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A robust and well-balanced numerical model is developed for solving the two-layer shallow 
water equations based on the approximate Riemann solver in the framework of finite-
volume methods. The HLL (Harten, Lax, and van Leer) solver is employed to calculate 
the numerical fluxes. The numerical balance between the flux gradient and the source 
terms is achieved by using a balance-reformulation method. To obtain exactly the lake-at-
rest solutions as the water depth is chosen as the conserved variable for the continuity 
equations, a modified HLL flux formulation is proposed for mass flux calculations. Several 
numerical tests used to validate the performance of the developed numerical model. The 
results show that the developed model is accurate, well balanced, and that it predicts no 
oscillations around large gradients.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this study, we consider a system with two superposed shallow flow layers. The fluids are assumed to be immiscible 
and of different but constant densities. Mathematically resolving of the two-layer shallow water equations (abbreviated as 
2LSWE hereafter) is useful and of great importance for studying stratified flow motions, e.g., wave–mud interactions [1,2], 
thermally or salinity-driven exchange flow motions [3], internal wave behaviors in the continental shelf [4], and chaotic 
mixing of particles in layered flows [5].

Existing numerical schemes for solving the 2LSWE rely on the numerical techniques for solving the one-layer shallow 
water equation (1LSWE hereafter). In solving the 1LSWE, various tough issues were encountered, e.g., numerical oscillation 
or instability around shocks or discontinuities, generation of spurious flow over uneven topography caused by the numerical 
imbalance between the flux gradient and the source terms. The numerical techniques for resolving these difficulties related 
to the 1LSWE have been significantly advanced in recent years [6–8]. Compared with the situation in solving the 1LSWE, 
solving the 2LSWE is more complicated, since the coupling between the layers in the 2LSWE leads to a non-conservative 
product term. Moreover, it is non-trivial to devise well-balanced numerical schemes for the 2LSWE.

The non-conservative product term in the 2LSWE accounts for the momentum exchange between the layers. This term 
involves partial derivatives of the unknown physical variables that has no definition around shocks or discontinuities. Rigor-
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Fig. 1. (Color online.) Definition sketch of a two-layer shallow water system.

ous theory for mathematically resolving the system with non-conservative terms has not been perfected yet. By choosing a 
specially designed coordinate system, Kurganov and Petrova [9] rewrote the 2LSWE system to make the effect of the noncon-
servative product term as small as possible. This scheme was verified to be robust when the fluctuation in the upper-layer 
surface is small. Dumbser et al. [10], and Castro-Díaz et al. [11] developed path-conservative numerical schemes for solving 
the 2LSWE based on the idea that the non-conservative product term can be interpreted as a Borel measure [12]. As pointed 
out by Abgrall and Karni [13], the path-conservative schemes may fail in obtaining reasonable solutions; for instance, may 
capture shocks incorrectly. Spinewine et al. [14] proposed an approach to make the non-conservative product term vanish 
by rearranging the governing equations.

The well-balanced property (e.g., the C-Property) is another objective to be achieved in developing numerical schemes 
for solving the 2LSWE involving source terms. The concept of the well-balanced property is originally proposed for solving 
the 1LSWE; it says that a numerical scheme should achieve a balance between the flux gradient and the source terms 
under steady stationary flow conditions [15]. A violation of this balance could trigger spurious flows and predict incorrect 
wave propagation speeds [16,17]. Various methods are proposed in the literature to tackle this imbalance problem in solv-
ing the 1LSWE. Several methods are verified to be robust and effective for solving the 1LSWE, e.g., the surface-gradient 
method [18], the hydraulic-reconstruction approach [19], and the surface-gradient-splitting approach [20,21]. However, 
when directly applying these approaches to solve the 2LSWE, some are found to be ineffective. For instance, as reported 
by Lee et al. [22,23], the surface-gradient splitting with a hydraulic reconstruction approach proposed by Liang and Borth-
wick [21], which exhibits the exactly well-balanced property for solving the 1LSWE, induces high spurious oscillations in the 
vicinity of discontinuities when used for solving the 2LSWE. The primary reason for explaining the different performances 
of a same method in solving the two different equation systems, lies in the existence of the non-conservative product term 
in the 2LSWE. As stated previously, this term is also a tough issue to be addressed.

The aim of this paper is to develop a robust and well-balanced numerical model for solving the 2LSWE with well 
treatment of the non-conservative product term. Special attention will be made to construct an effective numerical scheme 
to achieve exact lake-at-rest solutions for solving the 2LSWE.

The rest of the paper is organized as follows. Section 2 presents the numerical method for solving the 2LSWE. The 
general essentials and techniques for the numerical discretizations are presented. The method to achieve the well-balanced 
property is detailed. In Section 3, several numerical tests are presented to verify the performances of the numerical model. 
Finally, conclusions and discussions are given in Section 4.

2. Governing equations and numerical methods

In this paper, attention is focused on 1D flow in a channel with rectangular and constant-width cross sections. In 
principle, the numerical model developed below can be straightforwardly extended to 2D natural channels with complex 
geometry. The definition sketch for the 1D two-layer shallow water system is illustrated in Fig. 1. By neglecting the vertical 
acceleration effect and adopting the hydrostatic assumption, the 1D 2LSWE can be derived from the vertical 2D Reynolds-
averaged Navier–Stokes equations. The governing equations for the upper layer are

∂h2

∂t
+ ∂qx2

∂x
= 0 (1)

∂qx2

∂t
+

∂
(

u2qx2 + 1
2 gh2

2

)
∂x

= −gh2
∂z1

∂x
+ τsx − τwx

ρ2
(2)

and, for the lower layer,

∂h1

∂t
+ ∂qx1

∂x
= 0 (3)

∂qx1 +
∂

(
u1qx1 + 1

2 gh2
1

)
= −gh1

∂zb + τwx − τbx − χ gh1
∂h2 (4)
∂t ∂x ∂x ρ1 ∂x
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Here, t denotes time; x is the streamwise coordinate; hk is the layer depth with subscripts k = 1 and k = 2 representing the 
values corresponding to the lower and upper layers, respectively; qxk is the discharge per unit width; uk = qxk/hk denotes 
the depth-averaged velocity of layer k; zb is the bed elevation above a reference level; z1 and z2 denote the interface and 
upper-layer surface elevations with respect to the reference level and have the relation z1 = zb + h1 and z2 = z1 + h2; ρk is 
the flow density and χ = ρ2/ρ1 is the density ratio between the layers; τsx is the external shear stress (e.g., wind stress) at 
the upper-layer surface; τwx denotes the shear stress at the interface between the layers and τbx is the bed friction force.

The governing equations for the upper layer (Eqs. (1)–(2)) are equivalent to the classic 1LSWE if the interface does not 
change with time. In this sense, the upper-layer equation system can be solved using existing effective 1LSWE solvers if the 
immobile interface profile is known a priori before the simulation. The governing equations for the lower layer (Eqs. (3)–(4)) 
is equivalent to the 1LSWE if and only if the non-conservative term χ gh1

∂h2
∂x vanishes (e.g., when χ = 0 or h2 = constant).

To simplify the descriptions below, Eqs. (1)–(4) are recast into a vector form as

∂U k

∂t
+ ∂ F k

∂x
= Sk (5)

where,

U 2 =
[

h2
qx2

]
, F 2 =

[
qx2

u2qx2 + 1

2
gh2

2

]
, S2 =

[
0

−gh2
∂z1

∂x

]
(6)

and

U 1 =
[

h1
qx1

]
, F 1 =

[
qx1

u1qx1 + 1

2
gh2

1

]
, S1 =

[
0

−gh1
∂zb

∂x
− χ gh1

∂h2

∂x

]
(7)

Note that the shear stresses at the upper-layer surface, interface, and at the lower-layer bottom are omitted to simplify the 
problem as was done in other literature reports [9,24,25]. The simplification here is also due to the fact that these terms 
generally cause no numerical inconveniences and the numerical methods developed below can be extended to incorporate 
these terms straightforwardly without any difficulty. For incorporating these shear stresses for simulations under practical 
situations, we refer to [1].

2.1. Processing the non-conservative product term

To treat the non-conservative product term in the 2LSWE, we follow the idea in [14,26] via rearranging the 2LSWE to 
make this term vanish. In observing that

−gh1
∂h2

∂x
− gh2

∂z1

∂x
≡ −gh1

∂h2

∂x
− gh2

(
∂h1

∂x
+ ∂zb

∂x

)
≡ −g

∂h1h2

∂x
− gh2

∂zb

∂x
(8)

a combination of Eqs. (2) and (4) gives the following conservative momentum equation

∂

∂t

(
qx2 + 1

χ
qx1

)
+ ∂
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(
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χ
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2
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2 + 1

χ

1

2
gh2

1

)
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− 1

χ
gh1
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(9)

A similar manipulation to Eqs. (1) and (3) gives the following combined continuity equation

∂

∂t

(
h2 + 1

χ
h1

)
+ ∂

∂x

(
qx2 + 1

χ
qx1

)
= 0 (10)

In a vector form, the governing equations for the combined system can be written as
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= S w (11)

where
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Here, the subscript ‘w ’ denotes the term related to the combined system. Note that hw = h2 +h1/χ is used as the equivalent 
depth for the combined system and for convenience, we define H = h1 + h2 as the locally total depth. In the rest of the 
paper, attention is focused on solving the 2LSWE based on Eqs. (5) and (11) with components for the upper layer and the 
combined system defined by Eqs. (6) and (12), respectively.

2.2. Well-balanced techniques

In this section, we devise a well-balanced numerical scheme for solving the 2LSWE. To achieve this, we firstly briefly 
describe the imbalance problem encountered in solving the 1LSWE, and also present a simple technique that will be used 
in solving the 2LSWE to overcome this problem.

2.2.1. One-layer imbalance problem and the balance-reformulation method
The governing equations related to the 1LSWE are the Saint-Venant equations, which in a compact and conservative 

vector form are expressed as

∂U

∂t
+ ∂ F

∂x
= S (13)

where,

U =
[

Uc

Um

]
=

[
h
qx

]
, F =

[
Fc

Fm

]
=

⎡
⎣ qx

uqx + 1

2
gh2

⎤
⎦ , S =

[
Sc

Sm

]
=

⎡
⎣ 0

−gh
∂zb

∂x

⎤
⎦ (14)

Here, the subscripts ‘c’ and ‘m’ denote the components related to the continuity and momentum equations, respectively. 
Symbols qx , u, h, and z stand for the discharge per unit width, the velocity, the water depth, and the water surface elevation 
for the one-layer shallow-water system.

An explicit conservative finite volume discretization of Eq. (13) at cell i gives [21,27]

U n+1
i = U n

i − �t

�x

(
F i+1/2 − F i−1/2

) + �t S i (15)

Here we take the HLL (Harten, Lax, and van Leer) approximate Riemann solver [28], which is used in this paper, as an 
example to demonstrate the imbalance problem related to the discretization of the momentum equation. The HLL-formula-
based numerical flux (abbreviated as HLL flux hereafter) is expressed as [28]

F HLL
i−1/2 =

⎡
⎣ F HLLc

i−1/2

F HLLm
i−1/2

⎤
⎦ (16)

where

F HLLc
i−1/2 = SR

i−1/2 F L
c,i−1/2 − SL

i−1/2 F R
c,i−1/2

SR
i−1/2 − SL

i−1/2

+ SL
i−1/2 SR

i−1/2

SR
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i−1/2

(
hR
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i−1/2

)
(17)

F HLLm
i−1/2 = SR

i−1/2 F L
m,i−1/2 − SL

i−1/2 F R
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SR
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i−1/2 SR

i−1/2
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i−1/2

(
qR

x,i−1/2 − qL
x,i−1/2

)
(18)

Here, F HLLc
i−1/2 and F HLLm

i−1/2 respectively denote the numerical flux for the continuity and momentum equations at the cell 
interface i − 1/2. The superscripts ‘L’ and ‘R’ denote the values corresponding to the left and right Riemann states at the 
cell interface. The SL and SR are the lower and upper bounds of wave speeds that are related to the local Riemann states 
of the velocity and water depth [6,29]. SL and SR can be estimated as, for the 1LSWE system [30],

SL
i−1/2 = min

(
ui−1 − √

ghi−1, ui − √
ghi

)
SR

i−1/2 = max
(

ui−1 + √
ghi−1, ui + √

ghi

)
(19)

and for the 2LSWE system [14]

SL
i−1/2 = min

(
SL

1,i−1, SL
1,i, SL

2,i−1, SL
2,i,0

)
SR

i−1/2 = max
(
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1,i, SR
2,i−1, SR

2,i0
)

(20)

where
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Fig. 2. (Color online.) Lake-at-rest configurations for the two-layer shallow-water system. The upper-layer surface and interface profiles are shown by the 
thick solid lines (——) and the dash-dotted lines (– · – · –), respectively. The shaded area covered with a thin solid line represents the bed topography.

SL
2,i = u2,i − √

gh2,i, S L
1,i = u1,i − √

g(h1,i + χh2,i)

SR
2,i = u2,i + √

gh2,i, S R
1,i = u1,i + √

g(h1,i + χh2,i) (21)

By using a spatially first-order scheme and under a steady stationary flow condition, Eq. (18) reduces to

F HLLm
i−1/2 = SR

i−1/2 · 1
2 gh2

i−1 − SL
i−1/2 · 1

2 gh2
i

SR
i−1/2 − SL

i−1/2

(22)

Similarly, we obtain the momentum flux at the cell interface i + 1/2 under a quiescent flow condition as

F HLLm
i+1/2 = SR

i+1/2 · 1
2 gh2

i − SL
i+1/2 · 1

2 gh2
i+1

SR
i+1/2 − SL

i+1/2

(23)

Then the flux gradient term in Eq. (15) for cell i, 1
�x

(
F HLLm

i+1/2 − F HLLm
i−1/2

)
can be calculated as

F HLLm
i+1/2 − F HLLm

i−1/2

�x
= 1

�x

[
SR

i+1/2 · 1
2 gh2

i − SL
i+1/2 · 1

2 gh2
i+1

SR
i+1/2 − SL

i+1/2

− SR
i−1/2 · 1

2 gh2
i−1 − SL

i−1/2 · 1
2 gh2

i

SR
i−1/2 − SL

i−1/2

]
(24)

As seen from Eq. (24), under a steady stationary flow condition, the discretized flux gradient term is so complex that 
generally it is non-trivial to discretize the bed-slope source term, Sm = −gh ∂zb

∂x in Eq. (15), to exactly balance the flux 
gradient term shown in Eq. (24).

Note that the following relation exists

− ∂

∂x

(
1

2
gh2

)
− gh

∂zb

∂x
≡ −gh

∂z

∂x
(25)

thus we can reformulate Eq. (13) with vectors defined by

U =
[

h
qx

]
, F =

[
qx

uqx

]
, S =

[
0

−gh
∂z

∂x

]
(26)

It is easy to verify that under a quiescent flow situation, the HLL flux (Eq. (18)) for the momentum equation with com-
ponents defined by Eq. (26) is zero; the source term, −gh ∂z

∂x in Eq. (26), also vanishes. Therefore, the 1LSWE defined by 
Eq. (13) with components expressed in Eq. (26) is automatically pre-balanced with a simple reformulation method based on 
the relation described by Eq. (25). It should be noted that the solving of the 1LSWE with components defined by Eq. (26)
is widely used by researchers using finite-difference or finite-element schemes (e.g., [31–33]); it is, however, seldom used 
with Godunov-type schemes in the framework of finite-volume methods. For briefness, the reformulation method described 
in this section is named balance-reformulation method hereafter. One of the main objectives of this paper is to construct a 
well-balanced numerical scheme for solving the 2LSWE based on the balance-reformulation idea.

2.2.2. Two-layer system balance: a first treatment
Unlike the situation in solving the 1LSWE, for which the imbalance problem is generally related to an initially quiescent 

flow with a flat upper-layer surface over uneven topography, various situations need to be considered when solving the 
2LSWE. In Fig. 2, we summarize and list all the lake-at-rest configurations for a numerical scheme to be satisfied for 
solving the 2LSWE. In this and in the following two sections, we develop successively the balance treatment techniques 
to ensure that the stationary flows are at rest for all the configurations listed. The first case (Fig. 2(a)) is related to an 
initially quiescent flow with flat surface levels in both layers of same or different densities. As all the spatial derivatives 
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of flow variables are zero, the existing numerical schemes are capable of computing exact solutions for this situation. For 
the second case, as shown in Fig. 2(b), two flows of same densities over a flat bed topography are considered. The initial 
interface shape is irregular, but the whole layer depth H is constant over the domain. For this situation, no spurious flow 
should be numerically generated.

Due to the similarity between the governing equations for the upper layer (Eqs. (5) and (6)) and the 1LSWE (as de-
scribed at the beginning of Section 2), the balance-reformulation method for the 1LSWE system can be directly applied for 
processing the upper-layer momentum equation and thus Eq. (6) becomes

U 2 =
[

h2
qx2

]
, F 2 =

[
qx2

u2qx2

]
, S2 =

[
0

−gh2
∂z2

∂x

]
(27)

Under the situation shown in Fig. 2(b), for the combined system (Eqs. (11) and (12)), χ = 1 makes all the spatial 
derivatives disappear. Therefore, the combined system is numerically balanced under this configuration. As the flux gradient 
and the source terms in the upper-layer equations (Eqs. (5) and (27)) are also pre-balanced, the two-layer HLL approximate 
solver is well balanced for solving Eqs. (5) and (11) with components defined by Eqs. (27) and (12).

2.2.3. Two-layer system balance: a second treatment
In this section, we extend the numerical scheme developed in Section 2.2.2 to achieve well-balanced property under the 

configuration shown in Fig. 2(c). In this situation, two flows of equal density over an uneven bed topography are considered. 
The initial upper-layer surface is flat and the interface shape is irregular. Since the whole layer depth H varies spatially over 
the domain, a similar examination as presented in Section 2.2.1 for the 1LSWE system shows that the flux gradient and 
the bed-slope source terms in Eqs. (11) and (12) are unbalanced when the HLL approximate Riemann solver is used for 
numerical flux evaluations.

To tackle the imbalance problem in solving the combined system related to the situation shown in Fig. 2(c), we again 
adopt the balance-reformulation method here. However, this method cannot be applied directly to the combined momentum 
equation (Eq. (9)). In viewing that

gh1h2 + 1

2
gh2

2 + 1

χ

1

2
gh2

1 ≡ 1

2
g H2 + 1 − χ

χ

1

2
gh2

1 (28)

and

−gh2
∂zb

∂x
− 1

χ
gh1

∂zb

∂x
≡ −g H

∂zb

∂x
− 1 − χ

χ
gh1

∂zb

∂x
(29)

we can rewrite Eq. (9) to

∂

∂t

(
qx2 + 1

χ
qx1

)
+ ∂

∂x

(
u2qx2 + 1

χ
u1qx1 + 1

2
g H2 + 1 − χ

χ

1

2
gh2

1

)
− g H

∂z2

∂x
− 1 − χ

χ
gh1

∂zb

∂x
(30)

Application of the balance-reformulation method for treatment of the H-related terms in Eq. (30), Eq. (12) now becomes:

U w =

⎡
⎢⎢⎣

h2 + 1

χ
h1

qx2 + 1

χ
qx1

⎤
⎥⎥⎦ , S w =

⎡
⎣ 0

−g H
∂z2

∂x
− 1 − χ

χ
gh1

∂zb

∂x

⎤
⎦

F w =

⎡
⎢⎢⎣

qx2 + 1

χ
qx1

u2qx2 + 1

χ
u1qx1 + 1 − χ

χ

1

2
gh2

1

⎤
⎥⎥⎦ (31)

Under the situation shown in Fig. 2(c), the terms in Eq. (31) multiplied by (1 − χ) in the combined system vanish. For 
this reason, the momentum equation for the combined system reduced to the same form as the pre-balanced 1LSWE system 
expressed by Eq. (26) and is thus numerically balanced. For the upper-layer system, it is already known from Section 2.2.2
that the momentum equation is well-balanced based on Eqs. (5) and (27), and therefore, the 2LSWE defined by Eqs. (5) and 
(11) with components expressed by Eqs. (27) and (31), is well-balanced for the configuration shown in Fig. 2(c).

2.2.4. Two-layer system balance: further treatment
As demonstrated in Section 2.2.3, the developed numerical scheme is pre-balanced for flows with arbitrary interface 

shape over irregular topography if χ = 1. Nevertheless, the developed numerical scheme still experiences the imbalance 
problem when χ �= 1 as in the situation shown in Fig. 2(d). For this configuration, the upper layer should remain steady 
since both its surface and bottom are flat. Also physically, the lower layer needs to be at rest since the layer-coupling 
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term (χ gh1
∂h2
∂x in Eq. (7)) does not take effect as h2 = constant (as described at the beginning of Section 2). Note that 

conventionally, the terminology “well-balanced” for the 2LSWE system refers to this configuration only (see, for example, 
[10,34]).

For the situation given in Fig. 2(d), Eq. (31) reduces to

U w =

⎡
⎢⎢⎣

h2 + 1

χ
h1

qx2 + 1

χ
qx1

⎤
⎥⎥⎦ , F w =

⎡
⎣ 0

1 − χ

χ

1

2
gh2

1

⎤
⎦ , S w =

⎡
⎣ 0

−1 − χ

χ
gh1

∂zb

∂x

⎤
⎦ (32)

It is obvious that when 1−χ
χ �= 0 (i.e., χ �= 1), the flux gradient and the source terms in the combined momentum equation 

(second component of Eqs. (11) and (32)) are numerically unbalanced when the HLL approximate Riemann solver is used 
for numerical flux calculations. To tackle this problem, the balance-reformulation idea is adopted again. Note that

− ∂

∂x

(
1 − χ

χ

1

2
gh2

1

)
− 1 − χ

χ
gh1

∂zb

∂x
≡ −1 − χ

χ
gh1

∂z1

∂x
(33)

then Eq. (31) can be reformulated to

U w =
⎡
⎢⎣ h2 + 1

χ
h1

qx2 + 1
χ qx1

⎤
⎥⎦ , F w =

⎡
⎢⎢⎣

qx2 + 1

χ
qx1

u2qx2 + 1

χ
u1qx1

⎤
⎥⎥⎦

S w =
⎡
⎣ 0

−g H
∂z2

∂x
− 1 − χ

χ
gh1

∂z1

∂x

⎤
⎦ (34)

With the components defined in Eq. (34), the momentum equation for the combined system is now pre-balanced, and 
till now, the HLL approximate Riemann solver for solving the 2LSWE based on Eqs. (5) and (11) with components defined 
by Eqs. (27) and (34) are well-balanced for all the steady stationary flow configurations presented in Fig. 2 and is used in 
the rest of the paper.

2.2.5. Additional issue related to maintain steady stationary flow at rest
It is of great importance to note that the term “well-balanced” is commonly known to be related to the treatment of the 

momentum equations as discussed in Sections 2.2.1–2.2.4. Actually, even if a well-balanced numerical scheme is used for the 
discretization of the momentum equation, spurious flows can still be generated if the continuity equation is inappropriately 
discretized. For example, the standard HLL numerical flux for the upper-layer continuity equation at the interface i − 1/2 is 
calculated as (also see Eq. (17))

F HLLc
2,i−1/2 = SR

i−1/2 F L
c − SL

i−1/2 F R
c

SR
i−1/2 − SL

i−1/2

+ SL
i−1/2 SR

i−1/2

SR
i−1/2 − SL

i−1/2

(
hR

2,i−1/2 − hL
2,i−1/2

)
(35)

Under a quiescent flow condition, the first part on the right-hand side (RHS) of Eq. (35) is equal to zero. The second term on 
the RHS of Eq. (35), however, leads to a numerical flux that either raises up or lowers down the upper-layer surface level if 
the Riemann states of water depth at the cell interface differ (i.e., for flows with irregular interface shape), and thus spurious 
flows are generated. In fact, as long as the water depth is adopted as the conserved variable for the continuity equation 
and without special treatment, spurious flows can be generated in solving the 1LSWE, and also in solving the upper-layer 
or the combined equation system related to the 2LSWE. Since ∂z

∂t ≡ ∂h
∂t holds for the 1LSWE system over an immobile bed, 

recently many investigators use z instead of h as the conserved variable for the continuity equation (e.g., [21,35]). In this 
way, the standard HLL flux for the continuity equation expressed by Eq. (35) with a substitution of h by z, predicts accurate 
results under steady stationary-flow conditions. For a 2LSWE system, however, if z is used as the conserved variable in the 
continuity equations, source terms, e.g., for the upper layer ∂z1

∂t , arise in the continuity equations. As z1 at the new time 
level is unavailable, explicit schemes lead to decoupled solutions for the two-layer coupled system. As was done by most of 
the researchers, we use h as the conserved variable in the continuity equations in this paper.

Observing that the first term on the RHS of Eq. (35) is a central difference approximation, and the second term acts as a 
diffusion term to stabilize the scheme [14], and in viewing that the standard HLL flux defined by Eq. (35) actually predicts 
promising results in unsteady flow conditions under all flow regimes [27,36,37], it is reasonable to assume that Eq. (35)
may be inaccurate solely for flow with weak motions, in which case the diffusion term can be omitted to maintain the 
stationary flow at rest. For this reason, we modified Eq. (35) to

F HLLc
2,i−1/2 = SR

i−1/2 F L
c − SL

i−1/2 F R
c

SR − SL
+ α

SL
i−1/2 SR

i−1/2

SR − SL

(
hR

2,i−1/2 − hL
2,i−1/2

)
(36)
i−1/2 i−1/2 i−1/2 i−1/2
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Here, α is a parameter controlling the diffusion term of the HLL flux and in this paper is calculated by the following step 
function

α =
{

0, max(Fr1,i−1, Fr1,i, Fr2,i, Fr2,i−1) < Frlmt
1, else

(37)

where Frk is the internal Froude number defined as [24,25]

Frk = |uk|√
(1 − χ)ghk

(38)

In case that χ = 1, the following composite Froude number is used

Frk = |qx1 + qx2|√
g(h1 + h2)3/2

(39)

to recover the definition of the Froude number in a one-layer shallow-water system. Though other functions (e.g., linear 
variation) for α can be used, we found that the step function defined by Eq. (37) performs well in all our numerical tests, 
as presented in Section 3, and is thus used in this paper. For the parameter Frlmt, our numerical experiments show that it 
does not significantly affect the results and Frlmt = 1 × 10−4 is chosen. For the continuity equation of the combined system, 
Eq. (36) also applies with a substitution of h2 with hw .

2.3. Source term treatment and stability criterion

Following [27,38,39], a central difference approximation is used for discretization of the source terms. For instance, for 
Eqs. (5) and (27) we have

−gh2
∂z2

∂x

∣∣∣∣
i
= −gh2,i

z2,i+1 − z2,i−1

2�x
(40)

a similar central difference approximation is used for the discretization of the source terms in Eqs. (11) and (34).
For time stepping, a dynamic time step is adopted according to the CFL (Courant–Friedrichs–Lewy) requirement

�t = Cr × min

(
�x

max(|SL
i−1/2|, |SR

i−1/2|)

)
(41)

where SL
i−1/2 and SR

i−1/2 are calculated from Eq. (20). Generally, Cr should be set to less than unity for numerical stability.

2.4. Boundary conditions

For boundary conditions, ghost cells are created outside the simulation domain. In this way, numerical fluxes at bound-
aries are calculated the same way as those at the interfaces between interior cells. For each layer, when the discharge is 
specified at a subcritical inflow boundary, the discharge at the corresponding ghost cell is set to the prescribed value, while 
the water depth is zeroth-order extrapolated from interior cells. When the water depth is given at a subcritical outflow 
boundary, the water depth at the corresponding ghost cell is set to the given value and its discharge is obtained by using 
a zero-gradient condition. For an open outflow boundary, both the water depth and the discharge at the ghost cells are 
zeroth-order extrapolated from interior cells. For a closed boundary, the water depth at the ghost cells is set to the value 
in the adjacent interior cells, while the discharge is given as equal but opposite to the value in its neighboring interior 
cells. Similar boundary condition treatment techniques are widely used in solving the 1LSWE [40,41]. Though, in principle, 
high-order extrapolations (e.g., [38]) or physically more accurate schemes (e.g., [42]) can be implemented, our numerical 
results show that the treatment described here works well and predicts favorable results.

3. Numerical tests

In this section, numerical experiments are performed to verify various properties of the developed numerical model. The 
test cases considered include transitional flow with hydraulic jump over a hump, smooth transcritical exchange flow over a 
hump, and an internal dam break wave propagating over a flat bottom.

3.1. Transitional flow with hydraulic jump over a hump

Under the rigid-lid assumption, some steady-state solutions are available for two flowing layers under particular config-
urations [24,25]. The rigid-lid assumption is reasonable when the difference in density between the layers is small and the 
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upper-layer surface is nearly flat. This test is taken from Abgrall and Karni [25]. A 6-m-long channel (−3 m < x < 3 m) with 
the following bottom topography is considered:

zb(x) =
{

1
8

(
cos πx

2 + 1
)2

, |x| ≤ 2
0, else

(42)

For boundary conditions, the discharge per unit width qw
x1 = qw

x2 = 0.0928 m2/s is prescribed at the western boundary 
and the water depth is fixed to he

1 = 0.9205 m and he
2 = 0.5795 m at the eastern boundary. Here, the superscripts ‘w’ and ‘e’ 

denote the values at the western and eastern boundaries, respectively. Initially the flows are at rest with a flat upper-layer 
surface z0

2(x) = he
1 + he

2 and a flat interface z0
1(x) = he

1. The superscript ‘0’ here denotes the initial values.
The simulation is done with χ = 0.98 and g = 10 m2/s, using a dynamic time step with Cr = 0.6. The spatial step is 

chosen through a grid-resolution study, as stated below. Firstly, steady solutions are obtained by carrying out a series of 
simulations on successively finer grids. Note here that a steady solution is thought to be obtained when the globally relative 
change indictor, R , defined in Eq. (43), drops smaller than a critical value Rc (Rc → 0). Then, when further mesh refinement 
causes negligible changes in the solution, the mesh is supposed to be fine enough regarding numerical accuracy.

R =

√√√√√ nz∑
k=1

nx∑
i=1

(
hl+1

k,i − hl
k,i

hl
k,i

)2

(43)

Here, nz = 2 denotes the vertical layer numbers; nx is the total grid number in a layer. The superscripts ‘l’ and ‘l + 1’ denote 
time steps. In this paper, Rc = 1 × 10−7 is chosen.

In Fig. 3(a), the computed interface profiles at steady states by the present model with grids from nx = 400 to nx = 6400
are illustrated. As seen, the solutions with nx = 3200 and nx = 6400 nearly coincide with each other and thus a grid of 
nx = 3200 is chosen.

In Fig. 3(b), the computed steady solution of interface profile by the present model (with nx = 3200) is compared with 
the rigid-lid analytic solution and the numerical result by Abgrall and Karni [25] using a relaxation approach. Note that the 
rigid-lid analytic solution is composed of two piecewise smooth profiles with a hydraulic jump on the right of the hump 
crest at x = 0.48 m. As seen in Fig. 3(b), both of the present model and the relaxation scheme predict reasonable results 
and are all in close agreement with the analytic solution. It is also noted that compared with the analytic solution, both the 
two numerical models predict slight discrepancy in the jump location. This discrepancy was thought to be caused due to 
the rigid-lid assumption in deriving the analytic solution [25]. As we check the discharges in the two layers which should 
be constant over the domain and over the layers, we found, as shown in Fig. 3(c), that small deviations (compared with 
the analytic solutions) in the predicted discharges exist near the jump location (marked out by the vertical dash-dotted 
line in Fig. 3(c)). The maximum relative error in discharges is about 16% (in both the two layers) between the numerical 
result predicted by the present model and the analytic solution. The deviation in the predicted discharges implies that 
the discrepancy in the predicted hydraulic jump location in this test may also be caused by the slight inaccuracy of the 
numerical schemes (not only due to the rigid-lid assumption, as stated in [25]). A literature review shows that similar 
deviation in the predicted discharge is commonly encountered for Godunov-type schemes solving the 1LSWE over an uneven 
topography with a hydraulic jump in the solution. For instance, in solving the one-layer steady transcritical flow with 
hydraulic jump over a hump, researchers reported that the predicted relative error in discharge solution is about 15%–24% 
when the Godunov-type schemes are employed [21,43].

The well-balanced property of the present model is tested here. All the parameters for the well-balanced test remain the 
same as those in the test above in this section, except that qw

x1 = qw
x2 = 0 is prescribed at the western boundary. In Fig. 3(d), 

the computed upper-layer surface and interface profiles (with nx = 3200) at t = 10 s are presented along with the analytic 
solutions. It is seen that the numerical results match the analytic solutions exactly and no spurious flow is generated as 
expected. This clearly verifies the well-balanced property of the present model.

3.2. Smooth transcritical exchange flow over a hump

This test is taken from [25], in which rigid-lid analytic solution is provided. We use this test to check the performance 
of the proposed numerical scheme when the flow move in opposite directions in the layers.

The simulation domain, the bed topography, and the Cr are the same as those in the previous test (see Section 3.1). For 
the lower layer, qw

x1 = 0.0928 m2/s is prescribed at the western boundary and the water depth at the eastern boundary is 
fixed to he

1 = 0.1617 m. For the upper layer, qe
x2 = −qw

x1 is applied at the eastern boundary (inlet boundary for the upper 
layer) and the water depth at the western boundary is set to hw

2 = 0.4311 m. Initially, the flows are at rest with a flat 
upper-layer surface z0

2(x) = 1.5 m and a flat interface z0
1(x) = 1.0 m. The density ratio is set to χ = 0.98 and g = 10 m2/s

is used. Based on a grid resolution study as described in Section 3.1, a mesh with nx = 1600 is chosen to ensure numerical 
accuracy.

In Fig. 4(a), the upper-layer surface and interface profiles at steady states computed by the present model are compared 
with the rigid-lid analytic solution and the numerical prediction by Abgrall and Karni [25] using a relaxation approach. 
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Fig. 3. (Color online.) (a) and (b) show the computed steady solutions to the interface profile obtained using the present model, with nx = 400 (– – –), 
nx = 800 (– · – · –), nx = 1600 (– · · – · · –), nx = 3200 (· · · · · ·), and nx = 6400 (——), for the transitional flow with hydraulic jump over a hump test. 
In (b), the numerical solution obtained using the present model with nx = 3200 (· · · · · ·) is compared with the analytic solution (——) and the numerical 
solution by Abgrall and Karni [25] (– · – · –). In (c), the computed discharges per unit width (by the present model) for the upper layer (◦) and the lower 
layer (�) are illustrated. In (d), the computed profiles of z2 (◦) and z1 (�) are compared with the analytic solutions (thick solid lines) for the well-balanced 
test. The bed topography is given at the bottom of each figure by the thin solid line and is plotted on the right y-axis.

As shown, the agreement between the predicted result by the present model and the theoretical solution is promising. 
Negligible difference is found between the results given by the present model and that predicted by the relaxation scheme, 
except that, at the upstream of the hump, our solution of the interface profile matches the theoretical solution better. In 
Fig. 4(b), the computed discharge in the layers at steady states by the present model along with the analytic solution are 
presented. As seen, the computed discharges are uniform over the domain with negative values in the upper and lower 
layers. The maximum difference in discharge between the numerical result computed by the present numerical model and 
the analytic solution is about 2%. Note that this minor discrepancy can be further lowered by using finer grids.

3.3. Internal dam-break wave propagation

This benchmark test is employed by many researchers to validate the numerical accuracy and robustness of their 2LSWE 
solvers [25,44–46]. The considered channel is of 1-m-long and the following initial conditions are used:

h0
1(x) =

{
0.5, x < x0,

0.45, x > x0,
h0

2(x) =
{

0.5, x < x0,

0.55, x > x0
(44)

Here, x0 denotes the initial discontinuity location in the interface profile.
Initially, uniform velocity u0

1(x) = u0
2(x) = 2.5 m/s is prescribed at each mesh point. Open boundary conditions are ap-

plied at both ends of the channel. The simulation domain is uniformly divided into 400 cells and the time step is constrained 
with Cr = 0.25. The density ration is set to χ = 0.98 and g = 10 m2/s is used.

Fig. 5 displays the interface profiles computed using the present model along with existing numerical solutions in the 
literature at various time instances. Note that the results are plotted on a relative coordinate of x − x0 for convenient com-
parisons, as different values of x0 are used in the literature. Previous studies show that no oscillation should be generated 
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Fig. 4. (Color online.) Computed layer surface levels (a) and discharges per unit width (b) by the present model at steady states with nx = 1600, for the 
smooth transcritical exchange flow over a hump test. The computed values for the upper- and lower-layers are marked by symbol ◦ in blue and symbol �
in red, respectively. The analytic solutions are given by thick solid lines (——) in black. The bed topography is given at the bottom of each figure by the thin 
solid line and is plotted on the right y-axis. In (a), the numerical solution by Abgrall and Karni [25] is given by the dashed lines (– – –).

Fig. 5. (Color online.) Computed interface profiles for the internal dam-break wave propagation test with χ = 0.98 by the present model (——) at t = 0.05 s
(a), t = 0.1 s (b), t = 0.1875 s (c), and t = 0.25 s (d), respectively. In (a), the numerical solutions with the SCHR scheme (�) and UDCHR scheme (•) in [46], 
and the kinetic solver in [44] (�), are shown. In (b), the numerical solution by the FVEG scheme in [26] is given (– – –). Zoomed views are given in (b) 
for clear views. In (c) and (d), the numerical solutions with the relaxation approach in [25] are shown by the dashed lines (– – –). The vertical dash-dotted 
line (– · – · –) represents the place where the initial discontinuity locates. Note that the region of x-axis is different among figures.

for this test [26]. However, numerical schemes without careful treatment of the non-conservative product term and the 
imbalance problem, can easily trigger spurious oscillations near the interface and may finally cause the code to blow up.

In Fig. 5(a), the computed interface profile by the present model is displayed at t = 0.05 s. Also shown are the numerical 
results by Bouchut and de Luna [44] using a kinetic solver, by Bouchut and Zeitlin [46] using a source-centered hydro-
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Fig. 6. (Color online.) Computed interface profile (a) and upper-layer surface profile (b) by the present model, for the internal dam-break wave propagation 
test with χ = 0.995. The solid line (——) and the dashed line (– – –) represent the numerical predictions at t = 0.05 s and t = 0.1 s, respectively.

static reconstruction scheme (abbreviated as SCHR scheme) based on Eqs. (5)–(7). The numerical result computed from a 
dispersive-corrected SCHR scheme [46] (abbreviated as UDCHR scheme), is also presented. As seen in Fig. 5(a), among all 
the numerical models, the kinetic solver exhibits the highest-amplitude oscillations. These oscillations are mainly located 
around the initial discontinuity location (the vertical dash-dotted line in Fig. 5(a)) and also at the front of the sharp in-
terface around x − x0 = 0.1 m. Compared with the kinetic scheme, the SCHR scheme predicts a much smoother solution, 
but still experiences high oscillations around the front of the sharp interface. The UDCHR scheme shows great improvement 
in suppressing oscillations compared with the SCHR scheme, yet it cannot eliminate the oscillations. Our present model, 
however, predicts no spurious oscillation at the interface between the layers.

As time evolves, e.g., from t = 0.05 s (Fig. 5(a)) to t = 0.1 s (Fig. 5(b)), the sharp front interface moves forward from 
x − x0 ≈ 0.1 m to x − x0 ≈ 0.2 m while the flow behind it kept almost unaffected. In Fig. 5(b), the numerical result by 
Dudzinski and Lukáčová-Medvid’ová [26], based on a finite-volume evolution Galerkin scheme (FVEG scheme) is also dis-
played. It is seen that the present model and the FVEG scheme predict nearly the same results, except that the numerical 
solution from the FVEG scheme is of slightly zigzag shape (see the zoomed views in Fig. 5(b)), while a smooth solution is 
obtained using our present model.

In Figs. 5(c) and (d), the numerical results at t = 0.1875 s and t = 0.25 s given by the present model are compared 
with the numerical solution by Abgrall and Karni [25] using the relaxation approach. It is seen that the results given by the 
two models nearly coincide with each other, except that near the area around the location x − x0 = 0.1 m, the relaxation 
approach predicts high-frequency oscillations and it grows with time as shown in Figs. 5(c) and (d). As pointed out by 
Abgrall and Karni [25], the high-frequency oscillation can be suppressed by introducing sufficiently artificial viscosity to 
damp the instability. However, no artificial viscosity is needed to ensure numerical stability for our present model.

At the end of this section, a further numerical experiment is carried out to verify the robustness of the present model 
when χ approaches unity. We choose χ = 0.995 and keep all other parameters as they were in the test in this section. In 
Fig. 6, the computed interface profile (Fig. 6(a)) and the upper-layer surface profile (Fig. 6(b)) obtained using the present 
model are plotted at two time instances. It is seen that the upper-layer surface and interface evolve smoothly with time, 
showing robustness of the numerical scheme.

4. Conclusions and discussions

In this study, a numerical model is developed for solving the two-layer shallow-water equations over an uneven topogra-
phy. Based on a reformulated conservative equation system, the model is developed to numerically balance the flux gradient 
and the source terms under various lake-at-rest configurations. The numerical model is thoroughly tested with analytical or 
reference numerical solutions, under steady or unsteady flow conditions with the same or different flow directions in the 
layers.

The tests of steady transitional or transcritical exchange flows over a hump show that the present model is accurate 
and robust to capture shocks over uneven topography and to represent flow behaviors when the flows move in different 
directions in the layers. The internal dam break flow test further shows that the present model is stable and accurate to 
simulate internal wave propagations, even when the density ratio between the layers approaches unity.

As analyzed in Section 3.1, compared with the analytic solution, slight deviations in discharge and hydraulic jump loca-
tion are predicted around the hydraulic jump region over an uneven topography. Actually this is an inherent characteristic 
of most finite-volume Godunov-type schemes and a progress in devising schemes for obtaining exactly steady moving flow 
solutions would help gain more accurate solutions for layered flows over an uneven topography. Further work also needs 
to be done to better approximate the numerical mass flux when the water depth is chosen as the conserved variable. The 
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modified HLL flux proposed in this paper is mainly motivated by our wish to obtain exact lake-at-rest solutions; though it 
works well in all the tests considered in this paper, further validation or improvement of the proposed scheme is needed. 
Wetting–drying is another important issue to be addressed for solving the two-layer shallow-water system, and it will be 
implemented in the future.
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