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A new technique to determine the true projected contact area by nanoindentation is 
presented. It requires combining two models used normally to determine the representative 
stress and strain from nanoindentation parameters. Consequently, it does not require 
any model classically used to calculate the projected contact area. The method requires 
performing indentation on the same sample with two indenter tips with different 
geometries (Berkovich tip and a tetrahedral tip with a semi-angle equal to 50◦). The 
method was applied to three samples: glass, PMMA, and 100C6 steel. The projected contact 
area obtained by this model was accurate in all cases.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Une nouvelle technique de mesure de l’aire de contact projetée par nano-indentation est 
présentée. Elle requiert la combinaison de deux modèles habituellement utilisés pour la 
détermination des contraintes et déformations représentatives à partir des paramètres 
mesurés en nano-indentation. Les modèles utilisés habituellement pour calculer l’aire de 
contact projetée ne sont donc pas utilisés. Cette nouvelle méthode nécessite d’effectuer 
les tests d’indentation sur le même échantillon en utilisant deux indenteurs de géométrie 
différente (pointe Berkovich et pointe tétraédrale, dont le demi-angle au sommet est 
de 50◦). La méthode a été appliquée sur trois échantillons : verre, PMMA et acier 100C6. 
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L’aire de contact projetée obtenue avec ce modèle a été mesurée de façon précise pour 
tous les échantillons.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The instrumented nanoindentation technique is commonly used to probe surface mechanical properties at the nanometer 
scale. The technique consists in applying a normal load with an indenter tip of known geometry on a sample, and recording 
the tip displacement. This technique can be used to measure the mechanical properties of bulk materials, thin films samples 
or structured materials. With only one test, this non-destructive technique can measure the hardness and the reduced elastic 
modulus of materials [1–3]. The commonly used equations in nanoindentation for calculation of hardness and modulus are 
as follows:
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H being the hardness and E the Young modulus of the material. In Eqs. (1)–(3), P is the applied load, E∗
c is the reduced 

contact modulus between the tip and the sample, ν and νi are the Poisson ratio of the sample and the diamond tip 
respectively, Ei is the Young modulus of the diamond tip, and Ac is the projected contact area. The Young modulus and 
the hardness can be calculated by a static method; the properties are determined only at maximum load (Fig. 1), or by 
a dynamic method, named CSM (continuous stiffness measurement), the properties being measured as a function of the 
indentation depth, which is not possible with the static method [4]. In Eqs. (1) and (3), all parameters are known or 
measured by indentation testing, except Ac, the projected contact area. The projected contact area is linked to the contact 
depth hc by the tip geometry, for a perfect pyramidal indenter:

Ac = π tan2 θh2
c (4)

where θ is the equivalent semi-angle at the apex of the tip. For depths smaller than a few hundred nanometers, the 
projected contact area can be affected by tip blunting effects. To take into account the non-perfect geometry of the tip, some 
models have been previously formulated. Oliver and Pharr developed a complex tip area function, using several constants to 
take blunting of the tip into account [3]. Because of the complex procedure needed to obtain the coefficients, less strenuous 
models have been developed. For example, Loubet et al. proposed to take into account tip defects by adding a small height 
to the displacement signal [5]. Other authors have proposed to fit the square root of the projected contact as a function of 
hc using linear coefficients, the properties being easier to obtain experimentally for depths higher than 200 nm [6,7]. For 
smaller depths, other models using power-law or exponential functions have been used [8,9]. Of particular interest, Chicot 
et al. proposed an area function using a linear and exponential term to account for the tip defect, which can be accurately 
determined using SEM imaging [10]. The relation between the contact depth hc and the indentation depth h (measured by 
indentation technique) is not trivial because the eventual pile-up or sink-in phenomenon that can occur during indentation 
cannot be determined only with tip displacement measurements. Some models have been developed in order to take into 
account this phenomenon. For instance, the most commonly used method to calculate hc is the Oliver and Pharr model, 
which determines the contact depth with the following equation [3,11]:

hc = h − ε
P

S
(5)

where ε = 0.75 for a pyramidal indenter. This method can precisely model the sink-in between the sample and the tip, but 
does not take into account the pile-up, simply because, in Eq. (5), hc cannot be greater than h. Bolshakov et al. show that 
the underestimation of the projected contact area can reach up to 60%, for the indented material [11,12], especially if the 
strain-hardening exponent is very low. Another model proposed by Loubet et al. can be used to calculate the contact depth 
[5,13]:

hc = α

(
h − P

S
+ h0

)
(6)

where h0 is the height used to take into account the tip defect and α is a constant depending on the indenter geometry 
(α = 1.2 for a Berkovich tip [5,13]). Given that α is greater than 1, this model can take into account the pile-up, or sink-in 
phenomena. Loubet et al. show that this model can estimate precisely the projected contact area for a large range of 
materials, except for materials with high strain-hardening exponent [5].
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Fig. 1. (Color online.) Loading/unloading curve obtained on an elastoplastic sample. During the loading, the load P is proportional to h2 through C [3].

One can cite another model based on the calculation of the indentation work [14,15]. It consists in determining the 
area below the loading–unloading curve, and this area permits the calculation of work performed during indentation. The 
projected contact area calculated with this method is very close to the value calculated with the Oliver and Pharr model, but, 
as shown by Cabbibo et al., Ac is not precisely determined for indentation on samples showing a pile-up phenomenon [16]. 
To quantify pile-up or sink-in, postmortem methods can be used. It consists of calculating the projected contact area after 
the indentation test. Mc Elaney et al. proposed to calculate Ac after test with SEM images by calculating the ratio between 
the true area measured and the triangular area of the tip [17]. One can cite also different methods to calculate the pile-up or 
sink-in, by measuring the lobes of the posttest prints [16]. Measurements of Ac by AFM or scanning probe microscopy using 
indenter tips can also be performed [18,19]. The projected contact area can be calculated precisely with the post-mortem 
methods, especially if the material exhibits a purely plastic behavior.

In this paper, a new direct method to determine the projected contact area is proposed. It is independent of any param-
eter; consequently, it can consider the pile-up or sink-in phenomenon and the strain hardening of the material, which is 
not possible with the actual direct methods used. It consists in taking advantage of two published and well-known direct 
methods, used normally for the calculation of the representative indentation stress and strain. They require using two tetra-
hedral tips with a different semi-angle. In the first part of the paper, the method to measure the projected contact area is 
presented. It is followed by the description of the experimental tests and the tested samples. The last part will present the 
results and detail the limits of the technique.

2. Theory

In the last twenty years, many direct methods have been developed to extract the stress–strain curve from nanoindenta-
tion results. Some of them are based on the pioneering work of Tabor which shows that the ratio between the hardness and 
the representative stress is approximately 3 for metallic materials [1]. Other models were developed in order to determine 
the representative stress and strain for a wide range of materials [20–27]. Among all these models, two will be used for the 
projected contact area calculation. The first model was developed by Dao et al. [22]. Combining finite-elements simulations 
and nanoindentation experiments, they developed a reverse analysis of sharp indentation on materials. Dao et al. developed 
a dimensionless function permitting to calculate the representative stress:
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where σr is the representative stress and Di are coefficients dependent on the tip geometry and given in Table 1. The 
reduced contact modulus E∗

c and the loading indentation curvature C (see Fig. 1) are measured from the indentation ex-
periment in order to calculate the representative stress. Using finite-elements simulation and experiments on different 
aluminum alloys, the dimensionless function developed is independent of the strain-hardening exponent for a represen-
tative strain equal to 0.033, which means that the model can calculate properties independently of the strain-hardening 
exponent. Dao et al. developed this model for Berkovich indentations. The method was extended by Bucaille et al. and Chol-
lacoop et al. [21,24] for other indenter geometries in order to obtain more points in the stress–strain curve (see Table 1). 
Like Dao et al., they determined a representative strain where the dimensionless function does not depend on the strain-
hardening exponent. With the model of Dao et al. extended by Bucaille et al. and Chollacoop et al., accurate properties for 
the tested materials were determined. The model is limited by the C measurement, performed by a polynomial fit, which 
can be more difficult for indentation with very sharp indenters. This difficulty in the calculation of C is due to the friction 
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Table 1
Dao model coefficients as a function of the indenter geometry [21,22,24]. β is the angle between the 
tip and the sample surface.

β εr D3 D2 D1 D0

10◦ 0.017 −2.913 44.023 −122.771 119.991
19.7◦ 0.033 −1.131 13.635 −30.594 29.267
30◦ 0.0537 0.06463 −2.2102 21.589 −28.5741
40◦ 0.082 0.02937 −0.9324 8.4034 −7.532
47.7◦ 0.126 0.02842 −0.648 4.9036 −3.806

Table 2
Kermouche model coefficients as a function of the indenter’s geometry [28].

β ζ1 ζ2 ζ3

10◦ 0.66 0.2 0.22
19.7◦ 0.66 0.216 0.24
30◦ 0.66 0.23 0.255
40◦ 0.66 0.25 0.28
47.7◦ 0.66 0.26 0.29

Fig. 2. Stress–strain curve obtained using the Dao et al. and the Kermouche et al. models with different indenter tip geometries. Dao et al. and Kermouche 
et al. points were determined from numerical simulation of an indentation on a Cu–Zn sample. For a representative strain equal to 0.082, the representative 
stresses obtained with the two models are approximately equal.

between the tip and the sample, which can affect the loading curve. The Indentation Size effect, which means that hard-
ness is not constant for small penetration depths, is the second limit of the C calculation, because it implies that C is not 
constant with penetration [24]. Another important point is that the projected contact area is needed in order to calculate 
the reduced contact modulus E∗

c .
The second model used to calculate the projected contact area was developed by Kermouche et al. It was validated by 

finite-elements simulations and experiments on metallic materials and polymers [28,29]. The model needs prior knowledge 
of the hardness H and the Young modulus E of the material (measured by an indentation test) in order to calculate the 
representative stress and strain:

σr = ζ3 tan(β)H

ζ1 tan(β) − (1 − ζ2)
H
E

(8a)

εr = (1 − ζ2)
σr

E
+ ζ3 tan(β) (8b)

where β is the angle between the tip face and the sample, and ζi are coefficients determined by Kermouche et al., dependent 
on the tip’s geometry (see Table 2). The values of H and E are determined by an indentation test, which means that the 
determination of the projected contact area is needed.

Like in the Dao et al. model, Kermouche et al. determined the representative stress and strain with different indenter 
geometries. An example is shown in Fig. 2, presenting the stress–strain curve determined with the model using a finite-
element simulation of the indentation on a Cu–Zn sample.

The points obtained with these two models follow precisely the stress–strain behavior of the Cu–Zn alloy used in the 
numerical simulation. It can be noticed that representative strains computed with tip angles of 20◦ and 40◦ , respectively, 
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for the models of Dao et al., on the one hand, and of Kermouche et al., on the other hand, are very close. Hence, a new 
equation can be added to the set of equations already available:

σr,K = σr,D (9)

where K corresponds to the Kermouche model and D to the Dao model. If we insert Eq. (8a) into Eq. (7), one can obtain 
the following equation:
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In Eqs. (10a) and (10b), the ζi and Di coefficients are known and presented in Tables 1 and 2, β is given by the tip geometry, 
and C is determined directly by fitting the loading curve. Only the hardness, the reduced contact modulus and the Young 
modulus are not known. The objective is to calculate the projected contact area with the combination of the models. In 
other words, the equation has to contain only one unknown parameter, which is the projected contact area. The reduced 
contact modulus E∗

c is a function of the projected contact area through Eq. (3). The Young modulus depends on the reduced 
contact modulus through Eq. (2), so E depends only on the projected contact area. Finally, the hardness is also dependent 
on the projected contact area through Eq. (1). Consequently, Dao’s and Kermouche’s models can be written as follows:
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Inserting Eqs. (11c)–(11e) into Eqs. (11a) and (11b), the DK (Dao and Kermouche) model is only dependent on the projected 
contact area, given that Ei , ν , νi , Di and ζi , are known and S (stiffness at maximum load), P (maximum load), and C
are measured directly from indentation testing. Using Eq. (1), the material hardness can also be calculated, then the Young 
modulus with Eqs. (2) and (3). An important point has to be considered in Eqs. (11). In order to satisfy the equality in 
Eq. (9), the Dao parameter C has to be determined by an indentation using a tip with β = 40◦ (β being the angle between 
the tip and the sample’s surface), and the parameters S and P , necessary for the Kermouche et al. model, have to be 
determined with an indentation with a Berkovich tip.

3. Experimental application

3.1. Samples

Three smooth samples were tested in the experiment: glass, PMMA, and 100C6 steel. These materials were chosen in 
order to apply the method for different types of materials: the glass sample is supposed to be amorphous and brittle, PMMA 
is a viscoelastic and amorphous material and 100C6 steel exhibits an elastoplastic behavior and a crystalline structure. 
Samples were glued with cyanoacrylate on an aluminum plot.

3.2. Nanoindenter

A nanoindenter XP® (Agilent Technologies) was used for the experiments. The load and displacement resolutions are 
10 nN and 0.5 nm, respectively. A more detailed description of the apparatus is presented in [30]. A Berkovich diamond tip 
(tip defect height h0 = 15 nm approximately, measured with the Loubet method on a fused silica sample [5]) and a diamond 
tip with β = 40◦ (tip defect negligible) were used. For each sample, loading and unloading were performed at constant 
strain rate, with Ṗ/P = 0.03 s−1 [31], except for the PMMA sample, where Ṗ/P = 0.03 s−1 for Berkovich indentation and 
Ṗ/P = 0.07 s−1 for indentations with the sharpest tip [32]. For indentations with the sharpest tip, the CSM method was 
not used in order to avoid oscillation effects in the C calculation [33]. The CSM method was used for indentations with 
Berkovich tip in order to measure the contact stiffness necessary in the Kermouche model. The oscillation frequency and 
the amplitude were 32 Hz and 1 nm respectively. Ten indents were performed on each sample with the two indenter tips.
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Fig. 3. (Color online.) Load–indentation depth for glass (a and c) and PMMA (b and d) samples. a, b) Load–indentation depth measured with a tip where 
β = 40◦ with a polynomial fit to obtain C . c, d) Load–indentation depth curves measured with a Berkovich tip to obtain P and S .

Table 3
Parameters used in the models to calculate the projected contact area and the material’s properties. 
Comparison with values obtained by the Oliver and Pharr model and the Loubet et al. model.

Data PMMA Glass 100C6 steel

P (mN) 450 450 450
S (N/m) 271 341 669 359 1 618 025
C (N/m2) 1.53E+09 2.86E+10 4.39E+10
E∗ Dao and Kermouche (GPa) 5.94 67.95 223.96
E∗ Loubet (GPa) 5.10 72.35 213.01
E∗ Oliver and Pharr (GPa) 5.78 73.70 249.70
H Dao and Kermouche (GPa) 0.273 5.27 7.988
H Loubet (GPa) 0.21 5.77 7.32
H Oliver and Pharr (GPa) 0.27 6.76 9.53
Ac Dao and Kermouche (μm2) 1668.5 85.39 56.33
Ac Loubet (μm2) 2193.07 75.35 63.25
Ac Oliver and Pharr (μm2) 1687.94 65.04 48.34
Poisson ratio ν 0.30 0.30 0.30

4. Results

In Fig. 3 are presented the load–displacement curves obtained on a glass sample and a PMMA sample with the two 
indenter geometries. In Figs. 3a and b, showing the indentation loading curves on glass and PMMA with the sharpest tip, a 
polynomial fit was performed in order to calculate the C coefficient. The fit curve follows exactly the experimental curve, 
which means that the C coefficient can be calculated very precisely. The mean value of C determined from 10 indentations 
for glass and PMMA samples is presented in Table 3. The C value obtained from glass sample is higher than the value 
obtained on the PMMA sample because the glass sample is harder than the PMMA sample. In Figs. 3c and d are presented 
the loading–unloading curves obtained on glass and PMMA samples, for an indentation with the Berkovich tip. For the 
PMMA sample, one can note the ‘nose’ at the beginning of the unloading, which prevents any calculation of the unloading 
stiffness by the static method. The dynamic stiffness determined with the CSM method at maximum load for the two 
samples is given in Table 3. In this table are also presented the elastic modulus, the hardness and the projected contact area 
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Fig. 4. (Color online.) Load–indentation depth curve for a 100C6 sample measured with a tip where β = 40◦ , with a polynomial fit to obtain C .

Fig. 5. 100C6 steel hardness measured with a Berkovich tip as a function of the indentation depth.

determined by the DK model and by the Loubet et al. and the Oliver and Pharr models. For a glass sample, Ac obtained with 
the DK model is closer to Ac obtained with the Loubet et al. model (12% error) in comparison to the value obtained with 
the Oliver and Pharr model (24% error). It is known that the Oliver and Pharr method underestimates the projected contact 
area for materials that do not exhibit strain hardening mechanism, like the glass sample [19,34]. On the PMMA sample, 
the value of Ac obtained with the DK method is very close to that obtained with the Oliver and Pharr method (1% error), 
whereas that obtained by the Loubet et al. model is overestimated by 30%. It is known that PMMA exhibits sink-in during 
indentation and the Oliver and Pharr model models precisely the sink-in behavior, which explains this small difference [11]. 
This method permits to show that the Loubet et al. model and the Oliver and Pharr model calculate the projected contact 
area with enough accuracy only for a certain range of materials. In the following paragraph, the limits of the technique are 
shown and discussed.

5. Limits of the method

In Fig. 4 is presented the loading curve obtained on a 100C6 sample indented by the sharpest tip. The polynomial fit is 
plotted to calculate C . The parabolic fit does not provide a satisfying result when it is applied on the entire curve, leading 
to a bad estimation of load curvature C . Bucaille et al. explain that the friction coefficient is more important for tips having 
high β values and that can affect the load–displacement curve. They also mentioned that the size effect can occur for 
metallic materials, which means that the hardness increases as the indentation depth decreases [24]. For the last point, 
in order to detect any size effect during indentation of the 100C6 sample, the hardness was plotted as a function of the 
indentation depth, the values being calculated with the Oliver and Pharr model and with the Loubet et al. model (Fig. 5). 
With the two methods, the hardness decreases for indentation depths between 50 and 300 nm. At this range of depth, 
tip defects can affect property measurement; however, the reduced elastic modulus measured on this sample (not shown 
in this paper) was constant at this range of depth, indicating that the hardness increase at small depths is predominately 
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Fig. 6. Evolution of C calculated locally as a function of the indentation depth for a 100C6 steel sample.

due to an ISE. To confirm the ISE, the C coefficient was calculated locally on the loading curve and plotted in Fig. 6. One 
can observe that C is constant for indentation depths higher than 1500 nm, showing that we can consider the material 
to be homogeneous only for this range of depths. For lower depths, the C values are increasing as the indentation depth 
decreases. This figure confirms the presence of ISE, leading to difficulties in C value calculation. In order to calculate C
precisely, we determined the average value of C for the depth range where the size effect is negligible, i.e. at depths higher 
than 1500 nm. In Table 3 are shown the properties and the projected contact area determined with the Dao and Kermouche 
model, C being calculated using the mean local value for depths higher than 1500 nm. The values obtained with the DK 
model are closer to the values obtained with the Loubet et al. model (12%) than to the ones calculated using the Oliver 
and Pharr model (14%). Because the literature values of Young’s modulus are very close to that obtained with the Dao and 
Kermouche model, we can consider that the friction coefficient has small influence on the loading curve in our case.

6. Conclusions

A new method to estimate the true projected contact area by indentation testing has been presented. It is based on 
the combination of the Dao et al. model and the Kermouche et al. model, these models used classically to calculate the 
representative stress and strain from indentation parameters. More importantly, the Dao et al. model requires the reduced 
contact modulus and the loading curvature value extracted from an indentation test, and the Kermouche et al. model re-
quires the Young modulus and the hardness of the sample. For a representative strain equal to 0.082, the representative 
stress determined by the two models is approximately the same. Consequently, the two models can be combined, which 
leads to an equation that is dependent only on the projected contact area. Using the parameters measured by nanoindenta-
tion, the projected contact area can be calculated directly, without using the classical models of Oliver and Pharr, or Loubet 
et al. It requires determining the loading curvature C , the load applied and the contact stiffness S . In order to extract these 
parameters, indentations with a Berkovich tip (to extract S and P ) and a tip with β = 40◦ (to extract C ) on the same sample 
have to be performed. The method was first applied on a glass sample and a PMMA sample. The calculation of C , necessary 
for the model, is easily feasible by a simple polynomial fit. However, for a 100C6 steel sample, the polynomial fit was more 
difficult to perform on the loading curve. We show that this phenomenon is mainly caused by the Indentation Size Effect, 
which predicts that hardness increases for small penetration depths, leading to a difficult C estimation, because the ap-
proach proposed here has been developed for homogeneous materials. To bypass this problem, a local calculation of C can 
be performed. We show that for large indentation depths, the ISE becomes negligible, C being constant with depth. Using 
the C value obtained locally, the projected contact area can be calculated with enough accuracy, the values of modulus and 
hardness obtained being close to the literature values.
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