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A general solution method to the Cauchy Problem (CP) formulated for incremental 
elastoplasticity is designed. The method extends previous works of the authors on the 
solution to Cauchy Problems for linear operators and convex nonlinear elasticity in small 
strain to the case of generalised standard materials defined by two convex potentials. The 
CP is transformed into the minimisation of an error between the solutions to two well-
posed elastoplastic evolution problems. A one-parameter family of errors in the constitutive 
equation is derived based on Legendre–Fenchel residuals. The method is illustrated by the 
simple example of a pressurised thick-spherical reservoir made of elastic, linear strain-
hardening plastic material. The identification of inner pressure and plasticity evolution has 
been carried-out using semi-analytical solutions to the elastoplastic behaviours to build 
the error functional.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The issue of recovering missing data on inaccessible parts of the boundary of a solid, provided some information is given 
on the remaining part, which can be formulated as a Cauchy Problem or as a data completion problem, has been widely 
investigated in the framework of elliptic problem with linear isotropic media. Various methods have been proposed in the 
literature in order to solve this issue; without being exhaustive, one can cite the front propagation method by Bui [1,2], 
Bonnet and Bui [3], the moment method by Hon and Wei [4], the fixed point algorithm by Kozlov et al. [5], the evanescent 
regularisation by Cimetière et al. [6], the quasi-reversibility approach developed first by Lattes and Lions [7] and recently by 
Bourgeois [8], the boundary elements and the fundamental solution methods by Marin and Lesnic [9,10]; finally, Ghnatios et 
al. [11] used the Proper Generalised Decomposition method in the case of a one-dimensional heat transfer problem. A large 
amount of work addresses only homogeneous and linear isotropic media. In the nonlinear framework, Stolz [12] applied 
optimal control approach to solve the Cauchy Problem in the framework of elasto-viscoplasticity with a least square error 
functional. Kugler and Leitão [13] and Egger and Leitão [14] studied the existence of a solution to the nonlinear Cauchy 
Problem by constructive method using a fixed point algorithm.

✩ Cauchy Problem for Elastoplasticity.
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In Baranger and Andrieux [15], the authors suggested to formulate the issue as a constrained optimisation problem. 
Addressing the problem for the Laplace operator as a model of scalar conduction phenomena, the method relies on the 
definition and solution to two usual well-posed problems and the minimisation of the gap between the two solutions 
defined as a pseudo-energy error functional. It was showed furthermore that the iterated resolutions algorithm of Kozlov 
et al. [5] (the KMF algorithm), used by various authors such Leitão [16] and Marin [17], can be interpreted for linear 
symmetric operators as an alternating directions descent method for the minimisation error functional introduced. This 
result explains a remarkable performance of the proposed method with respect to the KMF algorithm and allows dealing 
with full 3D situations for heterogeneous and anisotropic solids.

The method has been developed for other linear operators, as the Lamé operator for linear infinitesimal elasticity with 
various applications such as determination of contact zones, identification of inclusions or determination of the stress state 
on buried interfaces in Baranger and Andrieux [18] and in [19–22]. Linear parabolic or hyperbolic operators have also been 
addressed with an appropriate extension for the definition of the energy error functional [23–25]. As the Cauchy Problem is 
well known to be severely ill posed (Hadamard [26], Belgacem [27]), regularisation procedures have also been studied and 
some regularisation has been added to the solution to the Cauchy Problem by energy error minimisation without modifying 
the functional itself.

Recently, a new extension of the approach to non-linear problems has been proposed for the case of hyperelasticity. 
The error functional is no more an energy error between the two solutions to well-posed problems, but rather an error in 
the constitutive equation that takes advantage of the existence of a convex, lower semi-continuous (lsc) energy potential 
entering into the formulation of the hyperelastic constitutive relation (Andrieux and Baranger [28] and in [29]).

This paper is devoted to an extension of the method in a different direction, namely the (incremental) plasticity, involving 
dissipative and memory effects. The next part recalls the framework used for the description of hardening and perfect 
plasticity and the formulation of the data completion problem in this context. Then the definition of the two intermediate 
boundary value problems is given and the derivation of various possibilities for the error in constitutive equation is detailed. 
An illustration of the method is performed in the last section in the case of the simple situation of a pressurised spherical 
reservoir.

2. The Cauchy Problem for incremental plasticity

Adopting the framework of generalised standard materials Halphen and Nguyen [30], the general constitutive equations 
for elastoplasticity is obtained, involving the three following ingredients:

• a set of state variables (ε, εp, α) where ε is the linearised strain tensor, εp the (additive) plastic strain and α a set of 
additional internal variables, possibly empty for perfect plasticity;

• a convex, lsc, differentiable free (or stored internal) energy density: W (ε − εp, α)

• a convex, lsc, positively 1-homogeneous potential of dissipation: �(ε̇p, α̇; εp, α)

and reads:

σ = ∂W

∂ε
= −∂W

∂εp , A = −∂W

∂α
(1)

σ ∈ ∂ε̇p� , A ∈ ∂α̇� (2)

where σ is the stress tensor, and ∂x� stands for the sub-differential of � with respect to x. As � is positively 
1-homogeneous, (2) is equivalent to the normality rule for (ε̇p, α̇) with respect to a convex yield function f (σ̇ p, Ȧ) ≤ 0. 
This framework encompasses a large amount of associated plasticity laws and ensures that the Clausius–Duhem inequality 
is fulfilled. In applications, the time interval is discretized into finite time increments, then the incremental form of the 
preceding equation is chosen as the total implicit one. This choice maintains the existence of a global incremental convex 
variation form of the evolution equation (for positive hardening behaviour), see Mialon [31], Simo and Hughes [32]. The 
implicit incremental form is then:⎧⎪⎪⎨

⎪⎪⎩
σ + �σ = ∂W

∂ε
(ε + �ε − εp − �εp,α + �α), σ + �σ ∈ ∂ε̇p�(�εp,�α;εp + �εp,α + �α) (a)

A + �A = −∂W

∂α
(ε + �ε − εp − �εp,α + �α), A + �A ∈ ∂α̇�(�εp,�α;εp + �εp,α + �α) (b)

(3)

For the sake of simplicity, we shall drop the arguments of the potentials. Consider now the following data completion 
problem. Given a solid �, its boundary consists of two non-overlapping parts �m and �u with unit external normal n. On 
�u no data are available, whereas on �m both the displacement field u = Um and the stress vector field σ .n = Fm are given.

The typical situation is the case where the displacement field Um (eventually only its tangential part) is obtained from 
digital image correlation techniques on a surface free of charge (Fm = 0). Frequently, in real applications, there is a third 
part of the boundary where natural or essential boundary conditions are known, but, for the sake of simplicity, we shall 
derive the formulation of the problem with only the two complementary parts �m and �u. The data completion problem 
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is to recover the data on �u provided the equilibrium equation, the compatibility condition and the evolution equation (3)
inside the solids hold true:

∇ · [σ + �σ ] = 0, ε(u + �u) = [∇(u + �u)]sym (4)

Strictly speaking, the Cauchy Problem is the determination of a displacement field �u inside the solid �, fulfilling (3)
and (4) and satisfying the two boundary conditions on �m: �u = �Um and �σ (u).n = �Fm. In the sequel, the solution 
method will take as unknown the displacement or the normal stress vector on �u. So it can be considered that a (partial) 
data completion is tackled with. But as far as the solution method relies on the production of vector fields (u, σ ) fulfilling 
the evolution equation for the solid, we can speak either of data completion solution or of solution to the Cauchy Problem.

3. Derivation of the error minimisation method

To solve the above Cauchy or data completion problem over a time interval �t , two auxiliary usual elastoplastic evolution 
sub-problems Pi are defined, using only one of the overspecified boundary data �Um or �Fm on �m and a given normal 
stress vector field �η on �u, the solutions to which are denoted by (�u1, �σ 1) and (�u2, �σ 2). The common initial state 
at the beginning of the time increment is (u, σ , εp, α).⎧⎨

⎩
∇ · [σ + �σ i] = 0, ε(u + �ui) = [∇ (u + �ui)]sym

σ + �σ i = ∂W
∂ε , A + �Ai = − ∂W

∂α
σ + �σ i ∈ ∂ε̇p�(�εp

i ,�αi)

for i = 1,2 (5)

and respectively for P1 and P2:

(P1)

{
�u1 = �Um on �m
�σ 1 · n = �η on �u

and (P2)

{
�σ 2 · n = �Fm on �m
�σ 2 · n = �η on �u

(6)

It is now clear that if the increment of surface traction �η is such that �u1 = �u2 + RBM, where RBM is a Rigid 
Body Motion, the two problems have the same incremental solution (�εp, �α, �σ ), and therefore the Cauchy Prob-
lem is solved with �u1, whereas the solution to the data completion problem is the pair (�u1, �η) on �u. A general 
variational method can thus be derived by building an error functional E between �e1 = (�u1, �εp

1, �α1, �σ 1) and 
�e2 = (�u2, �εp

2, �α2, �σ 2) as a function of �η and by minimising it over all the possible surface traction fields de-
fined on �u.

min
�η

J (�η) ≡
∫
�

E (�e1(�η),�e2(�η)) d� (7)

The next part is devoted to the derivation of various possible errors E .

4. Errors in constitutive equations

The errors rely on the convexity property of the free energy and dissipation potential, by using the following lemma:

Lemma 4.1. Let f(x) be a real nonlinear convex lsc function on Rn. If f (x) and its convex conjugate f ∗(x) are truly nonlinear, then for 
any quadruplet (x1, y1, x2, y2) such that y1 ∈ ∂ f (x1), y2 ∈ ∂ f (x2), one has:

(i) (y1 − y2) · (x1 − x2) ≥ 0
(ii) (y1 − y2) · (x1 − x2) = 0 ⇔ x1 = x2 and y1 = y2

Proof. The proof is straightforward when using the Legendre–Fenchel inequality in Ekeland and Temam [33] involving the 
conjugate function f ∗ of the function f :{

f (x) + f ∗(y) − x.y ≥ 0 ∀x, y
f (x) + f ∗(y) − x.y = 0 ⇔ y ∈ ∂ f (x) ⇔ x ∈ ∂ f ∗(y)

Indeed, the inequality (i) is obtained by summing the Fenchel inequalities for (x1, y2) and (x2, y1) and the Fenchel equal-
ities for (x1, y1) and (x2, y2). Always using the identity of the right-hand side of (i) with the sum of Fenchel (positive) 
inequalities, it is easy to see that vanishing of (i) is equivalent to

y1 ∈ ∂ f (x2) and y2 ∈ ∂ f (x1)

Let take the first result and use the definition of the sub-differential at x2 and at x1 with y1:

f (x) − f (x2) ≥ y1 · (x − x2)

f (x) − f (x ) ≥ y · (x − x )

}
⇒ f (x1) − f (x2) ≥ y1 · (x1 − x2) ≥ f (x1) − f (x2)
1 1 1
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so that if f is truly nonlinear, one must have x2 = x1. By the same reasoning, interchanging the dual quantities x and y, 
and using the conjugate function f ∗ , one gets y2 = y1. �

Owing to the general form of the constitutive equation, we can then derive errors with suitable properties. They are 
positive quantities and whenever they vanish then the distance between the two state variable increments vanishes together 
with the distance of their dual counterparts.

EW (�σ 1,�ε1;�σ 2,�ε2) = (�σ 1 − �σ 2) : (�εe
1 − �εe

2) − (A1 − A2) · (�α1 − �α2) (8)

E�(�σ 1,�εp
1;�σ 2,�εp

2) = (�σ 1 − �σ 2) : (�εp
1 − �εp

2) + (A1 − A2) · (�α1 − �α2) (9)

The first error is naturally called error in free energy, whereas the second one is called error in dissipation. They can be 
combined in order to define a general function via a parameter 0 ≤ χ ≤ 1, as shown in a different framework by Hadj Sassi 
and Andrieux [34].

Eχ = (1 − χ)EW + χEψ (10)

The previous error are recovered for extreme values of the parameter χ . The parameterisation allows one to put different 
weights on the errors in stored energy and dissipated energy, but outstandingly the mean value of the parameter (χ = 1/2) 
that makes free energy error and dissipated energy error exactly balance leads, to what can be called the Drücker error 
[35]:

E 1
2

= 1

2
(�σ 1 − �σ 2) : (�ε1 − �ε2) (11)

Remark 1. Due to Lemma 4.1, the extreme value χ = 1 corresponding to a pure dissipative error function must be discarded 
because the 1-homogeneous potential of dissipation � is not truly nonlinear.

The Drücker error is an error in total mechanical energy; for the elastoplastic situation let us give more details about the 
previously defined error.

• Perfect elastoplastic material: W (ε, εp) = 1
2 (ε − εp) : C : (ε − εp), where ε − εp = εe is the elastic strain tensor and 

εp : I = 0 and �(ε̇p) = σ0‖ε̇p‖ · σ0 and C denote the yielding stress and the Hooke tensor, respectively. The yield 
function is f (σ ) = σeq − σ0, where σeq is the von Mises stress. Therefore, the error functional is:

Eχ = (1 − χ) (�σ 1 − �σ 2) : (�εe
1 − �εe

2) + χ (�σ 1 − �σ 2) : (�εp
1 − �εp

2) (12)

• Elastoplastic material with isotropic hardening: the hardening function is defined by R(γ ) = −Hγ +σ0, where γ is the 
accumulated plastic strain, so α = γ and A = −Hγ and the free energy is defined by:

W (ε,εp,α) = 1

2
(ε − εp) : C : (ε − εp) +

α∫
0

(R(β) − σ0)dβ (13)

and �(ε̇p, α̇) = σ0‖ε̇p‖ + Iα̇=√
2/3‖ε̇p‖ and the yield function is f (σ , A) = σeq + A − σ0. The functional is then:

Eχ = (1 − χ)
[
(�σ 1 − �σ 2) : (�εe

1 − �εe
2) − (

R(α + �α1) − R(α + �α2)
) · (�α1 − �α2)

]
+ χ

[
(�σ 1 − �σ 2) : (�εp

1 − �εp
2) + (

R(α + �α1) − R(α + �α2)
) · (�α1 − �α2)

]
(14)

Equipped with this error in energy functional, which can be also called error in constitutive equations, we can then define 
the general error functional to be minimised in order to get the solution to the data completion problem:

Jχ (�η) =
∫
�

Eχ (�e1(�η)),�e2(�η)))d� (15)

The Drücker error is the only one that can be computed by boundary integration on the whole external surface of the body, 
thanks to the virtual power principle. This feature has been largely exploited previously to improve the global performance 
of the solution algorithm for linear Cauchy Problem by Baranger and Andrieux [15].
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Fig. 1. (Colour online.) A spherical reservoir with inner radius a and outer radius b respectively (a < b). The inaccessible boundary �u is at r = a.

5. A simple illustration: spherical reservoir

The illustration is conducted in order to examine the influence, in relative merits, of various energy errors, corresponding 
to various values of the parameter χ when used to build the function Jχ (�η). Even if in this very simple case, they turn 
out to be very similar. But the aim is also to analyse the precision of the reconstruction of the internal pressure and 
quantities inside the solid, especially for the plastic strain field, the position of the plastic zone, and the residual stress field 
at the end of the loading–unloading sequence. Due to the low dimension of the unknowns space, the general robustness of 
the method with respect to noisy data cannot be assessed here.

The solution method (7) is illustrated through the simple example of a pressurised spherical reservoir, on the external 
surface �m of which the pressure and radial displacement increment histories are given (Fig. 1). The internal surface here 
is the boundary part �u, where no data are available, and the arguments of the functional Jχ in (7) reduce to the scalar 
internal incremental pressure denoted by �p.

Thanks to the symmetry of the problem, closed-form solutions can be derived for the incremental problems (P1) and 
(P2) so that the function Jχ turns out to have also a closed-form expression in the case of perfect and isotropic linear 
hardening elastoplasticity. Denoting by n the unit outer normal vector, the following incremental well-posed problems are 
derived by exploiting independently the Cauchy data Um and Pm as in (5) and (6),

(P1)

{∇ · �σ 1 = 0 in �

�u1 = �Umer on r = b
�σ 1 · n = �p er on r = a

and (P2)

{∇ · �σ 2 = 0 in �

�σ 2 · n = �Pm er on r = b
�σ 2 · n = �p er on r = a

(16)

5.1. Closed-form solutions

To derive the solution to the incremental problems (16), given the increments �p, �Um and �Pm, two situations must 
be considered, namely pure elastic incremental response or elastoplastic increment with evolution of the plastic zone.

First, solutions of the continuous evolution problems will be derived in closed forms. Due to symmetry, the plastic zone 
reduces to a circular annulus with internal radius a and external radius, which will be denoted by ci . The reservoir having 
a small thickness-to-mean-radius ratio, the radius of the plastic zone c is assumed to have a monotonic evolution law from 
r = a (when internal pressure reaches the elastic limit pressure) to the extreme value cmax during the loading–unloading 
sequence. The material is characterised by the Lamé coefficients λ and μ, the yield stress σ0 and the strain-hardening 
modulus H characterising a linear isotropic hardening. Closed form solutions for the elastic behaviour are:

ui
r = Cir + Di

r2
, ε i

r = Ci − 2Di

r3
, ε i

θ = ε i
ϕ = Ci + Di

r3
, i = 1,2 (17)

σ i
r = KCi − 4μ

Di

r3
, σ i

θ = σ i
ϕ = KCi + 2μ

Di

r3
, i = 1,2 (18)

where Ci and Di are integral constants and K = 3λ + 2μ. The coefficients Ci and Di are identified by using the following 
boundary conditions.
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In the case of pure elastic behaviour, a ≤ r ≤ b: for the first problem σ 1
r (r = a) = −p and u1

r (r = b) = Um, for the second 
problem σ 2

r (r = a) = −p and σ 2
r (r = b) = Pm.

C1 = 4 Um b2μ − a3 p

κ a3 + 4 b3μ
, D1 =

(
κ Um b2 + b3 p

)
a3

κ a3 + 4 b3μ
and C2 = − Pm b3 + a3 p

K
(
a3 − b3

) , D2 = −1

4

(Pm + p)b3a3(
a3 − b3

)
μ

(19)

In the case of elastoplastic behaviour, it occurs for ci ≤ r ≤ b with i = 1, 2: for the first problem, σ 1
eq(r = c1) = σ0 and 

u1
r (r = b) = Um; for the second problem, σ 2

eq(r = c2) = σ0 and σ 2
r (r = b) = Pm.

C1 = −σY c1
3

6μb3
+ Um

b
, D1 = σY c1

3

6μ
and C2 = 2σ0c2

3

3Kb3
+ Pm

K
, D2 = σ0 c2

3

6μ
(20)

The plastic solutions given hereafter for linear isotropic hardening correspond to R(β) = Hγ in (13), where γ is the 
accumulated plasticity strain. Thus for a ≤ r ≤ ci and i = 1, 2:

u1
r = 2B

3K
r

(
3 ln(

r

c1
) + c1

3

r3
− 1

)
+ σ0

6μ
c3

1r

(
1

r3
− 1

b3

)
+ Um

b
r (21)

σ 1
r = 2B

3

(
3 ln(

r

c1
) + c3

1

r3
− 1

)
− 2σ0

3
c1

3
(

1

r3
+ K

4μb3

)
+ KUm

b
(22)

σ 1
θ = B

3

(
6 ln(

r

c1
) − c1

3

r3
+ 1

)
+ σ0

3
c3

1

(
1

r3
− K

2μb3

)
+ KUm

b
(23)

u2
r = 2B

3K
r

(
3 ln(

r

c2
) + c2

3

r3
− 1

)
+ 2σ0

3K
c2

3r

(
1

b3
+ K

4μr3

)
+ Pm

K
r (24)

σ 2
r = 2B

3

(
3 ln(

r

c2
) + c2

3

r3
− 1

)
+ 2σ0

3
c2

3
(

1

b3
− 1

r3

)
+ Pm (25)

σ 2
θ = B

3

(
6 ln(

r

c2
) − c2

3

r3
+ 1

)
+ 2σ0

3
c3

2

(
1

b3
+ 1

2r3

)
+ Pm (26)

and the transcendental equations for the elastoplastic boundary ci , with i = 1, 2, in terms of the inner pressure p are:

p = 2B

3

(
3 ln

( c1

a

)
− c1

3

a3
+ 1

)
+ 2σ0

3

c1
3

a3

(
1 + Ka3

4μb3

)
− KUm

b
(27)

p = 2B

3

(
3 ln(

c2

a
) − c2

3

a3
+ 1

)
+ 2σ0

3

c2
3

a3

(
1 − a3

b3

)
− Pm (28)

where B is a constant depending on Lamé parameters λ and μ, yield stress σ0 and the H the strain-hardening modulus:

B = 3Kμσ0

KH + 3Kμ + 4 Hμ

Notice that when B = σ0 for the particular value of H = 0, we obtain the closed form solution for perfect plastic material. 
The accumulated plastic strain function γi(r) and the Von Mises criterion σeq are:

γi(r) = σeq − σ0

H
= B + (σ0 − B)

H

(
c3

i

r3
− 1

)
for i = 1,2 (29)

σeq = σ i
θ − σ i

r = B + (σ0 − B)
c3

i

r3
for i = 1,2 (30)

Using the above solutions, incremental quantities can be derived in order to solve the incremental problems defined 
by (16).

Incremental elastic evolution In this case, the solution to the incremental evolution problem, for the displacement incre-
ment, the stress increment and the total strain increment have the above forms (the incremental plastic strain is zero), and 
the coefficients Ci and Di are identified and updated by using the boundary condition of each problem at each loading/un-
loading increment by the following quantities:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�C1 = 4μ(b2/a3)�Um − �p

K + 4μ(b/a)3

�D1 = Kb2�Um + b3�p

K + 4μ(b/a)3

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�C2 = �Pmb3 + a3�p

K(b3 − a3)

�D2 = (�Pm + �p)(ab)3

4μ(b3 − a3)

(31)

The solution given by (17) and (18) must be checked with respect to the yield criterion f (σ , α) < 0. If the criterion 
is not satisfied somewhere inside the domain (generally in the vicinity of the plastic zone limit r = c or near the internal 
boundary r = a), then this elastic trial must be rejected and one has to turn towards the elastoplastic case.

Incremental elastoplastic evolution Assuming the symmetry is preserved in this incremental evolution, the unknowns are 
supplemented with the incremental plastic zone radius (�ci > 0) and the plastic strain increment field. The evolution 
equations are supplemented with the yield limit equation f (σ + �σ , A + �A) = 0 within the (unknown) plastic zone, and 
the continuity conditions at r = ci + �ci , for i = 1, 2. The plasticity phenomenon considered here includes perfect plasticity 
and isotropic hardening plasticity.

1. Consider the isotropic linear hardening behaviour, the incremental quantities �c1 and �c2 are related to the incremental 
quantities �p, �Um and �Pm via the following equations,

�p

2B
+ K�Um

2bB
= ln(1 + �c1

c1
) + 1

3

c3
1

a3

[
1 − σ0

B

(
1 + K

4μ

a3

b3

)](
1 −

(
1 + �c1

c1

)3
)

(32)

�p

2B
+ �Pm

2B
= ln(1 + �c2

c2
) + 1

3

c3
2

a3

[
1 − σ0

B

(
1 − a3

b3

)](
1 −

(
1 + �c2

c2

)3
)

(33)

when �c1 and �c2 are computed, it is straightforward to compute the incremental quantities �Ci and �Di for i = 1, 2
by using the corresponding equations (20).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
�C1 = �Um

b
+ σ0c3

1

6μb3

[
1 −

(
1 + �c1

c1

)3
]

�D1 = −σ0c3
1

6μ

[
1 −

(
1 + �c1

c1

)3
] and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�C2 = �Pm

K
− 2σ0c3

2

3Kb3

[
1 −

(
1 + �c2

c2

)3
]

�D2 = −σ0c3
2

6μ

[
1 −

(
1 + �c2

c2

)3
] (34)

2. Consider the perfect plastic behaviour characterised by the yielding stress σ0 and H = 0, the incremental quantities are 
obtained by taking B = σ0 in the above equations.

The function Jχ (�p) can be computed in closed form, and for instance the Drücker error function is simply:

J 1
2
(�p) = 2πb

(
K�C1 − 4μ

�D1

b3
− �Pm

)(
�Um − �C2b − �D2

b2

)
(35)

Notice that only the part of the integral on �m appears in the above expression, the part corresponding to the integral on 
�u vanishes because problems P1 and P2 in (16) have the same boundary condition on �u (see Baranger and Andrieux [15]
for other possibilities).

Remark 2. If the over-specified data Um and Pm are compatible, they are related to the inner pressure p by the following 
relations:

• in the case of a pure elastic behaviour:

Pm = 4μK(b3 − a3)

(a3K + 4b3μ)b
Um − a3b(K + 4μ)

(a3K + 4b3μ)b
p

• in the case of an elastoplastic behaviour, the interfaces verify c1 = c2 = c and

K
b

Um − Pm = 2σ0

3

c3

b3

(
1 + K

4μ

)

5.2. Numerical experiments

This section is devoted to numerical experiments. The internal and external radiuses are: a = 400 mm and b = 600 mm. 
The material parameters are: Young modulus E = 210 000 MPa (Young modulus), Poisson ratio ν = 1/3, yield stress 
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Fig. 2. (Colour online.) Exact and noisy radial displacement U k
m and increment �U k

m at each pseudo increment time k. “e” denotes exact data, k denotes 
the increment number and δ denotes noisy data.

σ0 = 400 MPa and the tangent modulus ET = 0.1E = 21 000 MPa. Without loss off generality, Pm (external pressure) is 
taken equal to zero. Therefore all above materials parameters are: λ = 15 325 MPa, μ = 78 947 MPa, K = 61 765 MPa, 
H = 23 333 MPa, and B = 348.1625 MPa.

The reference solution Um is the following for an internal pressure p-history going from zero, reaching the maximal 
value pmax and going back to zero:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

elastic loading:

0 < p < pa = 2σ0

3

b3 − a3

b3
= 187.6543 MPa ⇒ 0 ≤ Um < Uma = 2a

3
σ0

(
a3

Kb3
+ 1

4μ

)
= 0.2269 mm (a)

elastoplastic loading:

pa ≤ p < pmax = 276.0329 MPa < pb = 2

3

(
3 ln

(
b

a

)
+ (1 − b3

a3
)(B − σ0)

)
= 364.4116 MPa

and
dp

dt
> 0 ⇒ U max

m = 0.3768 mm < Umb = 2σ0b

3

( 1

K
+ 1

4μ

)
= 0.7657 mm (b)

elastic unloading:

0 < p < pmax and
dp

dt
< 0 ⇒ U residual

m = U max
m − pmax a3b

b3 − a3

( 1

K
+ 1

4μ

)
= 0.0431 mm (c)

(36)

where the pairs (pa, Uma) and (pb, Umb) are the inner pressures and the outer radial displacements when plasticity appears 
at internal boundary c = a and when plasticity reaches the outer boundary c = b, corresponding to fully plastic linear 
strain-hardening state. The identification process of the internal pressure evolution is carried out by Algorithm 1.

Data: The domain � and its boundary ∂� = �m ∪ �u, the material parameters, the Cauchy data (Um, Pm) on �m and a given number of 
pseudo-time increments Nincr;

Result: Pressure evolution on �u ;
initialisation: k = 1, p0 = 0, P 0

m, U 0
m, �pk = 0, �Pk

m and �U k
m;

while k ≤ Nincr do
Solve the following minimisation problem:

�pk = arg min
�p

J (�p;�Uk
m,�P k

m), J (�p;�Uk
m,�P k

m) is given by (35)

pk = pk−1 + �pk ;

Pk
m = Pk−1

m + �Pk
m;

U k
m = U k−1

m + �U k
m;

end Algorithm 1: Incremental inner pressure identification.

Figs. 2a and 2b show respectively the exact and noisy displacement U e
m and U δ

m and their increments �U e
m and �U δ

m. 
The noisy displacement increments �U δ

m are built by adding ξ = 10% of artificial Gaussian white noise:

�U δ
m = �Um + ξ max (�Um) δ, δ is a Gaussian white noise vector with zero mean and unit variance. (37)
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Fig. 3. (Colour online.) Exact and identified pressure increment �pk and its corresponding pressure pk at each pseudo increment time k, obtained with 
noise-free and noisy Cauchy data. “e” denotes exact data, “id” denotes identified data, k denotes increment number and δ denotes noisy data.

Fig. 4. (Colour online.) Error functional J 1
2
(�p) in the vicinity of each optimal increment �pk shown by the dashed line. k denotes the increment number.

Figs. 3a, 3b, 3c and 3d show the identified inner pressure increment �pk and its corresponding inner pressure pk at 
each pseudo-time increment. Notice that there is a very good agreement with the exact values when the Cauchy data are 
noise free, and we observe some perturbations when the Cauchy data are noisy (10%). Nevertheless these results remain 
acceptable.

Fig. 4a shows the error function J (�p) obtained with noise-free Cauchy data for each increment in the vicinity of the 
optimal value �pk (illustrated by the dashed red line), where k denotes the increment number, whereas Fig. 4b shows these 
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Fig. 5. (Colour online.) Stress components σr and σθ identified with noise-free and noisy Cauchy data at the end of the loading path. “e” denotes exact 
data, “id” denotes identified data.

Fig. 6. (Colour online.) Residual stress components σr and σθ identified with noise-free and noisy Cauchy data at the end of the unloading path. “e” denotes 
exact data, “id” denotes identified data.

functions obtained with noisy Cauchy data. Notice here that each function is shifted by noise effects, but remains convex 
and regular.

Normalised elastoplastic stresses at the end the loading path are plotted in Figs. 5a and 5b and normalised residual 
stresses upon depressurisation are shown in Figs. 6a and 6b. In the two cases, we observe a good agreement with the 
exact values, even when the Cauchy data are noisy. The accumulated plastic strain γ (r) defined by (29) and identified with 
noise-free and noisy Cauchy data at the end of the loading path is shown in Figs. 7a and 7b. The elastoplastic interface radius 
c identified at each increment k is shown in Figs. 8a and 8b. We observe a good agreement with the exact values, except 
for the increment when the thick-walled spherical shell yields at the inner surface. Indeed, as the number of increment 
is chosen randomly, yielding may be achieved at the beginning, the end or inside an increment, so that the larger the 
increment is, the greater the error on the first yielding at the inner surface is. It is possible to improve this error after a 
first identification of the whole behaviour using large increments, by carrying out a second identification procedure using 
smaller increments at the zone where plasticity appears.

Fig. 9 shows the ratio of the relative errors of the identified inner incremental pressures �p by each element of the 
noise vector δ used to generate noisy Cauchy data. Four different Gaussian white-noise vectors δi with zero mean and unit 
variance are used with the same noise level ξ = 10%:

Error =
|�pe−�pδ |

|�pe|
δ

(38)

We observe that the noise level of the Cauchy data and the identified pressure is constant, except in the transition zone 
when the plasticity appears. Indeed, in this example, the noise effect is linear during elastic loading and unloading phases, 
thus we observe a direct proportionality between the noisy data and the identified ones, whereas, in the elastoplastic 
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Fig. 7. (Colour online.) The cumulative plastic strain γ identified with noise-free and noisy Cauchy data at the end of the loading path. “e” denotes exact 
data, “id” denotes identified data.

Fig. 8. (Colour online.) Elastoplastic interface c identified with noise-free and noisy Cauchy data at the end of the loading path. “e” denotes exact data, “id” 
denotes identified data.

Fig. 9. (Colour online.) Ratio of the relative error of the identified pressure and the noise vector (38).
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loading of transition, this effect is fully nonlinear, as shown in Fig. 9. A wise choice of the number of increments in each 
zone and of the regularisation techniques will allow us to improve these results.

6. Conclusions and perspectives

We derive a general method for the resolution of the Cauchy Problem for incremental elastic linear strain-hardening 
plasticity. Based on the splitting of the problem into two well-posed evolution problems, the derivation of a one-parameter 
family of energy errors, and the minimisation of it, the method has shown firstly that the loading–unloading phenomenon, 
which is very specific to elasto-plasticity can be dealt with, and secondly that the precision for the identification of unknown 
boundary data and of the plastic strain field is very good. Work under progress is devoted to numerical three-dimensional 
applications and evaluation of the effects of noise in the Cauchy data on the identifications’ previsions. Potential applications 
include the identification of material parameters and residual stress states after the elaborating processes.
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