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This work demonstrates that in advection–diffusion Lattice Boltzmann schemes, the local 
mass-conserving boundary rules, such as bounce-back and local specular reflection, may 
modify the transport coefficients predicted by the Chapman–Enskog expansion when they 
enforce to zero not only the normal, but also the tangential boundary flux. In order to 
accommodate it to the bulk solution, the system develops a Knudsen-layer correction to 
the non-equilibrium part of the population solution. Two principal secondary effects—
(i) decrease in the diffusion coefficient, and (ii) retardation of the average advection 
velocity, obtained in a closed analytical form, are proportional, respectively, to freely 
assigned diagonal weights for equilibrium mass and velocity terms. In addition, due to 
their transverse velocity gradients, the boundary layers affect the longitudinal diffusion 
coefficient similarly to Taylor dispersion, as they grow as the square of the Péclet number. 
These numerical artifacts can be eliminated or reduced by a proper space distribution of 
the free-tunable collision eigenvalue in two-relaxation-time schemes.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this work, we examine the modification of the bulk equilibrium by the local mass-conserving boundary conditions 
in the framework of the Lattice Boltzmann Method (LBM). The Knudsen boundary layers are usually considered in the 
context of the rarefied gas dynamics as boundary conditions for non-equilibrium flows [1]. A very comprehensive critical 
review on the efforts devoted to appropriate LBM boundary conditions can be found in works [2,3]. The objective of this 
work is quite different. We consider the two-dimensional LBM for linear advection–diffusion in the Poiseuille profile Ux(y)

in a straight channel of width H bounded by impermeable walls (Figs. 1 and 2a). The pioneering advection–dispersion 
models [4–6] apply the same equilibrium as the Navier–Stokes models, but they relax momentum conservation. As yet, 
the Neumann boundary conditions for zero concentration flux on the impermeable wall adopt the Maxwell population 
reflections. According to [7,8] the transverse velocity gradient induces a longitudinal dispersion of a passive scalar. While 
the non-local, specular-forward reflection matches the Taylor dispersivity properly, the local bounce-back (BB-rule) fails to 
do so [9]. However, the specular-forward reflection becomes inconvenient for curved boundaries.
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Fig. 1. (Color online.) The averaged concentration profiles in Poiseuille profile are computed with the “standard” hydrodynamic d2Q9 equilibrium apply-
ing the specular reflection (d2Q9-SNL, left) and bounce-back (d2Q9-BB, right) in a channel of width H = 12. The free product of two eigenfunctions in 
two-relaxation-time (TRT) collision is � = { 1

12 , 16 , 14 , 12 } (dashed, dotted, solid, dash-dotted). The analytical solution with molecular diffusion D0 = 1
2 and 

averaged velocity U = 2
9

√
3 is plotted as the solid (red) line. (For interpretation of references to color in this figure caption, the reader is referred to the 

online version of this article.)

Fig. 2. (Color online.) Parabolic profile (p-field) and constant-velocity plug flow (c-field) are imposed in the channel. Two local: d2Q5-BB/d2Q9-BB and 
d2Q9-SL, and one non-local: d2Q9-SNL boundary reflections are applied for zero-normal-flux.

Fig. 3. (Color online.) Equilibrium d2Q9 weights are exemplified for (i) d2Q5, (ii) “standard” d2Q9 and (iii) “rotated” d2Q5.

Further analysis [10] shows that the bounce-back rule reduces the tangential boundary flux to zero via the diagonal 
(non-perpendicular with the wall) links. An example of concentration profiles is illustrated in Fig. 1 for those two boundary 
rules depicted in Fig. 2. It is displayed in Fig. 1 that in the framework of two-relaxation-time (TRT) advection–diffusion 
d2Q9-BB scheme [11,12], the bounce-back retardation of the profile depends on the free-tunable product � of two eigen-
functions �− and �+ . Notice that, while in the fluid dynamics schemes [13,14] �+ determines the kinematic viscosity and 
�− is a free parameter, in ADE schemes they exchange their roles, that is D0 ∝ �− and �+ is a free parameter. Our anal-
ysis will show that the amplitude of the bounce-back velocity correction scales proportionally to the free-tunable diagonal 
equilibrium velocity weight. It should be said that, while in the Navier–Stokes equilibrium the coordinate/diagonal velocity 
weights are fixed by two isotropic constraints [15], the ADE imposes only one constraint (Fig. 3). In particular, assigning a 
zero value to all diagonal weights, the d2Q9 reduces to the coordinate-stencil d2Q5 model, where the local and non-local 
specular reflections both reduce to the BB-rule (d2Q5-BB in Fig. 2) and the tangential defect on the straight walls vanishes.

Recall that the hydrodynamic schemes locate exactly the Poiseuille profile in straight or rotated channels, or in circular 
pipe, only when the boundary scheme accounts for the flow curvature in the non-equilibrium [16,17,13,14]. The Dirichlet 
boundary conditions of similar accuracy have been constructed for concentration in ADE [10] and pressure in NSE [13,14]. 
However, in practice, the mass-conserving Neumann boundary conditions are mostly needed in ADE, while the proposed 
conditions either do not necessarily conserve the mass for curved shapes, e.g., [10,18], or neglect the tangential flux varia-
tion and exclude the most interesting relaxation-parameter choice [19]. Therefore, the versatile, local and mass-conserving 
BB-rule is still appealing, especially for dispersion in porous media, and one of our objectives is to release its tangential 
constraint.

For this purpose, we firstly identify the underlying non-equilibrium mechanism following [20]. It exhibits the boundary 
layers that accommodate the bounce-back closure relation along each individual lattice direction. Similarly to Knudsen’s 
boundary layers, their amplitude exponentially decays with the distance from the boundary. The coupling of the equilib-
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rium and Chapman–Enskog bulk non-equilibrium with boundary layers occurs in grid boundary nodes via an individual 
closure relation of the boundary scheme. To the best of our knowledge, the exact construction of the non-equilibrium 
boundary layers has been undertaken only in a few works on LGA/LBM. In seminal work [21], the Kramers problem [1] is 
solved exactly in linear shear flow on the FHP discrete-velocity set, for parallel and perpendicular orientations of the wall. 
Remarkably, the Knudsen boundary-layer solution of the system depends on the shear rate and free-energy-flux collision 
rates, in the form identified later as a free product � of two eigenfunctions in TRT schemes. The work [21] concludes 
that the (probabilistic) p-combination of the bounce-back and specular reflection does not support the layers, but results 
in an anisotropic, p-dependent location of the no-slip tangential velocity. The alternative analysis technique [22,23] adopts 
the Chapman–Enskog and Taylor expansions to show that the specific anisotropic p-dependent � values enable the exact 
location of the no-slip bounce-back walls in parallel/diagonal Poiseuille flow; the same solutions remain valid for differ-
ent velocity sets [17,13,14,24]. On the other hand, the non-equilibrium boundary layers [14] explain why both Stokes and 
Navier–Stokes equilibrium distributions produce the same effective parabolic profile, although their respective second- and 
fourth-order Chapman–Enskog solutions obey quite different closure conditions. This analysis was also applied to different 
second- and third-order accurate hydrodynamic boundary schemes [14]. The analysis developed in works [16,25] shows that 
in stair-wise discretized rotated channels the ensemble of the discrete bounce-back closure relations is deficient because of 
their intrinsic local mass conservation, while the mass is only conserved over the period of the cell on the exact population 
solution of the problem. Because of this discrepancy, the modeled parabolic profile is superposed on the boundary-layer ve-
locity profile, meaning that the non-equilibrium boundary layer is projected on the discrete velocity vectors, thus modifying 
the prediction of the Chapman–Enskog analysis [16].

The distinctive point of our analysis for the ADE is that we show that the accommodation layers may directly modify 
the transport coefficients consistently derived with the help of the Chapman–Enskog analysis. Taking as example both plug 
and Poiseuille flows, c-field and p-field hereafter, we establish that the bounce-back and local specular reflection modify 
(i) the effective diffusion coefficient proportionally to the free-tunable diagonal mass-weight value, and (ii) the effective 
advection velocity proportionally to the free-tunable diagonal velocity weight. The diffusion effect is velocity independent 
and it manifests itself even in pure diffusion. The velocity effect results in the longitudinal Taylor numerical dispersion 
due to the transverse velocity gradients inside the boundary layer. The specular-forward reflection does not produce any 
boundary effects and the difference between the measured apparent dispersion and the Taylor prediction happens only 
because of the truncation dispersion; its closed-form expression is derived in our parallel work [26] and reported here for 
the sake of completeness. With the bounce-back and local specular reflection, the three dispersions, namely, mechanical, 
truncation and boundary are combined together, enabling a formal improvement of the truncation error, but at the price of 
slowing down the advection front. Since the amplitudes of the boundary layers decrease as 

√
�, we show that their effect 

can be eliminated or reduced by an appropriate choice of � in the boundary nodes.
The rest of the paper is organized as follows. Section 2 provides the necessary LBM basis and numerical observations 

of the bounce-back/local specular reflection effects in plug and Poiseuille profiles. Section 3 extends the non-equilibrium 
boundary-layer solutions [20]. Section 4 derives from these solutions the exact expressions for the averaged diffusion and 
advection corrections due to the bounce-back, then builds the corresponding dispersion. All these theoretical results are 
validated against the numerical measurements of the two first moments. Section 5 provides solution strategies for boundary 
layers reduction. Section 6 concludes this work.

2. Basis equations and numerical observations

The discrete, d-dimensional velocity set consists of zero vector c0 and Q m = Q − 1 vectors cq connecting square-grid 
nodes r: each vector cq has the opposite one, cq̄ = −cq . The corresponding populations { fq(r, t)} are decomposed into their 
symmetric and anti-symmetric components: f ±

q = ( fq ± fq̄)/2. The TRT scheme [10,13] updates them with the help of the 
two relaxation parameters s± ∈]0, 2[:

fq(r + cq, t + 1) = fq(r, t) + g+
q + g−

q , q = 0, . . . ,
Q m

2
, g+

0 = −2
Q m/2∑
q=1

g+
q , g−

0 = 0 ,

fq̄(r − cq, t + 1) = fq̄(r, t) + g+
q − g−

q , q = 1, . . . ,
Q m

2
, g±

q = −s±( f ±
q − e±

q ) , q = 1, . . . ,
Q m

2
. (1)

The positive eigenfunctions �± = 1
s± − 1

2 determine the transport coefficients. A special role is played by their free-

tunable product � = �−�+ . Its particular values, such as � = 1
12 and � = 1

6 , provide the third-/fourth-order accuracy 
at the steady state for any equilibrium, while � = 1

4 has advanced stability in the ADE [11,12]. We consider the mod-
elling of the two-dimensional advection–diffusion equation in the prescribed velocity field U(r) with the d2Q9 scheme. 
Let its four first velocities have components cx = {1, 0, 1, −1} and c y = {0, 1, 1, 1} (see Fig. 3). The equilibrium distribution 
e±

q (r, t) = E±
q (r)C(r, t) is set proportional to solute concentration C(r, t) = f0 + 2 

∑Q m/2
q=1 f +

q , and the set {E±
q } reads for 

q = 1, . . . , Q m/2:
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E+
1 = t(m)

c ce + t(u)
c Ū 2 + (U 2

x − U 2
y)

4
, E+

2 = t(m)
c ce + t(u)

c Ū 2 − (U 2
x − U 2

y)

4
,

E+
3 = t(m)

d ce + t(u)

d Ū 2 + UxU y

4
, E+

4 = t(m)

d ce + t(u)

d Ū 2 − UxU y

4
, Ū 2 = 1

2
(U 2

x + U 2
y) ,

E−
1 = t(a)

c Ux , E−
2 = t(a)

c U y , E−
3 = t(a)

d (Ux + U y) , E−
4 = −t(a)

d (Ux − U y) . (2)

The weights obey one isotropic constraint: 2 
∑Q m/2

q=1 t(·)
q cqαcqβ = δαβ ; the coordinates weights t(·)

c can be selected inde-

pendently for each of three families; the diagonal weights t(·)
d are computed from them: t(·)

d = 1/4 − t(·)
c /2. Two “limit” 

distributions, such as the d2Q5 and “rotated” d2Q5, are specified in Fig. 3 along with the “standard” weights borrowed 
from the hydrodynamic scheme. The maximum velocity amplitude should obey weight-dependent stability conditions 
|U| ≤ U max(ce, t(·)

q ) [11,27]. The considered one-dimensional flows are (i) a plug flow of constant velocity Ux and (ii) a 
parabolic profile Ux(y) where zero velocity is shifted by a half-grid spacing outside the grid-boundary node rb = {r0, rN }. 
The squared velocity terms in Eq. (2) then reduce to U 2

x terms: they remove the second-order longitudinal numerical diffu-
sion equal to −�−U 2

x [10,11,27,26]. The modeled isotropic ADE for C(x, y, t) reads

∂t C + Ux(y)∂xC = D0(∂
2
x C + ∂2

y C) , D0 = ce�
− , U = {Ux,0} , y ∈ [0, H] . (3)

A scale-parameter ce of the diffusion coefficient D0 can be freely selected inside a t(m)
q -dependent stability interval 

]0, 1] [11]. Prescribing a zero-normal-flux condition on the walls: ∂y C |y=0,H = 0, the section-averaged concentration C̄(x, t)
is expected to propagate with the averaged velocity U and to diffuse with the longitudinal coefficient D0(1 + kT ), where 
Taylor dispersivity D0kT is non-zero in the presence of the transverse velocity gradient [7,8]. In straight Poiseuille profile, 
one expects:

∂t C̄ + U∂xC̄ = D∂2
x C̄ , D = D0(1 + kT ) , C̄(x, t) =< C(x, y, t) >= 1

H

H∫

0

C(x, y, t)dy ,

U = < Ux(y) >= U0 H2

12
, Ux(y) = U0

2
y(H − y) , kT = Pe2

210
, Pe = UH

ce�− . (4)

Starting from a Dirac delta-function C |t=0 = δ(x0), numerically: C |t=0 = 1 in one grid node x = x0, the first raw spatial 
moments μn(t) = ∫ ∞

−∞(x − x0)
nC̄(x, t)dx obey μ1 = Ut , μ2 = 2Dt + μ2

1. Time-independent values U (num) and D(num) are 
computed as: U (num) = (μ1(t + δt) − μ1(t))/δt and D(num) = (μ�

2(t + δt) − μ�
2(t))/(2δt), μ�

2 = μ2 − μ2
1.

We apply three mass-conserving boundary reflections depicted in Fig. 2: the bounce-back (d2Q9-BB), the local specular-
reflection (d2Q9-SL), and the non-local, specular-forward reflection (d2Q9-SNL). These three rules reduce to d2Q5-BB on 
the coordinate stencil t(a)

c = t(m)
c = t(u)

c = 1
2 . The d2Q5-BB and d2Q9-SNL are explored in work [26]: they produce the same 

solutions as for the periodic (mirror) conditions. In plug flow, their solutions are exact: U (num) ≡ Ux and D(num) ≡ D0. In 
parabolic profile, they give the expected arithmetical mean velocity value: U (num) = 1

H

∑H
i=1 Ux(yi) = U(1 + 1

2H2 ). These two 
schemes produce {t(a)

q }-dependent, but {t(m)
q , t(u)

q }-independent, solution D(num) = D0(1 + kT + δkT ) where δkT encompasses 
the numerical dispersivity of the scheme, as it is predicted [26] by combining the truncation and Taylor-dispersion analysis 
in parabolic flow (see Eqs. (50)–(52) there)

δkT ≈ k(1)
T + k(2)

T , k(1)
T = (ce(�

−)2 + (� − 1

4
))

Pe2

5H2
, k(2)

T = −3(1 − 2t(a)
c )(� − 1

12
)

Pe2

5H2
, (5)

δkT ≈ 0 with �(t(a)
c ) = t(a)

c

4(3t(a)
c − 1)

, t(a)
c ∈]1

3
,

1

2
] , if ce(�

−)2 ≈ 0 ,

d2Q5 : δkT ≈ 0 if �(t(a)
c = 1

2
) = 1

4
. (6)

The second component k(2)
T vanishes in d2Q5-BB. The predicted solution (5) is in a good agreement with the numerical 

results obtained with d2Q9-SNL/d2Q5-BB, as can be seen in the rightmost diagram in the top row in Fig. 4 for the relative 
error errD = D(num)

D −1 ≈ δkT
1+kT

. Note errD is practically �-independent when t(a)
c = 1

3 and weight-independent when � = 1
12 , 

in agreement with Eq. (5): this expression accounts for the second-order summation effects; the exact or quasi-result has 
been achieved by accounting for H−4 and H−6 terms (see Eqs. (74)–(76) in [26]). In the intermediate and high-Pe range, 
ce(�

−)2 ≈ 0 and, equating δkT to zero, one obtains “optimal-dispersion” solution �(t(a)
c ), only existing when t(a)

c ∈] 1
3 , 12 ], 

with � = 1
4 for d2Q5-BB (see results for t(a)

c = 1
2 in Fig. 4). The rightmost diagram in the bottom row in Fig. 4 shows the 

difference with the d2Q5, ‖errD(t(a)
c )‖ = errD(t(a)

c ) − errD(t(a)
c = 1 ), with ‖errD(tc)‖ ≈ k(2)

T .
2 1+kT
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Fig. 4. (Color online.) The relative dispersion error errD in the parabolic flow when the three coordinate weights take the same value tc ∈ [0, 12 ]. 
Top row: errD (tc) with (a) d2Q9-BB, (b) d2Q9-SL and (c) d2Q9-SNL. Bottom row: the difference with the d2Q5, ‖errD (tc)‖ = errD (tc) − errD (tc = 1

2 ). 
The truncation predictions (5) (blue lines) and d2Q9-SNL (symbols) are plotted in the last column. All results are shown for � = { 1

12 , 16 , 14 , 12 }
(circles, triangles, lozenges, squares).

Fig. 5. (Color online.) Averaged concentration profiles in the parabolic flow of U =
√

3
9 at t = 7000 steps are computed with the “rotated” d2Q5 and (a) 

BB, (b) SL, (c) SNL and (d) d2Q5-BB, with � = 1
6 (dotted, magenta), � = 1

4 (solid, red) and � = 1
2 (dashed, blue). The analytical solution to Eq. (4) for 

Pe = 80
√

3 is dash-dotted (black).

The results with d2Q9-BB and d2Q9-SL in the first two columns in Fig. 4 are different from those with d2Q9-SNL (third 
column), except when they all reduce to d2Q5-BB for t(a)

c = 1
2 . Remarkably, the d2Q9-BB and d2Q9-SL coincide for � = 1

4 . 
One might conclude, e.g., in the case of the d2Q9-BB, that the most accurate solution is reached by the “rotated” d2Q5
model tc = 0, where |errD | is minimum. Fig. 5 shows the averaged concentration profiles of the “rotated” d2Q5 scheme for 
three reflections. They confirm the dependency on � with d2Q9-SNL (third diagram); nevertheless, all profiles propagate 
here with the same (exact) velocity. This is opposed to d2Q5-BB (first diagram) and d2Q9-SL (second diagram), which both 
slow down the front. Finally, the d2Q5-BB results presented in the last diagram are clearly more accurate than the three 
solutions with the “rotated” d2Q5 model.

Similar computations conducted in plug flow are presented in Fig. 6. The d2Q5-BB and d2Q9-SNL results coincide and 
have equal moments (two last diagrams). At the same time, both the d2Q9-BB and d2Q9-SL completely fail: the advection 
velocity drastically decreases and becomes undoubtedly �-dependent with the BB (first diagram), while it also diminishes, 
but remains �-independent with the SL (second diagram). The two first figures in the bottom row in Fig. 6 reveal a 
non-uniform concentration distribution C(y) with BB/SL, also illustrated by the last diagram for � = 1

4 . The distribution is 
uniform with d2Q5-BB/d2Q9-SNL (third diagram).

Fig. 7 quantifies these effects for the bounce-back. The left diagram shows the relative velocity error ‖errU (tc)‖ =
errU (tc) − errU (tc = 1

2 ), errU (tc) = U (num)

U − 1 ( with errU (tc = 1
2 ) = 0 in c-field). In c-field and p-field, only the velocity-

weight t(a)
c �= 1

2 modifies the advection velocity and errU (tc) is independent of velocity magnitude. The striking feature is 
that ‖errU ‖ decreases proportionally to t(a)

c − 1
2 . Next, errU (tc) is negative (and therefore, the mean velocity diminishes), 

and |errU (tc)| increases with �, in agreement with the profiles in Fig. 6. The first moment confirms that in c-field, errU

is �-independent with the SL, and it has the same value as that of BB for � = 1
4 . Finally, in c-field, ‖errD(tc)‖ = errD(tc)

because errD(tc = 1
2 ) = 0. The second diagram reveals a huge non-linear increase in errD(tc) when tc decreases from 1

2 to 
zero. This distribution scales as U2, suggesting the appearance of numerical dispersion.

In summary, we observed that, in the parabolic and constant velocity fields, the d2Q9-BB and d2Q9-SL schemes with the 
non-zero diagonal weights modify mean advection velocity, provide non-zero diffusion error in c-field and alter truncation 
dispersion error in p-field. Our analysis will quantify all these effects via the separate contributions derived for three weight 
families. These and all other numerical solutions are illustrated for the same model parameters and the same average 
velocity U in c-field and p-field: H = 12, �− = 1 × 10−1, ce = 1 , U = 2/3 × |U |max(ce)/2 =

√
3 , then Pe = 80

√
3, with kT =
2 3 9
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Fig. 6. (Color online.) Top row: similarly as in Fig. 5, but in plug flow where d2Q9-SNL and d2Q5-BB coincide. The analytical solution to Eq. (4) for kT = 0 is 
dash-dotted (black line). Bottom row: three first diagrams show the corresponding dependency C(y) at the x-point where C̄ is maximum. The last diagrams 
plots BB/SL solutions with � = 1

4 at the boundary nodes y = 0.5 (dotted, black), at the center of the channel (dot-dashed, red) and the average solution 
(dashed blue).

Fig. 7. (Color online.) The d2Q9-BB in plug flow. The two first diagrams show the relative differences with the d2Q5 in advection velocity (‖errU (tc)‖ =
errU (tc)) and diffusion coefficient (‖errD (tc)‖ = errD (tc)) when all weights take the same value tc = t(m)

c = t(a)
c = t(u)

c , for � = 1
6 (“triangles”), � = 1

4

(“lozenges”), � = 1
2 (“squares”). The lines depict the analytical predictions, with Eq. (24) for errU (t(a)

c ) = δU (a) and a sum of three contributions for 
errD = δD(m)

0 + δD(u)
0 + k(a)

T , obtained from Eqs. (19), (20) and (29). The last diagram plots (rescaled) dispersivity coefficient (29).

91.4286 in p-field and kT = 0 in c-field. This choice of velocity halves in the p-field the maximum stable (two-dimensional) 
velocity amplitude |U |max = min{√2ce, 

√
1 − 2ce} of the d2Q5 scheme [11].

3. Non-equilibrium boundary layers

This section is based on the steady-state recurrence equations of the TRT scheme derived in Ref. [20]. They present two 
pairs of exact linear combinations of the evolution equation (1), where the time variable is dropped:

⎧⎨
⎩

g±
q (r) = [�̄qe∓

q − �∓�̄2
qe±

q + (� − 1

4
)�̄2

q g±
q ](r) , (a)

[�̄2
qe±

q − �±�̄2
q g±

q − �̄q g∓
q ](r) = 0 , (b)

(7)

with �̄qψ(r) = 1
2 (ψ(r + cq) − ψ(r − cq)) and �̄2

qψ(r) = ψ(r + cq) − 2ψ(r) + ψ(r − cq), ∀ ψ . By construction, these equations 
are only valid for those links where all populations are issued from the propagation step. In form of the infinite series for 
gq around eq , the solution to Eqs. (7) has the same coefficients as the steady-state Chapman–Enskog expansion [20]. The 
recurrence equations remain satisfied if we disturb g±

q (r) by the following correction δg±
q (r):

⎧⎨
⎩

δg±
q (r) = (� − 1

4
)�̄2

qδg±
q (r) , (a)

[�±�̄2
qδg±

q + �̄qδg∓
q ](r) = 0 . (b)

(8)

This correction, referred to as non-equilibrium boundary layer, will allow us to couple the expected bulk solution, obeying the 
Chapman–Enskog expansion, to the closure relation of the boundary scheme. In order to construct δg±

q (r), let us consider 
grid nodes rn = r0 + ncq along lattice direction cq , from one boundary end at r = r0 to another at rN = r0 + Ncq (see Fig. 8). 
According to Eq. (8)(a), δg±

q (r) �= 0 when � = 1
4 only in two boundary nodes rb = {r0, rN }. When � �= 1

4 , the solution to 
Eqs. (8) has the form δg±

q (rn) = a±
q kn

σ + b±
q k−n

σ , where {a±
q , b±

q } are linkwise-constant and kσ has two roots:
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Fig. 8. (Color online.) First diagram provides notations for boundary-layer analysis. Second and third diagrams plot functions P (n) and M(n) from Eq. (11)
in a channel of H = 12 for � = 1

12 (“triangles”, magenta), � = 1
6 (“lozenges”, blue), � = 1

2 (“squares”, red). Last diagram plots function �(�, H) versus �
when H = {4, 6, 12} (solid, dashed, dotted).

⎧⎪⎪⎨
⎪⎪⎩

� �= 1

4
: kσ = 2

√
� − σ

2
√

� + σ
, σ = ±1 ,

√
�+a+

q = σ
√

�−a−
q ,

√
�+b+

q = −σ
√

�−b−
q , (a)

� = 1

4
: δg∓

q (r0) = δg±
q (r0)

2�∓ , δg∓
q (rN) = −δg±

q (rN)

2�± , with 2�∓ = 1

2�± . (b)

(9)

The above relations between different parity components are obtained from Eq. (8)(b). We assume that k = k1 (σ = 1), then 
|k| < 1 and solution of Eqs. (8) with Eq. (9)(a), obeying prescribed boundary values δg+

q (n = 0) = δg+
q (r0) and δg+

q (n = N) =
δg+

q (rN ), reads

δg+
q (rn) = pN(n)δg+

q (rN) + p0(n)δg+
q (r0) , pN(n) = kn − k−n

kN − k−N
, p0(n) = k(N−n) − k−(N−n)

kN − k−N
. (10)

Now, we make use of the axial symmetry in the straight channel. The first possible situation is δg+
q (rN ) = −δg+

q (r0), then 
δg−

q (rN ) = δg−
q (r0) and Eq. (10) becomes

⎧⎪⎪⎨
⎪⎪⎩

δg+
q (rn) = P (n)δg+

q (rN) , P (n) = kn − k(N−n)

kN − 1
, P (N) = −P (0) = 1 , (a)

δg−
q (rn) =

√
�

�− M(n)δg+
q (rN) , M(n) = kn + k(N−n)

kN − 1
, M(N) = M(0) = kN + 1

kN − 1
. (b)

(11)

The functions P (n) and M(n) are plotted in Fig. 8: they monotonously decay towards the center when � > 1
4 but oscillate 

when � < 1
4 . When � = 1

4 , they are constrained to boundary nodes. By symmetry, < P (n) >= 0 but we will need the 
auxiliary functions ψ(�, H) and �(�, H) of < M(n) >:

ψ(�, H) = − < M(n) > H

2
√

� − M(N)
= 1 , < M(n) >=

∑N=H−1
n=0 M(n)

H
= 1

H
(1 − 2

√
� + 2

kN − 1
) ,

�(�, H) = − < M(n) > H

1 − 2
√

�M(N)
= (

2

1 + kN+1
− 1) , �(H)|

�= 1
4

= �(�)|H→∞ = 1 . (12)

Fig. 8 shows that �(�, H) rapidly approaches its asymptotic value �|H→∞ = 1 when � > 0, and it vanishes when � → 0.
A second possible situation is δg+

q (rN ) = δg+
q (r0), then δg−

q (rN ) = −δg−
q (r0):

⎧⎪⎪⎨
⎪⎪⎩

δg−
q (rn) =

√
�

�− M(n)δg+
q (rN) , M(n) = kn − k(N−n)

kN + 1
, M(N) = −M(0) = kN − 1

kN + 1
, (a)

δg+
q (rn) = P(n)δg+

q (rN) , P(n) = kn + k(N−n)

kN + 1
, P(N) = P(0) = 1 . (b)

(13)

The averaged functions obey: < M(n) >= 0 and �(�, H) = <P(n)>H
2
√

�−M(N)
= �(�, H), with

φ(�, H) = < P(n) > H

1 − 2
√

�M(N)
= 1 , < P(n) >= 1

H
(1 − 2

√
� + 4

√
�

kN − 1
) . (14)

In order to closure the system for δg+
q (rN ), one has to provide a boundary rule, e.g., the bounce-back (BB) rule reads at 

steady-state for cut link q:

BB : fq̄(rb) = ( fq + g+
q + g−

q )(rb) , if rb + cq ∈ solid. (15)

Replacing fq(rb) by (e+
q + e−

q ) − (�+ + 1
2 )g+

q − (�− + 1
2 )g−

q , and using decomposition g±
q = G±

q + δg±
q into “bulk” (G±

q ) and 
“boundary-layer” (δg±

q ) components, the closure relation of the bounce-back reads:
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BB : [e−
q + 1

2
(G+

q + δg+
q ) − �−(G−

q + δg−
q )]|rb = 0 . (16)

Prescribing the expected bulk solution for G±
q and Eqs. (11) or Eqs. (13) for δg±

q , we will derive δg±
q (rN ) from the closure 

relation (16), then construct boundary layers and, finally, estimate their impact on the averaged transport coefficients, with 
the help of Eqs. (12) and (14).

4. Impact of the “spurious” boundary layers

In Section 4.1, we first derive the exact, velocity-independent correction to diffusion coefficient due to the diagonal 
mass-weight t(m)

q , then extend it to U 2
x -weight t(u)

q in Section 4.2. The exact correction of the velocity field, due to the 
velocity-weight t(a)

q , is constructed in Section 4.3. The associated longitudinal dispersion is derived in Section 4.4. The 
individual diffusion and dispersion corrections can be summed for three weight families. The details are provided for the 
bounce-back rule, an extension for other boundary conditions is almost straightforward. All results are compared with the 
numerical simulations in plug and parabolic flows.

4.1. Bounce-back diffusion-coefficient correction due to the mass-weight t(m)
q

When the coordinate mass-weight t(m)
c varies from 1

2 to 0, the diagonal links obtain non-zero component e+
q = t(m)

d ceC , 
t(m)

d ∈ [0, 14 ]. Naturally, the mass weight only affects the diffusion coefficient: D0 = ce�
− → ce�

−(1 + δD(m)
0 (t(m)

c )) in Eq. (4). 
Hence, the correction δD(m)

0 (t(m)
c ) is velocity independent and the same as in pure diffusion case. According to the Chapman–

Enskog analysis and in agreement with Eq. (7)(a), one expects a y-independent, second-order pure-diffusion solution as: 
G−

q = t(m)
q ce�̄xC̄(x, t)cqx , G+

q = −�−�̄qG−
q = −�−t(m)

q ce�
2
x C̄(x, t)c2

qx . This last term gives the isotropic diffusion term in the 
RHS of the modeled mass-conservation equation (4), with − 

∑Q m
q=0 G+

q = �−ce�
2
x C̄(x, t). However, the diagonal cut links 

should obey the bounce-back closure relation (16). Firstly, let us assume δg±
q = 0. Since e−

q = 0, the difference of Eqs. (16)

for two cut diagonal-links yields: −2�−cet(m)

d �̄xC̄(x, t)(rN ) = 0. It means that the bounce-back enforces zero tangential 
boundary flux when t(m)

d �= 0. The incompatibility with the bulk solution causes an appearance of the accommodation cor-
rection (11) in the form:

δg+
q (rn) = k1 P (n)�̄xC̄(x, t)cqxcqy , δg−

q (rn) =
√

�

�− k1M(n)�̄xC̄(x, t)cqxc2
qy . (17)

It satisfies Eqs. (8) with �̄q = �̄ycqy , �̄2
q = �2

yc2
qy , δg+

q (rN ) = k1�̄xC̄(x, t)cqxcqy ; the x-coordinate is assumed to be set by 
the point where lattice direction along cq , from r0 to rN = r0 + Ncq , cuts the channel axis y = H/2 (see Fig. 8). To find k1, 
we substitute G−

q = t(m)
q ce�̄xC̄(x, t)cqx , G+

q = −�−t(m)
q ce�

2
x C̄(x, t)c2

qx together with Eq. (17) into Eq. (16) and consider their 
difference for two diagonal links. This gives

[k1 P (N) − 2�−(t(m)

d ce + k1

√
�

�− M(N))]�̄xC̄(x, t) = 0 then k1 = 2�−cet(m)

d

1 − 2
√

�M(N)
. (18)

The correction to the averaged diffusion term is expected as �− <
∑Q m

q=1 �̄xδg−
q cqx >. Substituting Eq. (17) yields this cor-

rection as: �−k1

√
�

�− < M(n) > �2
x C̄(x, t) 

∑Q m
q=0 c2

qxc2
qy , with 

∑Q m
q=1 c2

qxc2
qy = 4. Now we substitute Eq. (18) for k1 and employ 

Eq. (12) to express < M(n) >, using t(m)

d = 1−2t(m)
c

4 . The contribution ce�
−δD(m)

0 to diffusion coefficient D0 = ce�
− from the 

correction 4k1
√

� < M(n) > reads:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δD(m)
0 = −2

√
�

(1 − 2t(m)
c )

H
�(�, H) , ∀ H ≥ 2 , (a)

δD(m)
0 = − (1 − 2t(m)

c )

H
, if � = 1

4
, ∀ H ≥ 2 , (b)

δD(m)
0 |H→∞ = −2

√
�

(1 − 2t(m)
c )

H
, ∀ � . (c)

(19)

This solution predicts that D0 is diminished by δD(m)
0 D0. This last quantity decays with � towards zero and it vanishes for 

t(m)
c = 1

2 , ∀�. Asymptotically, δD(m)
0 behaves as the first-order relative correction −2

√
�(1 −2t(m)

c )/H , while � = 1
4 produces 

this solution for any H . Fig. 9 confirms that the numerical results for (1 + kT )‖errD(t(m)
c )‖ coincide with the prescribed 

function ‖errD‖ = δD(m)
0 (t(m)

c ) in c-field (left diagram) and in p-field (middle diagram). Since amplitude of ‖errD‖ decreases 
as 1/(1 + kT ) when Pe increases, the largest boundary-layer impact happens for pure diffusion and in c-field, because 
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Fig. 9. (Color online.) The d2Q9-BB model with � = 1
6 (“triangles”), � = 1

4 (“lozenges”), � = 1
2 (“squares”). The left and middle diagrams plot numerical 

results for (1 +kT )‖errD (t(m)
c )‖ and analytical predictions (19) (lines) in c-field (where kT = 0) and p-field, respectively. Last diagram plots (rescaled) results 

for ‖errD (t(u)
c )‖ and prediction (20) (lines) in c-field.

kT = 0. Fig. 11 (left diagram) presents ‖errD(t(m)
c )‖ for computations with the background p-field, similar as in Fig. 4, but 

when only the mass weight varies. Fig. 11 shows that the local specular reflection produces very similar linear dependency 
‖errD(t(m)

c )‖, but of slightly smaller amplitude; the two reflections coincide for � = 1
4 . Still, in either c-field or p-field, as 

δD(m)
0 is negative, this cannot explain the observed increase of the apparent diffusion coefficient in Figs. 4 and 7 (reported 

there for case when all three weights vary together). The next sections explore the additional sources for that.

4.2. Bounce-back diffusion-coefficient correction due to the U 2
x -weight t(u)

q

In a one-dimensional velocity field, the anti-numerical-diffusion correction in Eq. (2) reduces to 1
2 t(u)

q U 2
x C . In c-field, this 

term is link-wise constant and its correction to the diffusion coefficient can be obtained similarly as for the mass term 
t(m)

q ceC in Eqs. (19), by only replacing there ce by U 2
x /2 and t(m)

c by t(u)
c . In variable velocity field U 2

x varies along the link 
and one may expect to get the same functional form as in c-field only for � = 1

4 , replacing ce by boundary value U 2
x (rb)/2. 

Therefore, in plug flow or when � = 1
4 , the relative correction δD(u)

0 to the diffusion coefficient coming from t(u)
q -weight is 

expected as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δD(u)
0 = −√

�
U 2

x (rb)

ce

(1 − 2t(u)
c )

H
�(�, H) , ∀ H ≥ 2 , (a)

δD(u)
0 = − U 2

x (rb)

2ce

(1 − 2t(u)
c )

H
if � = 1

4
, ∀ H ≥ 2 , (b)

δD(u)
0 |H→∞ = −√

�
U 2

x (rb)

ce

(1 − 2t(u)
c )

H
,∀ � . (c)

(20)

The numerical simulations in Fig. 9 (last diagram) confirm that, when only the t(u)
q -weight is different from 1

2 , ‖errD‖ =
δD(u)

0 with U 2
x (rN ) ≡ U 2

x in c-field, and (1 + kT )‖errD‖ = δD(u)
0 for � = 1

4 in p-field. When � �= 1
4 , the additional effect due 

to the velocity variation in p-field will be considered in Section 4.3. Indeed, the diffusion correction due to the U 2
x -term 

is negligible in p-field because the velocity amplitude in square is small in the boundary nodes. Fig. 11 (middle diagram) 
illustrates this by showing that the respective role of t(u)

q -correction in p-field is much less significant than the diffusion 
term due to t(m)

q , because U 2
x (rb) << ce .

In summary, the amplitude of the diffusion-coefficient correction due to the diagonal weights of the anti-numerical-
diffusion terms is much less significant in a variable velocity field than in a plug flow of the same average amplitude. 
Furthermore, in a variable velocity field, this correction is dominated by the mass-weight correction. The two corrections 
act independently and can be summed for any individual choice of these two weight families.

4.3. Bounce-back velocity correction due to velocity weight t(a)
q

The two families of weights {t(m)
q , t(u)

q } do not modify the velocity profile and produce the same mean velocity with the 
bounce-back and local specular reflection as the d2Q9-BB and d2Q9-SNL. This situation changes when the diagonal velocity 
weight t(a)

d becomes non-zero and the advection front slows down, as illustrated in Figs. 5 and 6. This effect is quantified in 
this section.

4.3.1. Constant velocity field and Poiseuille profile with � = 1
4

When the coordinate velocity weight t(a)
c varies from 1

2 to 0, the diagonal links in Eq. (2) obtain non-zero components 
e−

q = t(a)
q UxCcqx with t(a)

d ∈ [0, 14 ]. This situation is very similar to the restriction of the tangential diffusion flux quantified 
in Section 4.1, because now the bounce-back closure relation (16) enforces Ux to zero. The boundary layer correction δg±

q

accommodates this deficiency. Following Eq. (17), we suggest δg±
q in the form:
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Fig. 10. (Color online.) The d2Q9-BB with the c-field (left diagram) and p-field (right diagram), when � = 1
6 (“triangles”), � = 1

4 (“lozenges”), � = 1
2

(“squares”). The two diagrams plot the rescaled relative velocity error U/Ub‖errU (t(a)
c )‖, with U/Ub = 1 and Ub = Ux(rb), respectively. The analytical 

predictions (lines) for δU (a) are exact and respectively given by Eqs. (24)(a) and (26).

δg+
q (rn) = k1 P (n)C̄(x, t)cqxcqy , δg−

q (rn) =
√

�

�− k1M(n)C̄(x, t)cqxc2
qy . (21)

Substituting Eq. (21) into Eq. (16), the difference of these closure relations for two diagonal-links gives with G±
q = 0:

Ux = const : C̄(x, t)(2t(a)

d Ux(rb) + k1(1 − 2
√

�M(N)) = 0 , then k1 = − 2t(a)

d Ux(rb)

1 − 2
√

�M(N)
. (22)

Now we expect the term −�− ∑Q m
q=1 �̄xδg−

q cqx to modify the convective flux in the LHS of Eq. (3) by a quantity 
δU (a)(n)U�̄xC̄(x, t), where the relative velocity correction δU (a)(n) leads to the following solution in c-field:

Ux = const : δU (a)(n) = 2
√

�(1 − 2t(a)
c )M(n)

1 − 2
√

�M(N)

Ux(rb)

U
, (23)

with Ux(rb)/U = 1 in c-field. The mean velocity U obtains correction δU (a)U with δU (a) given as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δU (a) =< δU (a)(n) >= −2
√

�
(1 − 2t(a)

c )

H

Ux(rb)

U
�(�, H) , ∀ H ≥ 2 , (a)

δU (a) = − (1 − 2t(a)
c )

H

Ux(rb)

U
, if � = 1

4
, ∀ H ≥ 2 , (b)

δU (a)|H→∞ = −2
√

�
(1 − 2t(a)

c )

H

Ux(rb)

U
, ∀ � . (c)

(24)

We emphasize that δU (a)(t(a)
c ) is independent of the velocity amplitude and it presents the same function of the weight 

value t(a)
c as δD(m)

0 (t(m)
c ). This solution predicts linear with 1

2 − t(a)
c decay for mean velocity amplitude; it decreases as 

the first-order correction with H and it reduces as 
√

�. Fig. 10 (left diagram) confirms that the numerical results for 
‖errU ‖ = errU (t(a)

c ) in c-field coincide with the predicted solution (24). Furthermore, solution (24)(b) derived for � = 1
4 is 

valid for any � in c-field when applying local specular reflection (SL). The second diagram in Fig. 10 displays that it also 
remains valid in parabolic profile for � = 1

4 . Since velocity correction (24) scales with prefactor Ux(rb)
U << 1, the retardation 

of the front is much less significant in parabolic profile, which is in agreement with the average concentration profiles 
depicted in Figs. 5 and 6.

4.3.2. Parabolic velocity field
One should take into account the velocity variation along the diagonal links for the construction of a boundary layer in 

the parabolic profile. Including the first- and second-order velocity derivatives into Chapman–Enskog component G±
q , the 

velocity deviation UδU (a)(n) reads:

BB : UδU (a)(n) = −4
√

�k1M(n) − 4k2P(n) , with

k1 = − 2t(a)

d

1 − 2
√

�M(N)
(Ux − 1

2
|∂yUx| + �∂2

y Ux)|rb ,

k2 = 2t(a)

d �

1 − 2
√

�M(N)
(|∂y Ux| − 1

2
∂2

y Ux)|rb . (25)

This solution reduces to Eq. (23) for constant velocity. The averaged velocity U gets the relative correction δU (a) =
< δU (a)(n) >, which reads with the help of Eqs. (12) and (14):⎧⎪⎪⎨

⎪⎪⎩
δU (a) = −2(1 − 2t(a)

c )
√

�

HU
((Ux − 1

2
|∂yUx| + �∂2

y Ux)�(�, H) − √
�(−|∂y Ux| + 1

2
∂2

y Ux))|rb , (a)

δU (a) = − (1 − 2t(a)
c ) Ux(rb)

, if � = 1
. (b)

(26)
H U 4
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Fig. 11. (Color online.) These three diagrams depict ‖errD (t(m)
c )‖, ‖errD (t(u)

c )‖ and ‖errU (t(a)
c )‖ in parabolic profile, with empty symbols for BB and black 

symbols for SL. The analytical predictions (blue lines) are exact in BB, with Eq. (19) for ‖errD (t(m)
c )‖, Eq. (20) for ‖errD (t(u)

c )‖ when � = 1
4 and Eq. (26) for 

‖errU (t(a)
c )‖.

Since �(�, H)|
�= 1

4
= 1, this solution reduces to Eq. (24)(b) for � = 1

4 . The second diagram in Fig. 10 demonstrates that 

solution (26) exactly describes ‖errU (t(a)
c )‖; these values are rescaled with Ux(rb)/U to allow for the comparison with the 

c-field results displayed in the left diagram. The numerical computations correspond to Fig. 4 and ‖errU (t(a)
c )‖ (in percents) 

is plotted again in Fig. 11 together with the numerical results and the approximate solution for d2Q9-SL. As in the c-field, 
d2Q9-BB and d2Q9-SL produce the same velocity correction when � = 1

4 . Otherwise, the deviation from � = 1
4 is weaker 

in SL, which is in agreement with Fig. 5.

4.4. Bounce-back dispersion correction due to the velocity weight t(a)
q

The idea is to construct the longitudinal numerical dispersion due to the transverse gradients in the induced velocity 
profiles (23) and (25). The purpose is to verify whether it explains the large increase in the diffusion coefficient reported 
in Figs. 7 and 4, respectively. Recall that the negative diffusion corrections due to the weights {t(m)

d , t(u)

d } could not explain 
these results.

4.4.1. Constant velocity
Following Taylor’s idea, the solute distribution C(x, y, t) and the apparent velocity field ux(y) are disturbed around their 

cell-averaged values C̄(x, t) and Ũ , respectively:

C = C̄(x, t) + C ′(x, y, t) , ux(y) = Ũ + u′(y) , Ũ =< ux(y) > , ∂yC ′|y=0,H = 0 , (27)

where C̄(x, t) obeys (cf. Eq. (3) with Ux(y) → ux(y)):

∂t C̄ + Ũ∂xC̄ = D0(1 + k(a)
T )∂2

x C̄ , where k(a)
T = −∂x < u′C ′ >

D0∂
2
x C̄

. (28)

The purpose is to estimate k(a)
T . Similar to Eq. (4), it will be obtained with the help of the closure Taylor Ansatz: D0∂2

y C ′ ≈
u′(y)∂xC̄ , which can be justified by the perturbation analysis assuming that the fastest transport happens in the normal 
direction. Hence,

D0∂
2
y C ′ ≈ u′(y)∂xC̄ , then C ′(x, y, t) = γ (y)

D0
∂xC̄(x) and k(a)

T ≈ − 1

D2
0

< u′(y)γ (y) > , with

γ (y) =
y∫

0

[
y∫

0

u′(y′)dy′ ]dy′ + C1 y + C2 , < u′(y) >= 0 . (29)

Notice that the integration constants do not impact k(a)
T and they are omitted below. The combination of Eqs. (23) and (24)

for n = 0, 1, · · · , H − 1 yields:

�2
yγ (n) = u′(n) , u′(n) = U(δU (a)(n) − δU (a)) , �2

yγ = γ (n + 1) − 2γ (n) + γ (n − 1). (30)

After the discrete integration of the last equation, with �2
y

k1+n

(k−1)2 = kn , the solution reads

γ (n) = k−n(Hk(k2n + kN) − n2kn(−1 + k)(−1 + k1+N))

H(−1 + k)2(−1 + kN)
, n = 0,1, . . . , N = H − 1 . (31)

The expression for k(a)
T in Eq. (29) is then rather complicated, and it simplifies for � = 1

4 :

Ux = const , � = 1 : k(a)
T ≈ (H − 1)(H − 2)

2

(1 − 2t(a)
c )2 Pe2

2
, k(a)

T |H→∞ ≈ (1 − 2t(a)
c )2 Pe2

2
. (32)
4 H 12H 12H
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Fig. 12. (Color online.) This figure compares the BB and SL numerical results for ‖errD (t(a)
c )‖ with the sum of truncation and boundary-layer disper-

sions. First diagram: ‖errD (t(a)
c )‖ in d2Q9-SNL serves as a truncation error. Second diagram: predicted boundary-layer contribution for BB, ‖errD (t(a)

c )‖ =
k(a)

T /(1 + kT ) with k(a)
T from Eq. (33). The third diagram sums the two first ones and compares results (lines) with the numerical data (symbols) for � = 1

6

(“triangles”), � = 1
4 (“lozenges”), � = 1

2 (“squares”). The first and the two last diagrams display the same procedure for local-specular reflection SL.

This solution is quite interesting. Firstly, as the physical dispersivity coefficient kT in parabolic profile, k(a)
T scales as Pe2 and 

hence errD = k(a)
T grows infinitely with Pe2 in c-field. Secondly, it remains constant when the model parameters are fixed 

and Pe linearly increases with H . Thirdly, it increases as a square of the diagonal velocity-weight value t(a)

d = (1 − 2t(a)
c )/4. 

The right diagram in Fig. 7 shows that the constructed dispersion matches surprisingly well the numerical data for errD(t(a)
c )

in small box H = 12. Further simulations (data are not shown) confirm that ‖errD‖ takes nearly the same values with 
H = 24 and H = 36 for the same mean velocity values, such as U = {1/60, 1/30}, and the results are found in very good 
agreement with the predictions when � ∈ [1/400, 9/4]. The relatively small difference observed can be explained by the 
associated truncated numerical dispersion, similar to the one existing in parabolic profile and given by Eq. (5). This hypoth-
esis is in line with the fact that the best agreement is observed for � = 1

4 and � = 1
6 (these two values cancel some of the 

coefficients in truncation errors), and also, because the difference between the theoretical predictions and numerical results 
increases with �, as the truncation coefficients. Finally, we have carefully checked that the entire numerical value ‖errD‖
presents the sum of three separate contributions, from (i) mass-weight t(m)

d , (ii) U 2
x -weight t(u)

d and (iii) velocity weight t(a)

d

(see Fig. 7). However, in the presented results, the dispersion due to t(a)

d exceeds the two other effects by several orders of 
magnitude.

In summary, the Taylor dispersion induced by the variation of the boundary-layer velocity field explains the apparent 
huge diffusion corrections observed in Figs. 6 and 7. Therefore, in isotropic solute transport by the plug flow, a preference 
should be given to d2Q5-BB/d2Q9-SNL schemes, which is in agreement with the free-slip boundary conditions offered by 
the specular-forward reflection in the hydrodynamic modeling.

4.4.2. Poiseuille profile
We suggest now that the apparent dispersivity coefficient kT + k(a)

T in Figs. 1 and 4 results from the superposition of the 
two velocity fields: the p-field Ux(y) and the boundary-layer distribution UδU (a)(n) given by Eq. (25), with the mean value 
UδU (a) given by Eq. (26):

kT + k(a)
T = − 1

D2
0

< (U ′(y) + δU ′(y))(α(y) + γ (y)) > , kT = − 1

D2
0

< U ′(y)α(y) > , with

α(y) =
y∫

0

[
y∫

0

U ′(y)dy′ ]dy′ , γ (y) =
y∫

0

[
y∫

0

δU ′(y)dy′ ]dy′ ,

U ′(y) = Ux(y)− < Ux(y) > , δU ′(y) = U(δU (a)(y)− < δU (a)(y) >) . (33)

Here the value of kT is the same as in Eq. (4), while k(a)
T is due to the boundary-layer velocity gradients and to the super-

position of two velocity fields. Discrete integration is applied to obtain γ (n) and the averaging is obtained via summation. 
In order to compare the obtained dispersivity coefficient k(a)

T with the numerical predictions, one needs to know the trun-

cation dispersion of the numerical scheme. Since d2Q9-SNL gives a value of errD(t(a)
c ) close to the truncation predictions 

(the fourth column in Fig. 4) and exactly equal to the fully periodic solution, we sum errD(t(a)
c ) from d2Q9-SNL (the first 

diagram in Fig. 12) with k(a)
T from Eq. (33) (the second diagram in Fig. 12) and compare this result (on the third diagram in 

Fig. 12) with the numerical results (which are taken from the first diagram in the bottom row in Fig. 4). We find again that 
the agreement is excellent for � = 1

6 , while the deviation increases with �. On the whole, the boundary-layer numerical 
dispersion captures the main effect of the presented simulations with � ≥ 1

12 , where the truncation and boundary-layer 
dispersion corrections have opposite signs and almost compensate each other. When � < 1

12 , the situation should reverse 
for ‖errD‖, because both the boundary-layer dispersion and the difference with d2Q5 in Eq. (5) become positive. Increasing 
the velocity by a factor of 2 (as in Fig. 1) yields very similar results for errD because as Pe increases, the truncation and 
boundary-layer dispersion corrections (in the nominator), and the kT (in the denominator), both scale as Pe2. Finally, the 
next two diagrams in Fig. 12 show even a better agreement employing a similar procedure for the d2Q9-SL, where k(a)

T was 
built with Eq. (33) by using the approximate solution for δU ′(y) from Fig. 11.
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Fig. 13. (Color online.) The numerical results for ‖errD‖(t(a)
c ) (middle diagram) and ‖errD‖(t(u)

c ) (right diagram) are obtained with the d2Q9-BB (“empty” 
symbols), d2Q9-SL (“empty” circles) and d2Q9-SNL (dark symbols) in p-field when the zero velocity is shifted toward the boundary grid node (left diagram). 
The three reflections coincide for � = 1

4 .

In summary, the positive boundary-layer dispersion explains the apparent improvement of ‖errD‖ in Fig. 4 with the BB
and SL over the SNL. However, this implies an alteration of the advection flow.

5. Reduction of boundary layers

We consider two possibilities for the reduction or the elimination of the non-equilibrium boundary layers applying the 
bounce-back and local specular reflection. The purpose is twofold: first, we aim at verifying our analysis from another 
perspective; second, we attempt to produce some simple practical strategies.

5.1. Grid-node location of the zero-velocity value in the parabolic profile

The idea is that the boundary-layer profile (25) would vanish if the zero-velocity value were located in the grid node 
itself: Ux(rb) = 0 (see the left-hand-side diagram in Fig. 13). Indeed, by prescribing such a profile for Ux(y) in e−

q , we 
observe that ‖errU (t(a)

c )‖, presented in Fig. 11, completely vanishes with BB and SL. Fig. 13 shows that their solutions 
for ‖errD(t(a)

c )‖ very closely approach each other and d2Q9-SNL; a still existing small difference might be explained by 
the higher-order truncation dispersion. Furthermore, the three solutions coincide for � = 1

4 . It is in line with ‖errD(t(u)
c )‖, 

which completely vanishes when � = 1
4 , and otherwise is reduced in amplitude (cf. the right-hand-side diagram in Fig. 13

and the diagram in the middle of Fig. 11). However, a systematic location of the no-slip velocity in the grid nodes cannot 
be recommended. Firstly, it is not handled by the bounce-back in flow modeling where the leading-order approximate is 
the halfway location. Second, even if the zero distance is formally accessible with the alternative hydrodynamic boundary 
conditions, their solutions may become non-unique in corners (see [13]). Thirdly, this technique only applies for rectangular 
boundaries. Therefore, this first example is mainly of methodological interest.

5.2. Elimination of boundary layers with small boundary values of �

In plug flow the amplitude of the mean induced velocity in Eq. (24) scales nearly as 
√

�. This is also a leading asymptotic 
�-scaling for parabolic flow, according to Eq. (26)(a). In agreement with the presented results, the uniform small-valued �
reduces the effect of the boundary layers. However, the small-valued � may cause the instability of the scheme when the 
imposed velocity approaches its stability limit U = Umax, especially in the high-Pe range when ce → 0 or �− → 0 [28,26]. 
For instance, in the numerical example considered here with U = Umax/2, the BGK model with � = (�−)2 = 1/400 is stable 
in both c-field and p-field only when t(a)

c ∈ [0.4, 0.5] and t(m)
c ∈ [0.3, 0.5]. Therefore, only in the low-Pe range, the use of 

small values, as � = 1
12 , is suitable.

The straightforward idea is to drop � to a very small value �b , but only in the boundary nodes, because the boundary 
layers are excited there. Fig. 14 displays such results for the bounce-back in c-field, retaining � ∈ { 1

6 , 14 , 12 } everywhere, 
except in the grid-boundary nodes where �b = (�−)2 = 1/400. Firstly, ‖errU ‖ and ‖errD‖ both diminish drastically and the 
results for the three values � remain stable and almost coincide. Secondly, the effects of the boundary layers are larger than 
those predicted for this small but uniform � value, where simulations are however unstable. Thirdly, the profiles are clearly 
improved, but they indicate that still a smaller value �b is needed to capture the analytical solution. The results from 
similar simulations conducted in p-field are presented in Fig. 15. The obtained small boundary-layer velocity amplitude 
(second diagram) reduces the associated dispersion error (third diagram) and the concentration profiles (fourth diagram), 
then practically coincide with the d2Q9-SNL result. These simulations were stable with respect to the individual or joined-
weight variations, and more stable than in c-field. An interesting observation in Fig. 15 is that ‖errU ‖ becomes positive. 
Our further investigations have shown that by extending interface flow analysis [29] to boundary layers, it becomes possible 
to analytically predict H-dependent solution for boundary value �b (versus bulk value �v ) which completely eliminates the 
bounce-back velocity error in Poiseuille profile. However, a similar solution in plug flow makes �b negative. Thereby, the 
altering of the diffusion coefficient due to the diagonal mass weight also cannot be vanished with the help of �b alone, but 
a small-valued �b reduces all spurious effects noticeably.
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Fig. 14. (Color online.) The d2Q9-BB model when � is reduced to 1/400 uniquely in boundary nodes y = { 1
2 , H − 1

2 }. This numerical solution is plotted with 
“empty symbols”, the previous solution for uniform � with “dark symbols”: � = 1

6 (“triangles”), � = 1
4 (“lozenges”), � = 1

2 (“squares”). The prediction for 
uniform value � = 1/400 is plotted by a dash-dotted line (without symbols).

Fig. 15. (Color online.) Similarly as in Fig. 14 but in the parabolic profile, with �b = 1/400 in grid boundary nodes. The dispersion errors and concentration 
profiles almost coincide for d2Q9-BB (plotted here) and d2Q9-SNL (see Figs. 4c and 5c).

6. Concluding remarks

The effect of the local mass-conserving boundary schemes for the Neumann boundary condition in the advection–
diffusion d2Q9 scheme is investigated. Steady-state recurrence equations satisfying the LB equations and the bounce-back 
boundary rule are solved in a closed analytical form with respect to the exponentially decaying accommodation non-
equilibrium boundary layers. We call them “spurious” because they are unintended and caused by the incompatibility of 
the zero tangential boundary flux with the ADE bulk solution. The novel point is that these accommodation layers mod-
ify the macroscopic second-order equations predicted by the Chapman–Enskog and asymptotic analysis. Their main three 
effects are: (i) slowing-down advection front proportionally to the diagonal velocity weight t(a)

d , (ii) decrease of the dif-

fusion coefficient proportionally to the diagonal mass-weight t(m)

d , and (iii) creation of the numerical longitudinal Taylor 
dispersion, because of the transverse velocity gradient. Although derived from the steady-state recurrence equations, the 
averaged diffusion and velocity corrections are exact on the measured moments due to the invariance with respect to the 
moving frame. The two corrections, diffusion and advection, only linearly decrease with the space resolution, similarly to 
the bounce-back flow effect on the inclined [16] or curved [24] walls. A huge velocity and dispersion effect takes place in 
the plug flow because of the absence of the mechanical dispersion. In parabolic profile, the averaged velocity correction 
scales with the prescribed boundary-node velocity value, the associated numerical dispersion scales as Pe2, a sum of the 
mechanical, truncation and boundary-layer dispersion explains the measured apparent dispersivity coefficient.

A fascinating signature of the boundary layers is that their primary effects grow as 
√

� while the coefficients of the bulk 
truncation errors scale polynomially with � [20,12]. It is often believed that � only impacts the high-order corrections, 
e.g., [18]; however, it is not so in the presence of boundaries [23,17,13,14,24]. Employing an inadequate boundary rule in 
the ADE, � impacts the advection–diffusion flux and therefore, the first and the second distribution moments. In order to 
improve the entire computations, the idea we suggest is to use a small value �b at boundary points, while using another 
suitable (e.g., optimal) value �v in the bulk. Although a small-valued uniform � drops the stable velocity amplitude [28,12,
26], this isn’t a drawback near the wall where velocities are low. During revision of this work, exact solution �b(�v), where 
the prescribed advection velocity is preserved, has been derived in straight Poiseuille profile. Furthermore, all presented 
solutions have been extended for the benchmark modeling of the Taylor dispersion in a circular pipe. In particular, it has 
been discovered that the d3Q7 − BB scheme does not create any boundary layers. Therefore, the diagonal links do not 
necessarily improve for the boundary accuracy on the complex shapes—contrary to the common expectations. The specific 
solution �b(�v ) effectively reduces the velocity-weight boundary-layer effects in d3Q15 − BB scheme for circular pipe. 
All these results will be reported elsewhere. Altogether, this encourages our idea that, by applying local mass-conserving 
boundary schemes, the reduction of their spurious effects can be achieved on the arbitrarily-shaped boundaries with the 
help of the properly distributed �.
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