears that the experimentally measured values are 
greater than the theoretical ones predicted by the Weibull statistics.

3. The coupled criterion model

The well-known Griffith law cannot be used to predict any crack nucleation, it only allows to decide whether a pre-
existing crack can grow or not.

Instead, the coupled criterion [5] can, it allows predicting the nucleation of a new crack in a sound structure made of a 
brittle material. In the general case the onset of such a crack occurs abruptly, the crack length jumps from 0 to a (Fig. 3). 
Two conditions must be fulfilled: (i) the tensile stress σ must exceed the tensile strength σ T

c all along the expected crack 
path of length a, (ii) the incremental energy release rate G inc must exceed the mode I toughness Gc of the material. These 
conditions can be written under the assumption of plane strain elasticity

σ(x2) ≥ σ T
c for 0 ≤ x2 ≤ a

G inc(a) ≥ Gc where G inc(a) = 1

a

a∫
0

G(x2)dx2 (8)

Here G(x2) denotes the energy release rate at the tip of a crack with length x2, i.e. minus the derivative of the potential 
energy W P with respect to the crack length

G(x2) = −∂W P(x2)

∂x2
⇒ G inc(a) = W P(0) − W P(a)

a
(9)

In all cases, uniform tension, pure bending, 3-point and 4-point bending, the tensile stress σ(x2) is constant or decreasing 
with x2, then the conditions (8) can be written

σ(a)

σ T
c

≥ 1; G inc(a)

Gc
≥ 1 (10)

And it is convenient to plot the two conditions in the same graph (Figs. 4 and 5).
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Fig. 4. The dimensionless energy release rate G/Gc (dotted line), the dimensionless incremental energy release rate G inc/Gc (dashed line) and the dimen-
sionless tensile stress σ/σ T

c (solid line) function of the dimensionless crack length a/h, for σ̄ = σ T
c = 234 MPa and h = 3 mm in the SiC case.

Fig. 5. The dimensionless energy release rate G/Gc (dotted line), the dimensionless incremental energy release rate G inc/Gc (dashed line) and the dimen-
sionless tensile stress σ/σ T

c (solid line) function of the dimensionless crack length a/h, for σmax = 288 MPa and h = 3 mm in the SiC case.

3.1. The uniform tension case

It is the simplest case, in a monotonic loading the first inequality (10) holds if σ(a) = σ̄ = σ T
c , then the second one 

allows to determine a since G inc(a) is monotonically increasing with a. The stress intensity factor K I at the tip of a crack of 
length a in an infinite strip of width h submitted to a uniform tension σ̄ is given by

K I = σ̄
√

πaFT

(
a

h

)
(11)

Where the function FT can be approximated by a polynomial of order 4 with a high accuracy provided a/h < 0.6 [15]. The 
energy release rate G can be derived from the Irwin formula

G = 1 − ν2

E
K 2

I (12)

Then G inc can be calculated from (8) and (12).
The conditions (10) are illustrated in Fig. 4, for h = 3 mm, in the SiC case. Note that the height h = 3 mm was chosen 

because it is the commonly used value in standards to carry out the tests shown in Fig. 1.
In such a tensile test, at initiation, the crack length jumps from 0 to aT

c = 0.125 × h = 0.375 mm. At this point it is clear, 
from Fig. 4, that G > Gc, then the crack goes on growing in an unstable manner up to the final failure of the specimen.

Typically the coupled criterion is reduced to the maximum tensile stress condition in this special case. A size effect 
(different from that caused by the statistical variations on the presence of defects [5,16]) could be observed for very short 
specimens but this is not the case for the sizes commonly used in this type of test (3 × 4 × 40 mm).



D. Leguillon et al. / C. R. Mecanique 343 (2015) 275–281 279
Fig. 6. The dimensionless load at failure RPB = σ PB
c /σ T

c (solid line) and the dimensionless crack jump aPB
c /aT

c (dashed line) during a pure bending loading, 
function of the thickness h, as a consequence of the coupled criterion.

3.2. The pure bending case

According to (4), σ(x2) is a decreasing function of x2. Then it is clear that the condition σmax = σ T
c is not sufficient to 

ensure the stress condition in (8) since σ(x2) < σ T
c at any interior point x2 > 0.

A similar relationship to (11) expresses the stress intensity at the tip of a crack of length a in an infinite strip of width h
submitted to a pure bending (4)

K I = σmax
√

πaFPB

(
a

h

)
(13)

Again the function FPB can be accurately approximated by a polynomial of order 4 [15] allowing an easy calculation of G
and G inc. Still in the SiC case, in order to fulfil the two conditions (10), the applied load must be increased so that σmax =
288 MPa (see Eq. (4)) as shown in Fig. 5, then (10) holds true at the single point a/h = 0.093. This value is retained as the 
flexural strength σ PB

c .
At initiation, the crack length jumps from 0 to aPB

c = 0.093 × h = 0.280 mm. At this point, as before, it is clear (Fig. 5) 
that G > Gc, leading to a conclusion similar to that of the uniform tension case, the crack goes on growing up to the final 
failure of the specimen.

3.3. Influence of the specimen thickness on the flexural strength

The specimen thickness plays an important role when determining the bending strength σ PB
c in Section 3.2 because it 

defines the slope of the tensile stress when moving away from the face in tension (see (4)). Thinner the specimen and 
higher σ PB

c as shown in Fig. 6. The ratio R tends to 1 as h increases indefinitely.
Almost identical results are obtained in the 3-point and 4-point bending cases using specific formulas [17].
Despite a purely deterministic approach, the flexural strength does not equal the tensile strength (RPB > 1) except for 

very thick specimens. Deterministic means that no scattering exists, thus it corresponds to m → ∞ in the Weibull approach 
leading to conclude that R → 1. There is no contradiction but one must be conscious that both mechanisms intervene when 
measuring the flexural strength.

3.4. Influence of the toughness on the flexural strength

The Weibull theory is based on a stress condition and does not involve the toughness of the material, thus a change 
in toughness should not have any influence on the Weibull modulus of the flexural strength whereas it is sometimes 
claimed that it can have. It is discussed at length in [18] without leading to a clear conclusion. It is expected that an 
increase of the toughness can cause an increase of the Weibull modulus. Nevertheless, it must be pointed out that most of 
the effects described in this paper are due to some microstructure changes, removal of large flaws or R-curve effects and 
that in absence of these phenomena the inverse is observed. It is reported, for instance, that for a toughened zirconia a 
reduction in Weibull modulus from 20 to 7.3 occurs on burnout and sintering while the toughness increases from 1.1 to 
2 MPa√m.

Of course, since the coupled criterion needs an energy condition in addition to the stress one, it brings into evidence a 
dependency of the flexural strength on the material toughness. Fig. 7 shows how, according to the coupled criterion, the 
ratio RPB depends on the toughness K Ic for the SiC material. Such variation may be misinterpreted in terms of variation 
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Fig. 7. The ratio RPB function of the material toughness K Ic for SiC as a consequence of the coupled criterion.

of the Weibull modulus, since, following (6), the ratio RPB increases as m decreases. If the toughness evolves from 4.6 to 
6 MPa√m RPB increases by 10% and then, using the only relationship (6), m should change from 10 to roughly 7, a decrease 
by a factor 0.7, to fit with the difference.

It must be emphasized that the only role of the toughness in the tensile test is to change the length of the crack jump 
at initiation: the highest the toughness, the largest the crack jump length, as can be derived from Fig. 4.

As a conclusion of the two above subsections, according to the coupled criterion, the flexural strength measured during a 
bending test depends on the geometry of the specimen (its thickness, Section 3.3). Moreover flexural strength is also clearly 
linked to the value of the toughness (Section 3.4). Whereas both the thickness and the toughness have strictly no influence 
on the tensile strength measured in a pure tension test (Section 3.1). Amongst the two strength parameters, the tensile 
strength appears to be the only material parameter.

4. Combining the Weibull approach with the coupled criterion

On the one hand, according to the statistical Weibull theory, the flexural strength is higher than the tensile strength, 
the ratio R depends on the scattering measured by the Weibull modulus m but does not depend on the specimen size 
(Section 2). In technical sheets, knowing the flexural strength, the tensile strength is sometimes derived without new mea-
surements using this ratio, since bending experiments are easier to carry out for brittle materials [1].

On the other hand the coupled criterion comes to a similar conclusion on the ratio R but with a different explanation 
(Section 3). It is deterministic, both energy and stress are involved to predict crack initiation leading to the final failure. The 
governing parameter is the thickness h of the specimens which plays a key role in the behavior of the tensile component of 
the stress tensor during a bending test.

Obviously, using either one or the other correction to the flexural strength leads to overestimate the tensile strength. 
Then, since the same above conclusions are due to totally independent reasons, the idea is to combine them, applying 
successively the two corrections.

Fig. 8 reuses Fig. 2, the measured values are in light gray, a first correction associated with the coupled criterion is 
brought and results are plotted in medium gray. Obviously the corrected values remain above the expected ones (R = 1). 
Then a second correction relying on the Weibull law is added leading to the black symbols. Obviously combining these two 
corrections provides satisfying estimates of the tensile strength (i.e. R close to 1).

5. Conclusion

There has been a controversy about energy approaches to crack initiation. In particular, the often cited paper by Parvizi 
et al. [19], published in 1978, has been much discussed by the upholders of the statistical approach. They studied the trans-
verse cracking in cross-ply laminates and observed that the critical load increases with the thinness of the inner transverse 
layer. This increase was correctly described by the energy-based approach they proposed. But, of course, Weibull’s argu-
ments point in the same direction. Kelly [20], in 1988, responded to critics, trying to prove that Weibull type statistics was 
unlikely in the case analyzed by Parvizi et al. Finally we reconcile everyone by showing that it is necessary to combine the 
two approaches, at least in the case studied herein and probably in most cases, and that there are experimental evidences 
to confirm this.

Agreeing with this statement, the most important conclusion to draw from the coupled criterion is that, amongst the 
two strength parameters, the tensile strength seems to be the only one to be a material parameter.
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Fig. 8. The corrected ratio R . The light gray points are the measured values (for SiC diamonds correspond to 3P-B and circles to 4P-B), the medium gray 
ones are corrected by the coupled criterion (h = 3 mm) and the black ones are corrected by both the coupled criterion and the Weibull theory. Refer to 
Fig. 2 for the curves.
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