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It is known that an acoustic wave incident on an infinite array of aligned rectangular blocks 
of a different acoustic material exhibits total transmission if certain conditions are met [1]
which relate the unique “intromission” angle of incidence with geometric and material 
properties of the slab. This extraordinary acoustic transmission phenomenon holds for any 
slab thickness, making it analogous to a Brewster effect in optics, and is independent 
of frequency as long as the slab microstructure is sub-wavelength in the length-wise 
direction. Here we show that the enhanced transmission effect is obtained in a slab with 
grating elements oriented obliquely to the slab normal. The dependence of the intromission 
angle θi is given explicitly in terms of the orientation angle. Total transmission is achieved 
at incidence angles ±θi , with a relative phase shift between the transmitted amplitudes 
of the +θi and −θi cases. These effects are shown to follow from explicit formulas for 
the transmission coefficient. In the case of grating elements that are rigid the results 
have direct physical interpretation. The analytical findings are illustrated with full wave 
simulations.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a slab comprised of rigid rectangles arranged periodically to form a comb-like grating of infinite extent, as 
depicted in Fig. 1. D’Aguanno et al. [2] showed that such a “single layer grating” (SLG) with rigid filling fraction f exhibits 
total transmission for an acoustic plane wave incident at intromission angle θi satisfying cos θi = 1 − f . The angle is defined 
relative to the slab normal. For instance, the intromission angle is zero for a grating of vanishingly thin rigid plates, f = 0+; 
this limiting case of θi = 0 is intuitively obvious because the acoustic wave does not interact with an infinitesimally thin 
rigid plate aligned with the acoustic particle motion (even the diffraction effects vanish because the diffraction coefficient 
for parallel incidence on a semi-infinite rigid strip is zero [3]). Now consider the same thin rigid plates rotated through 
angle φ as shown in Fig. 2(a). This oblique grating again “obviously” has intromission angle θi = φ, just like the orthogonal 
grating.

Now consider the same grating but with the orientation of the plates in the grating reversed while the incident wave 
remains the same, Fig. 2(b). Remarkably, the two gratings in Fig. 2 are identical in terms of the magnitudes of the reflection 
and transmission coefficients for all angles of incidence and for all frequencies for which the homogenization approximations 
apply. This equivalence becomes apparent when one realizes that the two gratings present the same effective acoustic 
impedance in the homogenization limit. There is, however, a phase difference between the transmitted waves for the two 
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Fig. 1. (Color online.) A section of an infinite single-layer grating of rigid blocks in a fluid.

Fig. 2. (Color online.) Figure (a) shows a grating of thin rigid strips aligned with the incident plane wave, resulting in perfect transmission. What will 
happen if we reverse the orientation of the slab elements as in (b)?

cases in Figs. 2(a) and (b). These effects, including the cases in Fig. 2, are derived in this paper in the context of a general 
SLG composed of rotated elements.

Extraordinary optical transmission (EOT) through metallic gratings can occur when the openings resonate in Fabry–Perot 
mode, which is well established although very narrow band effect. Broadband EOT, spanning from DC upwards, has been 
recently proposed [4] and realized [5] based on a Brewster angle effect that results from the equivalent long-wavelength 
properties of the grating. Aközbek et al. [6] demonstrated Brewster-like broadband extraordinary optical transmission in a 
thick metal plate with slits as narrow as λ/750. They showed that an order of magnitude larger transmission is obtained for 
very narrow slits compared to the normal-incidence Fabry–Pérot resonance transmission peaks. EOT has also been confirmed 
experimentally for TE and TM waves through subwavelength dielectric gratings in the microwave regime [7].

Brewster angle total transmission is rarely observed for acoustic waves in homogeneous materials. The successful demon-
stration of EOT therefore raised the question of whether the same subwavelength effect can be achieved in acoustics. 
D’Aguanno et al. [2] answered the question in the affirmative, demonstrating theoretically and experimentally an acous-
tic grating that is completely transparent to sound waves. The Brewster-like effect was explained via surface impedance 
matching between the exterior air and the effectively rigid grating. The gaps presented by the spaces between the grating 
elements allows the effective impedance to be designed to produce arbitrary Brewster angle. Subsequent demonstrations of 
extraordinary acoustic transmission (EAT) include Qiu et al. [8] who considered a hybrid grating composed of two dissimilar 
grating elements different from the exterior air. Higher frequency properties of EAT gratings are discussed by Qi et al. [9], 
while Aközbek et al. [10] examine pass and stop-band effects for 1D phononic crystals made from repeated EAT slabs.

The mechanism behind EAT is, as noted by D’Aguanno et al. [2], impedance matching. The grating displays effective 
long-wavelength properties easily estimated for rigid grating elements, which allows tuning the grating porosity to achieve 
the desired intromission angle [2]. Maurel et al. [1] also provide a clear explanation of the phenomenon as impedance 
matching but in the context of acoustics of fluids with anisotropic inertia. They considered more complicated gratings 
comprising fluid elements and geometrical substructure, such as double layer gratings. They showed that the anisotropic 
effective properties of the grating can be accurately predicted using homogenization theory. This opens the door to the 
design of EAT gratings by varying the material properties and the geometrical details. No matter how complicated the design, 
homogenization theory will predict the EAT properties as long as the horizontal substructure periodicity is subwavelength. 
At shorter wavelength the present approach breaks down as dispersive effects come into play. Interesting nonlocal effects 
may be expected, as has been demonstrated for electromagnetic metamaterials comprising slanted inclusions [11]. While 
the geometries considered here involve waveguides of uniform width, tapered waveguides could be considered, as in [12], 
introducing gradients in the effective properties. However, these possibilities are beyond the scope of this paper and remain 
as future areas of study.

The purpose of this paper is to demonstrate EAT effects in non-symmetric gratings, of the type depicted in Fig. 3. We 
consider the general case in which the grating material is an acoustic fluid, the rigid SLG being a limiting case. We use 
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Fig. 3. (Color online.) The single-layer grating of Fig. 1 rotated through angle φ to make a slab that is non-symmetric with respect to the incident angle.

Fig. 4. (Color online.) Two-dimensional configuration for the equivalent uniform slab with anisotropic density.

homogenization theory to replace the grating by an equivalent effective medium with anisotropic density. The transmission 
coefficient of the equivalent uniform slab can then be obtained in closed form in terms of the original parameters, including 
the orientation angle of the oblique grating. Prior to this work EAT has only been considered in the context of symmetric 
gratings, such as in Fig. 1. While Qi et al. [13] provide experimental measurements of the effective index and effective 
impedance of obliquely oriented SLGs as function of wavelength, they do not report EAT effects nor do they provide an-
alytical results for the effective properties. Based on the results of this paper it would be straightforward to estimate the 
effective index and effective impedance of SLGs as shown in Fig. 3.

The outline of the paper is as follows. We begin in Section 2 with a homogeneous model of an acoustic slab with 
anisotropic density, and derive explicit expressions for plane wave reflection and transmission, eqs. (5) and (6). The effec-
tive anisotropic properties are then derived in Section 3 using standard long-wavelength homogenization methods. Several 
limiting cases, including the rigid grating, are discussed in Section 4. Numerical examples illustrating the dependence of 
intromission angle and transmittivity on the slant angle φ are given in Section 5. Conclusions are presented in Section 6.

2. Acoustic transmission through a slab with anisotropic inertia

The exterior acoustic medium has density ρ and sound speed c, with bulk modulus K = ρ c2. The governing acoustic 
equations for the acoustic pressure p and velocity v are

v = (iωρ)−1∇p, p = (iω)−1 K div v (1)

Time harmonic dependence e−iωt is assumed. The acoustic pressure comprises incident, reflected and transmitted plane 
waves as shown in Fig. 4,

p = p0 eik sin θ x2 ×
{(

eik cos θ x1 + Re−ik cos θ x1
)

x1 ≤ 0,

T eik cos θ(x1−b) x1 ≥ b
(2)

where k = ω
c and p0 is a constant. Define for later use the acoustic impedance

Zθ = ρ c

cos θ
(3)

We are interested in conditions for which |T | = 1.
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Fig. 5. (Color online.) A single-layer grating. The grating material is an acoustic fluid of bulk modulus K0, density ρ0, and volume fraction f . A symmetric 
grating is shown on the left. On the right, the elements of the grating are rotated through angle φ to make a slab that is non-symmetric with respect to 
the incident angle θ of Fig. 4.

Consider a uniform slab of thickness b, bulk modulus Ks and inertia tensor which is represented by a 2 × 2 symmetric 
matrix (ρ = ρT) with elements ρi j , i, j = 1, 2. Specific models for anisotropic non-diagonal density tensors are discussed in 
Section 3. The equations of motion within the slab are

v = (iωρ)−1∇p, p = (iω)−1 Ks div v (4)

The transmission and reflection coefficients follow from Appendix A as

T = e
−ikb

ρ12
ρ22

sin θ
(

cos
ωb

cθ

− i

2

( Zθ

Z ′
θ

+ Z ′
θ

Zθ

)
sin

ωb

cθ

)−1
(5a)

R = i

2

( Zθ

Z ′
θ

− Z ′
θ

Zθ

)
sin

ωb

cθ

(
cos

ωb

cθ

− i

2

( Zθ

Z ′
θ

+ Z ′
θ

Zθ

)
sin

ωb

cθ

)−1
(5b)

where

cθ =
( ρ22

detρ

) 1
2
( 1

Ks
− sin2 θ

c2ρ22

)− 1
2
, Z ′

θ =
(detρ

ρ22

)
cθ (6)

The results (5)–(6) had not been previously published. Maurel et al. [1] consider the particular case of aligned inertial and 
slab axes (ρ12 = 0). The case of a normal acoustic fluid in the slab corresponds to ρ11 = ρ22, ρ12 = 0. Note that

R(−θ) = R(θ), |T (−θ)| = |T (θ)| (7)

Thus, as a function of incident angle the reflection coefficient is symmetric about θ = 0, but only the magnitude of the 
transmission coefficient is symmetric. The asymmetry as a function of θ is evident from the relation

T (−θ)

T (θ)
= e

i2kb
ρ12
ρ22

sin θ
(8)

A similar expression for the ratio of transmission coefficients for transmission through an anisotropic dielectric slab was 
derived by Castanié et al. [14, Eqs. (18) to (21)], who also considered propagation through layered anisotropic dielectric 
media. Note that the identity (7)1 for the reflection coefficient is expected based on reciprocity [15].

Equation (5a) implies |T | = 1 when the impedances match,

|T (θi)| = 1 ⇔ Zθ = Z ′
θ (9)

Hence, enhanced acoustic transmittivity occurs if

ρ2 sin2 θi + (detρ) cos2 θi = K

Ks
ρρ22 (10)

The value of θi satisfying this relation is the intromission angle. It is clear from (7)2 that the intromission effect is symmetric 
in the incident angle, i.e. |T (±θi)| = 1.

3. Single-layer gratings as anisotropic inertial slabs

Consider first the symmetric single-layer grating (SLG) of Fig. 5 for which the grating fluid has properties K0, ρ0, and 
volume fraction f ∈ [0, 1]. The effective bulk modulus Ks and density tensor ρ of the slab follow from standard quasi-static 
homogenization, e.g., [1, Eq. (3)], as

1 = f + 1 − f
, ρ =

(
ρ1 0
0 ρ

)
,

1 = f + 1 − f
, ρ2 = f ρ0 + (1 − f )ρ (11)
Ks K0 K 2 ρ1 ρ0 ρ
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Fig. 6. (Color online.) Relative phase of the transmission coefficients for ±θ .

The SLG rotated through angle φ relative to the x1x2 directions as in Fig. 5 has the same effective bulk modulus Ks , while 
the inertia tensor becomes non-diagonal and symmetric, with

ρ =
(

ρ11 ρ12
ρ21 ρ22

)
,

ρ11 = ρ1 cos2 φ + ρ2 sin2 φ,

ρ22 = ρ1 sin2 φ + ρ2 cos2 φ,

ρ12 = (ρ1 − ρ2) sinφ cosφ
(=ρ21

) (12)

Note that ρ11, ρ22 > 0,

ρ12 = − f (1 − f )(ρ − ρ0)
2

f ρ + (1 − f )ρ0
sinφ cosφ ⇒

{
ρ12 < 0 if φ > 0,

ρ12 > 0 if φ < 0,

ρ12 = 0 if φ = 0
(13)

while detρ = ρ1ρ2 and trρ = ρ1 + ρ2 are independent of φ. The relative phase of the transmitted wave for incidence at 
±θ , Eq. (8), becomes, using b = a cosφ,

T (−θ)

T (θ)
= e

−i2ka sin φ sin θ
( ρ2−ρ1
ρ2+ρ1 tan2 φ

)
(14)

The phase difference in (14) between T (θ) and T (−θ) can be understood as follows. First, the term −2ka sin φ sin θ has 
clear geometrical meaning. Referring to Fig. 6, note that k sin θ is the conserved horizontal wavenumber, while a sin φ is 
the horizontal path length, resulting in the phase advance/delay of ±ka sin φ sin θ for incidence at ±θ . The additional factor, 

ρ2−ρ1
ρ2+ρ1 tan2 φ

, which is positive but less than unity on account of the fact that ρ2 > ρ1, arises from acoustic propagation in 
the grating elements. This results in a smaller phase effect than that of the rigid limit (ρ2 
 ρ1). The phase term obviously 
becomes zero in the symmetric limit φ = 0. Note, however, that for the fluid grating the phase also tends to zero as φ → π

2 .
Using the explicit formulae for the anisotropic density tensor, the impedance matching condition (10) becomes

|T (θi)| = 1 ⇔ cos2 θi =
(ρ2−ρ1

ρ cos2 φ + ρ1
ρ

) K
Ks

− 1
ρ1ρ2
ρ2 − 1

(15)

This shows the explicit dependence on the orientation angle φ. In particular, it implies that ∂θi/∂φ > 0 since ρ2 − ρ1 > 0
and ρ1ρ2 > ρ2 for ρ0 �= ρ .

4. Limiting cases and generalizations

The intromission angle for the single-layer grating of Fig. 4 is given by Eq. (15). Here we consider its behavior for some 
limits of the parameters, such as rigid grating elements. The limiting case of φ = 0 was considered by [1], although they do 
not provide a simple full-transmission condition analogous to Eq. (15) with φ = 0.

4.1. Rigid grating elements

If the grating element is much stiffer than the background fluid, then in the limit K/K0 → 0 (15) becomes

|T (θi)| = 1,
K

K0
= 0, ⇔ cos2 θi = (1 − f ) ρ22

ρ − 1
ρ1ρ2
ρ2 − 1

(16)

The case of a fixed rigid grating is obtained in the dual limit of large stiffness and density, i.e.
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Fig. 7. (Color online.) Zigzag structures are SLGs in series with alternating orientations ±φ.

|T (θi)| = 1,
K

K0
= 0,

ρ

ρ0
= 0, ⇔ cos θi = (1 − f ) cosφ (17)

This case, which we call the rigid limit, is of particular interest. It is easily realized if the background acoustic medium is 
air.

In the rigid limit (17) we have (see Eq. (6)) cθ = c cosφ, and the transmission coefficient of (5a) simplifies to

T (θ) = eika sin φ sin θ /
(

cos ka − i

2

( cos θ

cos θi
+ cos θi

cos θ

)
sin ka

)
(18)

Hence,

|T (θ)| = cosγ , |R(θ)| = sinγ , γ = tan−1
(1

2

( cos θ

cos θi
− cos θi

cos θ

)
sin ka

)
(19)

and the relative phase of the transmission coefficients for ±θ is

T (−θ)

T (θ)
= e−i2ka sin φ sin θ (20)

The reason for the phase difference −2ka sin φ sin θ is evident from Fig. 6.

4.2. Transmission at normal incidence: θi = 0

The intromission angle is identically zero if

|T (0)| = 1 ⇔ K

K0
= ρ2

0 − (1 − f )2(ρ0 − ρ)2 cos2 φ

ρρ0 + f (1 − f )(ρ0 − ρ)2 cos2 φ
≤ ρ0

ρ
(21)

This is a rather interesting identity: it indicates that the required impedance ratio 
√

Kρ/K0ρ0 depends on the density 
ratio and the “environmental” parameters f and φ, but not on the relative bulk moduli. If any one of the three conditions 
f = 1, φ = π

2 or ρ0 = ρ holds then Eq. (21) reduces to the expected one-dimensional impedance matching condition 
K0ρ0 = Kρ . However, when f �= 1 and ρ0 �= ρ , Eq. (21) implies that the grating material must have higher impedance than 
the background fluid.

Assume further that full transmission at θi = 0 corresponds to φ = 0, then Eq. (15) (or Eq. (21)) requires

|T (0)| = 1,

φ = 0,

}
⇔ K

K0
= ρ2

0 − (1 − f )2(ρ0 − ρ)2

ρρ0 + f (1 − f )(ρ0 − ρ)2
(22)

Now vary φ, with (22) satisfied, then Eq. (15) becomes

|T (θi)| = 1 ⇔ sin θi =
√

(1 − f )ρ0

f ρ + (1 − f )ρ0

(ρ0 − ρ

ρ0 + ρ

)
sinφ (23)

This provides a possible active model for changing the angular receptivity of the slab by rotating the elements of the 
single-layer grating.

4.3. Zigzag structures

A zigzag structure, as shown in Fig. 7, here means one that is made from layers in series, each layer being a SLG 
with grating elements oriented at φ or −φ. The only difference between adjacent layers is that the effective density ρ12
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changes sign. Let b+ (b−) be the combined thickness of the layers with orientation +φ (−φ), so that the total thickness is 
b = b+ + b− . The transmission coefficient is

T (θ) = e
−ik(b+−b−)

ρ12
ρ22

sin θ
(

cos
ωb

cθ

− i

2

( Zθ

Z ′
θ

+ Z ′
θ

Zθ

)
sin

ωb

cθ

)−1
(24)

the reflection coefficient is given by Eq. (5b), and the other parameters in (24) are as before. The three examples of zigzag 
structures in Fig. 7 all have b+ = b− and therefore T (−θ) = T (θ) in each case.

5. Numerical examples

The examples presented use non-dimensional parameters as far as possible; in particular the frequency is defined by kd. 
The length of the grating elements is a = 20 d, see Fig. 5, and the total slab thickness b depends on the orientation angle 
through b = a cosφ. All results shown were generated with COMSOL using periodic boundary conditions to simulate wave 
transmission through an infinitely periodic structure.

5.1. Rigid grating elements

We begin with a symmetric slab of rigid elements, φ = 0, in Fig. 8. The plots show total pressure for waves incident at 
the intromission angle for two different values of the filling fraction, f = 0.5 and f = 0.75, at four frequencies at or below 
kd = 1. The plots clearly show total transmission for frequencies kd � 1.

As noted above, full transmission through an asymmetric grating of elements oriented at angle φ can be obtained at both 
θi and −θi . In the numerical experiments shown in Fig. 9, we change the direction of rotation of slab elements instead of 
changing the incident direction, i.e., using ±φ instead of ±θ . Fig. 9 shows that the pressure amplitude transmitted through 
the slab for φ is the same as for −φ. The transmitted phases are clearly different; the phase effect is easier to see in Fig. 9
for the example with lower filling fraction. In the limit of zero but still finite filling fraction, f = 0+, the rigid element SLG 
acts like a comb, totally transparent for incidence at θi = ±φ, as illustrated in Fig. 10 with a zoom-in shown in Fig. 11. 
The phase difference between incidence at θi = +φ and φ is most dramatic in this limit of thin rigid grating elements. This 
proves the original assertion about what happens in Fig. 2(b).

As a final example of a grating with rigid elements, Fig. 12 shows the computed reflection and transmission coefficients 
for three different slanted gratings. The intromission angle in each case was chosen to be θi = 60◦ which constrains the 
orientation angle φ and the volume fraction f to satisfy (1 − f ) cos φ = 1

2 , see Eq. (17). Fig. 12 indicates that the transmission 
spectrum does not change significantly as long as the relation between θi , φ and f is obeyed.

5.2. Acoustic grating elements

The material properties of the gratings are selected so that the intromission angle is zero when the grating elements 
are symmetric, i.e. θ0 = 0 for φ = 0, and we consider the change in properties as the elements are subsequently rotated to 
φ > 0. The background acoustic medium is assumed to be water, ρ = 1000 kg/m3, c = 1500 m/s, and K = 2.25 GPa. We 
first consider a denser fluid, ρ0 = 10ρ , at volume fraction f = 0.3, then equation (22) yields K0 = 1.008 GPa, guaranteeing 
that a wave of normal incidence has full transmission for φ = 0◦ . We then vary φ, with all other material parameters fixed, 
to calculate the intromission angle for each φ according to Eq. (23). Fig. 13 shows how the intromission angle changes 
with φ. Notice that φ can be positive or negative so that the gratings can rotate in two directions. The full field shown 
in Fig. 14 illustrates the phase transfer across the SLG. This is clearly more complicated than in the rigid case, where the 
acoustic propagation is along parallel waveguides. The interaction of the two fluids in the SLG is particularly evident in 
Fig. 14(c).

In the previous example, the grating elements were chosen as denser than the background (water) and it was found that 
the grating had to be less stiff (lower bulk modulus) than water. Conversely, if we consider a SLG using a fluid that is lighter 
than the background, the same constraint that the intromission angle is zero for symmetric alignment, θi = 0 at φ = 0, 
requires that the fluid is stiffer than water. For instance, Eq. (22) is satisfied with f = 0.3, ρ0 = 0.45ρ and K0 = 21.29 GPa, 
so that the intromission angle is zero for the symmetric configuration φ = 0. Fig. 15 shows how the intromission angle 
changes with φ for this grating. Fig. 16 show the full field for φ = ±30◦ and φ = ±60◦ . It is instructive to compare these 
results with those for the other fluid in Fig. 14.

It is possible, in principle, to design materials with low density ρ0 < ρ and high stiffness K0 > K . Metal foams, e.g., 
Duocel®aluminum foam, can have very low density ρ0 � ρ and relatively high stiffness, however, the random structure 
usually limits the effective bulk modulus to be less than that of water. Simultaneously ultra-light and ultra-stiff materials 
are obtained using thin lattice structures with ordered periodicity [16]. These materials possess significant shear modulus, 
i.e. the Poisson’s ratio is not close to 1

2 , which implies they support both shear and longitudinal waves. By carefully selecting 
the unit cell one can achieve a one-wave fluid like material with properties ρ0 = ρ and K0 = K of water, specifically known 
as Metal Water [17]. The low shear rigidity is ensured by using very thin members with large flexural compliance. The metal 
water structure, designed to have quasistatic properties of water, also exhibits interesting band structure which makes it a 
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Fig. 8. (Color online.) Total pressure plots at different frequencies for a symmetric (φ = 0) slab of rigid elements. The incident angle is taken to be the 
intromission angle θi = cos−1(1 − f ), where f = 0.5 ⇒ θi = 60◦ in (a) through (d) while f = 0.75 ⇒ θi = 41.4◦ in (e) through (h). The values of kd range 
from 0.25 to 1.0, as indicated.

narrow-band negative index material [18]. The generalization of the metal water structure is a class of metallic pentamode 
materials with low-shear and design specific density and stiffness, which could in principle achieve desired values of ρ0, K0.

6. Conclusions

Our main result is Eq. (15) which gives the intromission angle for the single-layer grating of Fig. 3. While it is known that 
EAT can be understood as impedance matching in the context of acoustics of fluids with anisotropic inertia [1] the present 
results show that this analogy extends further to include asymmetric gratings. The principal axes of the anisotropic inertia 
are not necessarily aligned with the slab axes (Fig. 5) which introduces asymmetry in the phase of the transmitted wave as 
a function of incidence angle ±θ . These seemingly unusual results for total transmission can be easily understood when the 
grating elements are rigid. Thus, any angle of intromission can be obtained with thin rigid elements by orienting them to 
the desired value of θi , a simple comb-like effect. Surprisingly, full transmission is also achieved at incident angle −θi , see 
Fig. 10.

The rigid grating with thin slanted elements illustrates the geometrical acoustics nature of the EAT phenomenon. 
However, the simultaneous EAT effect at orientations ±φ emphasizes that the underlying phenomenon is “geometrical 
impedance matching”. The term geometrical impedance matching is introduced to signify the flux condition across the 
interface, as compared with the phase matching (Snell’s or Descartes’ law) in the transverse direction. Thus, geometrical 
impedance matching leads directly to the identity (17) for the rigid grating. However, one needs a full wave approach in 
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Fig. 9. (Color online.) Total pressure plots for incidence at the intromission angle of a slanted grating of rigid elements, θi = cos−1
(
(1 − f ) cosφ

)
, φ = ±30◦ , 

at frequency kd = 1. Plots (a) and (b) show the full pressure field for filling fraction f = 0.5, while (c) and (d) are for higher filling fraction f = 0.75.

Fig. 10. (Color online.) Wave transmission through a SLG of thin rigid elements (volume fraction f = 0+) oriented at φ = ±60◦ for incidence at the 
intromission angle θi = 60◦ .

Fig. 11. (Color online.) Zoomed-in view of the phase difference in plot (b) of Fig. 10.
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Fig. 12. (Color online.) Full transmission at θi = 60◦ for three different rigid SLGs with elements oriented at φ = 0◦, 30◦ and 60◦ . The solid and dashed 
curves show |T |2 and |R|2, respectively. The black, red, and green curves are for the cases φ = 0◦, ±30◦ and ± 60◦ , respectively. The frequency is kd = 0.25.

Fig. 13. (Color online.) The intromission angle changes with ±φ for an acoustic grating with filling fraction f = 0.3 subject to the constraint that (a) θi = 0◦
for φ = 0. The intromission angle θi in the other cases is: (b) 13.3◦ , (c) 26.3◦ , (d) 38.8◦ , (e) 50.1◦ .

order to arrive at the more general result of Eq. (15) for the intromission angle in the presence of an acoustic fluid grating. 
Despite this, the simplicity of the identity (15) for the intromission angle is remarkable.

Acknowledgements

Suggestions from the reviewers were helpful. Support under ONR MURI Grant No. N000141310631 is gratefully acknowl-
edged.

Appendix A. Solution for an anisotropic inertial slab

The slab properties are bulk modulus Ks and 2 × 2 inertia matrix ρ = ρT. Define the state vector

u =
(

v1
−p

)
(25)
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Fig. 14. (Color online.) Total pressure plots for some configurations from Fig. 13 at frequency kd = 0.25.

Fig. 15. (Color online.) The intromission angle is constrained to be zero for symmetric alignment (φ = 0) for a grating with fluid less dense and stiffer than 
the background, (a). For filling fraction f = 0.3, the grating elements are rotated by angle φ and the intromission angle θi becomes (b) 6.5◦ , (c) 12.5◦ , 
(d) 17.6◦ , (e) 21.4◦ .

Fig. 16. (Color online.) Total pressure plots for some configurations from Fig. 15 at frequency kd = 0.25.
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and consider solutions with constant horizontal phase such that u has the form

u(x1, x2) = U(x1)eik sin θ x2 (26)

Then U(x1) satisfies

d U

d x1
= iωAU where (27)

A = sin θ

c

ρ12

ρ22
I − B, B =

(
0 1

Ks
− sin2 θ

c2ρ22
det ρ
ρ22

0

)
(28)

and I is the identity matrix. Note that the matrix A is independent of the frequency ω.
Define the propagator matrix, M(x), as the solution of

d M(x)

d x
= iωAM with M(0) = I (29)

Note that det M = 1 [19]. The property AT = JAJ where the 2 × 2 matrix J has zeroes on the diagonal and unity off diagonal, 
implies that the Hermitian conjugate satisfies M† = JM−1J and hence M−1(x) = JM†(x)J = M(−x).

We consider slabs with uniform properties in x ∈ [0, b], so that

M(b) = eiωbA (30)

This explicit form of the propagator matrix simplifies, using Eqs. (28) and (30) and the property that c−1
θ B is a square root 

of the identity, to give

M(b) =
(

cos
ωb

cθ

I − i

cθ

sin
ωb

cθ

B
)

e
ikb

ρ12
ρ22

sin θ
(31)

where

cθ = (−det B
)−1/2

(32)

Based on Eqs. (2) and (26),

U(0−) = p0

(
Z−1

θ (1 − R)

−1 − R

)
, U(b + 0) = p0 T

(
Z−1

θ−1

)
(33)

The continuity conditions at x1 = 0 and x1 = b require the normal velocity v1 and the pressure p to be continuous, that is 
U(0+) = U(0−) and U(b − 0) = U(b + 0). Hence, with Mij = Mij(b),

T

(
Z−1

θ−1

)
=

(
M11 M12
M21 M22

)(
Z−1

θ (1 − R)

−1 − R

)
(34)

The transmission and reflection coefficients follow from (34) as

T = 2
(
M11 + M22 + Zθ M12 + Z−1

θ M21
)−1

(35a)

R = 1 − (
M22 + Zθ M12

)
T (35b)

Using the explicit solution for M(b) from (31) and (32) yields (5).
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