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A two dimensional Kelvin–Voigt model of a visco-elastic thin stratified strip with Neumann 
condition at the lateral boundary is considered. The dimension reduction combined with 
the homogenization procedure allows us to construct a complete asymptotic expansion of 
the solution and to justify the limit one dimensional model containing the long-fading 
memory term while the initial model corresponds to the short memory.
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1. Introduction

The dimension reduction of thin heterogeneous plates was considered firstly in [1–3]; in particular, in [2–6] the complete 
asymptotic expansions are constructed and justified. Such dimension reduction is an important tool that can be applied to 
the analysis of stresses and strains in thin heterogeneous structures [7,8]. We consider below the Kelvin–Voigt viscoelastic-
ity equations set in a stratified plate. For the sake of simplicity of the presentation, we consider the two-dimensional case, 
although the three-dimensional plate may be treated using the same approach. Notice that the Kelvin–Voigt model was con-
sidered in the homogenization theory for composite materials in [9–11] and the so-called memory effect was discovered. 
In [12], this effect was obtained for the case of time-depending coefficients. The presence of the fading memory term in 
the homogenized model means that the homogenized model becomes nonlocal in time while the initial Kelvin–Voigt model 
does not contain any integral term in time. So, the Kelvin–Voigt model being the short-memory model, it generates the ho-
mogenized model that is the long-memory model. However, for thin domains, the dimension reduction of the Kelvin–Voigt 
model is not studied and this problem is rather different from that of the homogenization of a massive body because in the 
dimension reduction, one of the homogenized equations has the fourth order with respect to the space derivative, while in 
the “massive” case, all the homogenized equations are of the second order. We show that the analogous fading memory ef-
fect holds for the plates, in the dimension reduction. Moreover, we construct and justify the complete asymptotic expansion 
of the solution to this problem. This expansion generalizes N. Bakhvalov’s ansatz [13,14], applied to the elastic composite 
plates and rods in [4] and it contains the integral terms. A similar ansatz was introduced in [15], where it was applied to 
the homogenization of the long-memory visco-elasticity equations for heterogeneous media. The dimensional reduction of 
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a thin visco-elastic stratified plate and the construction of the complete asymptotic expansion are the main results of the 
present paper.

2. Quasi-steady visco-elastic plates/rodes

Let

Gε = R× (0, ε) (1)

be a thin layer (strip) in R2, modeling a plate.
Consider the Kelvin–Voigt viscoelasticity equations set in this layer with the 1-periodicity condition in the variable x1

and with Neumann condition on the boundary of the layer:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pεuε ≡ −
2∑

i, j=1

∂

∂xi

(
Bij(

x2

ε
)
∂ u̇ε

∂x j

)
−

2∑
i, j=1

∂

∂xi

(
Aij(

x2

ε
)
∂uε

∂x j

)
= fε(x1, t)

2∑
j=1

(
B2 j

∂ u̇ε

∂x j
+ A2 j

∂uε

∂x j

)
∣∣∣∣
x2=0,ε

= 0

uε|t=0 = 0

(2)

where ḟ represents the time derivative of a function f .
Here the coefficients Aij, Bij are 2 × 2-matrix-valued functions depending on the transversal variable only and having 

the following form:

A11 =
(

λ + 2μ 0
0 μ

)
, A12 =

(
0 λ

μ 0

)

A21 =
(

0 μ
λ 0

)
, A22 =

(
μ 0
0 λ + 2μ

)

B11 =
(

λ̂ + 2μ̂ 0
0 μ̂

)
, B12 =

(
0 λ̂

μ̂ 0

)

B21 =
(

0 μ̂

λ̂ 0

)
, B22 =

(
μ̂ 0
0 λ̂ + 2μ̂

)

where λ, μ, λ̂, μ̂, are piece-wise smooth positive functions of ξ2 = x2
ε ; namely, there exist positive numbers ξ1 < . . . <

ξ N < 1, such that λ, μ, ̂λ, μ̂ ∈ C1([ξ i, ξ i+1]) for all i = 0, . . . , N (ξ0 = 0, ξ N+1 = 1) and there exists a positive constant κ
such that λ, μ, ̂λ, μ̂ ≥ κ . The unknown uε is a two-dimensional vector-valued function, as well as the right-hand side fε . 
The right-hand side depends on the longitudinal space variable x1 and on the time variable t and is scaled as follows:

fε(x1, t) =
(

ε f1(x1, t)
ε2 f2(x1, t)

)

where f1 and f2 are independent of ε C∞(R × [0, T ])-smooth functions, 1-periodic in x1, and such that there exists a 
positive number t∗ , such that f j(·, t) = 0 for t < t∗ . Assume that for all t ∈ [0, T ], < f j(·, t) >= 0 where < · >= ∫ 1

0 ·dx is the 
average over the period.

Problem (2) simulates the viscoelastic deformation of a thin stratified plate under a periodic in x1 mass force; ε is the 
ratio of the thickness of the plate to the longitudinal period of the applied force and is a small parameter.

Denote by G1
ε the rectangle (0, 1) × (0, ε). Denote by H1

per(G1
ε) the space of functions defined on Gε , 1-periodic in x1

and such that its restriction to any rectangle (a, b) × (0, ε) belongs to H1((a, b) × (0, ε)). It is supplied by the inner product 
of the space H1(G1

ε).
The weak solution to problem (2) is defined as a two-dimensional vector-valued function uε with uε ∈ H1(0, T ;

(H1
per(G1

ε)
2), satisfying initial condition (2)3, such that for any test function v ∈ (H1

per(G1
ε))

2, for all t ∈ (0, T ) the integral 
identity holds:
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∫
G1

ε

2∑
i, j=1

(
Bij

(
x2

ε

)
∂ u̇ε

∂x j
+ Aij

(
x2

ε

)
∂uε

∂x j

)
∂v

∂xi
dx =

∫
G1

ε

fε v dx (3)

Theorem 1. Let the right-hand side satisfy the above conditions. There exists a unique solution to (3) satisfying condition

< uε(·, t) >= 0 (4)

The proof is given by the Galerkin method.

The complete asymptotic expansion of the solution to problem (2) is constructed below. The error of the asymptotic 
approximations in the form of partial sums of the expansion is evaluated. As in the case of the homogenization of the com-
posite materials, in the case of the dimension reduction for a stratified plate, the long-memory terms in the homogenized 
equation will be obtained, i.e. the homogenized model contains the terms of the form

− ∂

∂xi

t∫
0

K V
ij (t − t′) ∂ u̇

∂x j
(x, t′)dt′, − ∂

∂xi

t∫
0

K E
ij(t − t′) ∂u

∂x j
(x, t′)dt′

3. Complete asymptotic expansion of the solution

The asymptotic approximation of order J is sought in the form

u( J )
ε (x, t) = v( J )

ε (x1, t) +
J∑

l=1

εl

t∫
0

(
N V

l (
x2

ε
, t − t′)Dl v̇( J )

ε (x1, t′)

+ N E
l (

x2

ε
, t − t′)Dl v( J )

ε (x1, t′)
)

dt′ (5)

where Dl = ∂ l/∂xl
1, 2 × 2 matrix-valued functions N V

l , N E
l are described below, v( J )

ε is a two-dimensional vector function, 
such that its two components have the following expansion with respect to ε:

v( J )
ε,1 =

J∑
j=0

ε j+1 v j,1(x1, t) , v( J )
ε,2 =

J∑
j=0

ε j v j,2(x1, t)

and functions v j,1, v j,2 do not depend on the small parameter and will be defined below.
This ansatz generalizes N. Bakhvalov’s ansatz [13,14], applied to the elastic composite plates and rods in [4]. Ansatz (5)

contains the integral terms.
Substituting the ansatz (5) into the equation and the boundary condition (2), taking together the terms of the same 

order with respect to ε, and letting constant the coefficients of the derivatives Dl v̇( J )
ε and Dl v( J )

ε , we get as in [4] equations 
for the matrix-valued coefficients N V

l , N E
l . Define first the right hand side functions of these equations and the boundary 

conditions. Denote

F̃ V
l (ξ2, s) = B12

∂2N V
l−1

∂s∂ξ2
+ A12

∂N V
l−1

∂ξ2
+ B11

∂N V
l−2

∂s
+ A11N V

l−2

F V
l (ξ2, s) = F̃ V

l (ξ2, s) + ∂

∂ξ2

(
B21

∂N V
l−1

∂s
+ A21N V

l−1

)

F̃ E
l (ξ2, s) = B12

∂2N E
l−1

∂s∂ξ2
+ A12

∂N E
l−1

∂ξ2
+ B11

∂N E
l−2

∂s
+ A11N E

l−2

F E
l (ξ2, s) = F̃ E

l (ξ2, s) + ∂

∂ξ2

(
B21

∂N E
l−1

∂s
+ A21N E

l−1

)

and

G̃ V
l (ξ2) = B12

∂N V
l−1

∂ξ2
(ξ2,0) + B11N V

l−2(ξ2,0) + B11δl2

G V
l (ξ2) = G̃ V

l (ξ2) + ∂ (
B21(N V

l−1(ξ2,0) + I2δl1)
)

∂ξ2
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G̃ E
l (ξ2) = B12

∂N E
l−1

∂ξ2
(ξ2,0) + B11N E

l−2(ξ2,0) + A11δl2

G E
l (ξ2) = G̃ E

l (ξ2) + ∂

∂ξ2

(
B21N E

l−1(ξ2,0) + A21δl1

)

and consider the following boundary value problems for matrices N V
l , N E

l :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂ξ2

(
B22

∂2N V
l

∂ξ2∂s

)
− ∂

∂ξ2

(
A22

∂N V
l

∂ξ2

)
= F V

l −
〈
F̃ V

l

〉
, ξ2 ∈ (0,1)

B22
∂2N V

l

∂ξ2ds
+ A22

∂N V
l

∂ξ2
= −B21

∂N V
l−1

∂s
− A21N V

l−1 , ξ2 = 0,1

− ∂

∂ξ2

(
B22

∂N V
l

∂ξ2
(ξ2,0)

)
= G V

l −
〈
G̃ V

l

〉
, ξ2 ∈ (0,1)

B22
∂N V

l

∂ξ2
(ξ2,0) = −B21(N V

l−1(ξ2,0) + I2δl1) , ξ2 = 0,1

〈
N V

l (·, s)
〉
= 0

(6)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂ξ2

(
B22

∂2N E
l

∂ξ2∂s

)
− ∂

∂ξ2

(
A22

∂N E
l

∂ξ2

)
= F E

l −
〈
F̃ E

l

〉
, ξ2 ∈ (0,1)

B22
∂2N E

l

∂ξ2ds
+ A22

∂N E
l

∂ξ2
= −B21

∂N E
l−1

∂s
− A21N E

l−1 , ξ2 = 0,1

− ∂

∂ξ2

(
B22

∂N E
l

∂ξ2
(ξ2,0)

)
= G E

l −
〈
G̃ E

l

〉
, ξ2 ∈ (0,1)

B22
∂N E

l

∂ξ2
(ξ2,0) = −B21N E

l−1(ξ2,0) − A21δl1 , ξ2 = 0,1

〈
N E

l (·, s)
〉
= 0

(7)

Note that these problems are non-steady and non-local with respect to the variable s, and that the initial conditions are 
given by boundary value problems for the ordinary differential equations (6)3,4 and (7)3,4. These problems can be solved 
analytically and so there exist the unique solutions N V

l and N E
l . Then the result of substitution of the ansatz into the 

equation has the form

Pεu( J )
ε = −

J∑
l=1

εl−2

t∫
0

(〈
F̃ V

l

〉
(t − t′)Dl v̇( J )

ε (x1, t′)

+
〈
F̃ E

l

〉
(t − t′)Dl v( J )

ε (x1, t′)
)

dt′ −
J∑

l=1

εl−2
(〈

G̃ V
l

〉
Dl v̇( J )

ε (x1, t)

+
〈
G̃ E

l

〉
Dl v( J )

ε (x1, t)
)

+ r( J )
ε (8)

where the residual r( J )
ε can be evaluated and its order is O (ε J−1√ε) in the norm L2(G1

ε). Calculating the first coefficients, 
we get the leading term of Eq. (2)1 after the substitution of the ansatz (the higher order terms are replaced by ...):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε

(
Ê V D2 v̇01 + Ê E D2 v01 + ˆ̂E

V
D3 v̇02 + ˆ̂E

E
D3 v02

+
t∫

0

(〈
( F̃ V

2 )11

〉
(t − t′)D2 v̇01(t

′) +
〈
( F̃ E

2 )11

〉
D2 v01

+
〈
( F̃ V

3 )12

〉
D3 v̇02 +

〈
( F̃ E

3 )12

〉
D3 v02

)
dt′)

+ . . . = ε f1

−ε2

( ˆ̂̂
E

V

D3 v̇01 + ˆ̂̂
E

E

D3 v01 + Ĵ V D4 v̇02 + Ĵ E D4 v02

+
t∫

0

(〈
( F̃ V

3 )21

〉
D3 v̇01 +

〈
( F̃ E

3 )21

〉
D3 v01

+
〈
( F̃ V

4 )22

〉
D4 v̇02 +

〈
( F̃ E

4 )22

〉
D4 v02

)
dt′)

+ . . . = ε2 f2

(9)

The coefficients Ê V , Ê E , ˆÊ V , ˆ̂E E , 
ˆ̂

Ê V , 
ˆ̂̂

E E , Ĵ V , Ĵ E have the following expressions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ê V =
〈

4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

〉
, Ê E =

〈
(λ + 2μ)(λ̂ + 2μ̂) − λλ̂

λ̂ + 2μ̂

〉

ˆÊ V =
〈

4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

(
1

2
− ξ2

)〉
,

ˆ̂E E =
〈

4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

(
μ

μ̂

)〉

ˆ̂
Ê V =

〈
4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

〉
,

ˆ̂̂
E E =

〈
(λ + 2μ)(λ̂ + 2μ̂) − λλ̂

λ̂ + 2μ̂

〉

Ĵ V =
〈

4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

(
1

2
− ξ2

)〉
, Ĵ E =

〈
4μ̂(λ̂ + μ̂)

λ̂ + 2μ̂

(
μ

μ̂

)〉
(10)

where we used the notation F (ξ2) = ξ2〈F 〉 − ∫ ξ2
0 F (θ)dθ , F (ξ2) =

〈∫ α
0 F (θ)dθ

〉 − ∫ ξ2
0 F (θ)dθ .

Divide the first equation by ε, the second by ε2. Denote P̂ the operator in the left-hand side:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( P̂ v0)1 = −
(

Ê V D2 v̇01 + Ê E D2 v01 + ˆ̂E
V

D3 v̇02 + ˆ̂E
E

D3 v02

+
t∫

0

(〈
( F̃ V

2 )11

〉
(t − t′)D2 v̇01(t

′) +
〈
( F̃ E

2 )11

〉
D2 v01

+
〈
( F̃ V

3 )12

〉
D3 v̇02 +

〈
( F̃ E

3 )12

〉
D3 v02

)
dt′)

( P̂ v0)2 = −
( ˆ̂̂

E
V

D3 v̇01 + ˆ̂̂
E

E

D3 v01 + Ĵ V D4 v̇02 + Ĵ E D4 v02

+
t∫

0

(〈
( F̃ V

3 )21

〉
D3 v̇01 +

〈
( F̃ E

3 )21

〉
D3 v01

+
〈
( F̃ V

4 )22

〉
D4 v̇02 +

〈
( F̃ E

4 )22

〉
D4 v02

)
dt′)

(11)

Inserting next the ansatz into (9), we get a recurrent chain of 1-periodic in x1 problems determining all vectors v j with 
the components v j1 and v j2. Namely, for j = 0 we get the leading homogenized equation:⎧⎨

⎩ P̂ v0 =
(

f1
f2

)
, x1 ∈ R , t > 0

v | = 0 , < v >= 0
(12)
0 t=0 0
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For v j we get{
P̂ v j = F j(x1, t) , x1 ∈R , t > 0
v j|t=0 = 0 , < v j >= 0

(13)

where the right-hand side F j depends on the values of functions v0, . . . , v j−1 and their derivatives. The last two conditions 
in problems (13), j = 0, . . . , J , are generated by conditions (2)3, (4).

By induction, we prove that

< F j >= 0

so that every Eq. (13), j = 0, . . . , J has a unique solution. The existence and uniqueness are proved using a version of the 
fixed-point theorem on the reiterate integral operator (see [16]). This idea was used as well to the long-memory viscoelastic 
equations in a bounded domain in [17].

Then using an a priori estimate for problem (2) we get the theorem below.

Theorem 2. The following estimate holds

‖uε − u( J )
ε ‖H1((0,T )×G1

ε)
≤ Cε J
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