
C. R. Mecanique 343 (2015) 670–679
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Acoustic metamaterials and phononic crystals

Dynamic reconfiguration of magneto-elastic lattices

Marshall Schaeffer a,∗, Massimo Ruzzene b

a Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., Atlanta, GA 30332, USA
b George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA 30332, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 March 2015
Accepted 22 June 2015
Available online 16 July 2015

Keywords:
Reconfiguration
Transformation dynamics
Magneto-elastic
Phase transition
Multistable

The dynamic reconfiguration of two-dimensional (2D) magneto-elastic structures is studied 
with the goal of enabling the design of reconfigurable architectured materials. Changes 
in magnetization modify the energy landscape of hexagonal lattices and lead to their 
reconfiguration as a result of the application of a dynamic input. Such reconfiguration 
significantly alters the dynamics of the structure and its mechanical properties. Energy 
landscapes and the dynamics of reconfiguration are analyzed through the detailed study 
of a unit cell and the description of loci of equilibrium within the energy landscape, as 
well as numerical simulations on finite lattices undergoing reconfiguration. Results show 
the occurrence of a transition front propagating within the 2D structures according to a 
triangular pattern bounded by transition bands that separate different orientation domains 
within the structure.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The internal configuration of an architectured structural system is known to have significant effects on its properties, both 
static [1] and dynamic in the context of waves and vibrations [2,3]. In previous studies by the authors [4], magneto-elastic 
lattices are shown to be capable of reconfiguring into a variety of different stable configurations, which exhibit different 
mechanical properties. Changing the properties of structures in this way is of interest for creating novel adaptive structures 
and devices. Systems that can reconfigure to display regions of different configurations, or to feature different orientations 
of anisotropic configurations, can be useful for controlling not only the global but also the local properties of a structure, 
and may find use in applications such as wave steering and focusing. Structures with locally varying properties could also 
be instrumental in creating waveguides that route waves in paths that are determined by the local configuration, similar to 
those in [5].

Effective use of structural reconfigurations requires the detailed analysis of the properties of the lattice in its differ-
ent multi-stable states, along with the characterization of the conditions, parameters and overall process that leads to the 
desired lattice configuration. Changes in structural properties due to static or quasi-static reconfiguration have been in-
vestigated, for example, in [6–10]. However, in order to access a richer set of final configurations and to find paths for 
faster transitions, dynamic lattice reconfigurations should be considered. The specifics of the dynamic reconfiguration can 
determine how certain regions of a structure reconfigure, allowing local property control and grading. A fast rate of recon-
figuration could be valuable in applications intended for protection from short events and shocks that can damage organs, 
electronics, or other delicate objects. The reconfiguration of the structure itself can even be a way of absorbing energy 
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Fig. 1. (Color online.) Schematic of mechanical connectivity between two adjacent particles i and j (a), and particle degrees of freedom (b).

without damaging the protective structure, by redirecting or storing incoming energy within the structure as demonstrated 
by [11].

One dimensional (1D) systems composed of bistable interactions have received attention in terms of their dynamic re-
configuration, including the study of “transition front” propagation, or the rate at which reconfiguration occurs [12–16]. The 
energy profile of bistable interactions, i.e. how the interaction potential varies with the distance between interacting enti-
ties, provides important insight into the paths leading to configurational changes and the initial and final static topologies. 
The ability to shape such profiles could be the primary means by which the dynamic reconfiguration of a structure can 
be designed. Of importance is the identification of energy minima that are associated with equilibrium configurations that 
correspond to different geometries and the relative energetic contents of such minima to estimate the amount of energy 
required for the reconfiguration to take place. While the previously mentioned references focus on more general systems, 
dynamic reconfiguration has also been studied specifically to understand martensitic transformation in shape memory al-
loys, which includes both 1D [17,18] and 2D [19,20] studies.

In contrast to 1D dynamic reconfiguration investigations, the study of 2D systems is still in need of much attention. In 
order to realize reconfigurable devices as suggested previously, the understanding of reconfiguration dynamics in higher 
dimensions is in fact required. Therefore, the focus of this paper is to conduct an initial study of dynamic structural changes 
in 2D structures, using a magneto-elastic hexagonal honeycomb lattice as an example. The energy profile associated with a 
unit cell of the lattice is employed as a means to predict the reconfiguration characteristics. However, in 2D systems, addi-
tional information is required to investigate the spatial extent of the reconfiguration, which leads to non-periodic topologies 
characterized by regions of reconfigured cells whose shape and spatial extent is clearly defined by the lattice parameters and 
by the input energy. These regions are so far investigated and highlighted by the numerical simulations conducted as part 
of this study, and should be better understood and characterized in future investigations. Unit cell analyses and numerical 
experiments presented herein are however expected to provide insights for future modeling and design of 2D dynamically 
reconfigurable structures.

The paper is organized as follows. Following this introduction, a summary of the model of the lattice is provided based on 
prior work by the authors [4]. Unit cell energy profiles are then investigated to identify potential configurations associated 
with energy minima. Next, the numerical simulation approach is described, and results of the simulations are presented and 
discussed. Finally, conclusions and final recommendations are provided.

2. Lattice model description

The magneto-elastic lattices are composed of a periodic layout of magnetized masses connected by axial and torsional 
elastic springs (Fig. 1(a)).1 Particles are of mass m, radius rp, and rotational inertial I . Furthermore, all magnets are charac-
terized by the same magnetization magnitude. Axial and torsional springs all have stiffness ka and kτ respectively. Particles 
motion is described by two translational degrees of freedom and one angle to describe rotation about an axis perpendicular 
to the plane of the lattice. The generalized coordinates for the i-th particle are therefore qi = [xi, yi, θi]T (Fig. 1(b)). Particle-
to-particle interactions include: (1) magnetic interactions, (2) elastic interactions through axial and torsional springs, and 

1 Reprinted from M. Schaeffer and M. Ruzzene, Wave propagation in multistable magneto-elastic lattices, Int. J. Solids Struct. 56–57 (2015) 78–95, copy-
right (2015), with permission from Elsevier.
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(3) dissipation in the form of viscous damping. The modeling approach is described in detail in [4] so simply a summary is 
provided below.

2.1. Magnetic interactions

The permanent magnets in the lattices are modeled as magnetically rigid point dipole moments [21]. The motion of 
the masses remains in the lattice plane and the magnetic dipole moments are perpendicular to the plane of motion. This 
constraint allows simplification of the force between two dipoles, which is given by [22]:

f (m)
ij = 3μ0

4π

mim j

r4
ij

n = ψ(m)

r4
ij

n (1)

where ψ(m) = 3μ0mim j/4π , with μ0 denoting the permeability of free space. Also, mi and m j are the dipole moments of 
particles i and j, rij is the position of j relative to i, n = rij/rij is a unit vector. Since magnetic forces act over an infinite 
distance, every particle in a finite lattice interacts with every other particle magnetically.

2.2. Elastic interactions

The particles are connected by axial springs of stiffness ka and torsional springs of stiffness kτ . A simplified model for 
contact is applied between particles that are closer together than rc = 2rp, where rp is the particle radius, and r0 denotes 
the unreformed length of the springs. The contact stiffness between two particles is proportional to the stiffness ka through 
a parameter γ > 0. When the contact condition is satisfied, i.e. two particles are less than a distance rc apart, a linear axial 
spring with a stiffness of γ ka is placed between the contacting particles. Thus the potential energy associated with the 
contact between particles i and j is Uij = 1

2 γ ka(rc − rij)
2 when the particles are in contact (i.e. for rij ≤ rc), and Uij = 0

when rij > rc. This simplified contact model is essential to the existence of multistable magneto-elastic configurations as it 
provides an equilibrium position when magnets are in attraction.

2.3. Dissipative interactions

Dissipation in the model is introduced in the form of viscous interactions. The value ca is the damping coefficient 
associated with the rate of deformation of the axial springs. The damping associated with the rate of deformation of the 
contact interactions is βca, where β > 0 defines the damping coefficient during contact between particles relative to ca. 
Thus the dissipative force between particles is f ij = βcaṙijn when rij ≤ rc, and f ij = caṙijn for rij > rc. A similar definition 
is considered for dissipation associated with the deformation of the torsional springs, with cτ defining the corresponding 
damping coefficient.

2.4. Energy functional and governing equations

The total energy stored by the lattice Esys is given by the sum of the kinetic energy T and the potential energy U :

Esys =
N∑

n=1

Tn + Un (2)

where n = 1, . . . , N identifies all the particles in the lattice.
The set of governing equations describing the behavior of each particle and its interactions with connected units can be 

derived by the application of Lagrange’s equations. The equation governing the motion of the i-th particle can be generally 
expressed as [4]:

M i q̈i +
J∑

j

[
C j(q j)q̇ j + K j(q j)q j

] = f (m)
i (qi, . . . ,qm, . . . ,qM) (3)

where qi ∈R
3×1 is the vector of the generalized coordinates, while M i, C j(q j), K j(q j) ∈R

3×3 are mass, damping and equiv-
alent stiffness matrices that describe inertial, dissipative and mechanical interactions of the particles with its J mechanically 
connected neighbors, while, f (m)

i ∈ R
3×1 is the generalized force vector describing the magnetic interactions with the M

magnetically connected particles.

3. Results

3.1. Analysis of equilibrium configurations

Because of magnetic interactions, the lattice can take different stable configurations, which correspond to different values 
of the angle θ (Fig. 2). When magnetized in the pattern shown (blue and red circles denote opposite magnetic polarizations), 
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Fig. 2. (Color online.) Hexagonal (a) and re-entrant (c) lattices as two stable periodic equilibrium configurations. The angle θ describes the transition from 
one to the other and defines intermediate configurations (b). Red and blue circles denote magnets polarized into and out of the page respectively. Black 
lines represent elastic connections.

Fig. 3. (Color online.) Unit cell of the hexagonal lattice, lattice vectors, and main geometric parameters.

the hexagonal lattice (Fig. 2(a)) may reconfigure in stable configurations corresponding to various values of the internal angle 
θ , and may evolve into the re-entrant lattices of Fig. 2(c).

To understand which local configurations are possible, it is instructive to consider the unit cell of Fig. 3 as representative 
of an infinite, periodic lattice. This unit cell properly describes both regular hexagonal and re-entrant geometries as defined 
by the lattice vectors d1 and d2. The total energy for a unit cell E is given by the sum of the kinetic and potential energy:

E =
E∑

e=1

Te + Ue (4)

where e = 1, . . . , E identifies the particles belonging to the unit cell. Local minima of this energy functional, restricted to 
the time constant terms, describe stable, periodic lattices [23]. These minima can be found through a Quasi-Newton opti-
mization search algorithm [24]. The minimization problem at the unit cell level is formulated by considering as unknowns 
the generalized coordinates q of the particle inside the unit cell, i.e. the red particle in Fig. 3, and the lattice vectors d1, d2. 
The resulting optimization problem is thus expressed as:

min
u

E(u) (5)

where u = [q, d1, d2]. The optimization procedure provides the geometry of the unit cell, which defines the internal angle θ , 
and the associated energy E for a given set of lattice parameters, i.e. ka, kτ , ψ(m) , etc. Practically, this problem is solved by 
imposing the angle θ and then looking for the geometrical configuration associated with a stable equilibrium configuration. 
The solution of the nonlinear system of equations described by Eq. (5) is simplified by the following geometrical constraints: 
(1) the center red particle can only move along the horizontal center line of the unit cell which is defined by the vector 
resultant d1 + d2, and (2) the two lattice vectors are of equal magnitude, i.e. d1 = d2. These two constraints define θ and 
enforce the unit cell symmetry about its horizontal center line.

Equilibrium configurations are found for assigned values of θ ∈ [−20◦, +35◦] and for different magnetization levels. 
The loci of the corresponding equilibrium configurations are shown in Fig. 4 for three levels of magnetizations. The plots 
present the change in unit cell potential energy �U at equilibrium relative to the regular hexagonal unmagnetized case 
as a function of the imposed value of θ . In the plot of Fig. 4 and in the remainder of the paper, unit cell energy and 
magnetization parameter are respectively normalized as follows [4]:

�Ē = 2�U

kar2
0

(6)

where the denominator corresponds to the total energy stored by the axial spring when it is fully compressed and there is 
no contact (i.e. rij = 0, and γ = 0), with r0 denoting the undeformed length of the axial springs, and

ψ̄(m) = ψ(m)

kar5
0

= f (m)(rij = r0)

kar0
(7)

which defines the ratio of the magnetic force at rij = r0 to the force required to fully compress the axial spring in the 
absence of contact, i.e. kar0. Hence, ψ̄(m) provides a comparison of the strength of the magnetic interactions relative the 
axial spring restoring force.
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Fig. 4. (Color online.) Equilibrium loci for the unit cell as a function of internal angle θ : ψ̄(m) = 0 (black −), ψ̄(m) = 0.02 (red −−), and ψ̄(m) = 0.05
(blue ·−) (a), and 10× zoom for detailed view in the θ > 0 range (b).

The magnetization levels considered in Fig. 4 are ψ̄(m) = 0, 0.02, 0.05, while the lattice is defined by the follow-
ing parameters: γ = 39, rc = 0.5, ca/m = 0.4 s−1, cτ /(mr2

0) = 0 s−1, β = 50, I/(mr2
0) = 1/32, ω0 = √

ka/m = 1 rad/s, 
ωr = √

kτ /I = √
1/2 rad/s. In Fig. 4, the curve corresponding to the unmagnetized case, (ψ̄(m) = 0) is continuous, with 

a noticeable slope discontinuity near θ = −15◦ which corresponds to the initial contact between particles. Of note is the 
fact that the initial, regular hexagonal case θ = 30◦ is the most energetically favorable configuration, which therefore indi-
cates that a lattice perturbed from this initial configuration is likely to return to it without undergoing any reconfiguration. 
The energetic advantage of this initial configuration is clearly shown in the detailed plot of Fig. 4(b). Thus, configurations 
with re-entrant angle and contact would require additional energy to be provided for the system to evolve into them from 
an initial configuration of θ = 30◦ . The magnetized cases, in contrast, have a significantly different behavior as indicated by 
the discontinuous red and blue dashed lines in Fig. 4. The range for θ > 0 looks essentially identical to the case for ψ̄(m) = 0, 
while re-entrant magnetized configurations are characterized by equilibrium topologies associated with significantly lower 
energy levels. This indicates that the magnetized lattices, if provided enough energy in the form of external perturbations, 
can indeed evolve and transition to a different stable equilibrium topologies with θ < 0. The amounts of energy that enable 
such a transition cannot be directly estimated from the curves in Fig. 4 as the dynamic terms associated with inertias and 
dissipation need to be accounted for in order to evaluate the transition through a saddle point in the energy profile, which 
is here not shown and not directly estimated. As expected, the energetic levels of the re-entrant equilibrium configurations 
for the magnetized lattices are lower for increasing magnetization levels. This is consistent with the fact that the mag-
nets are all arranged in attraction due to their alternate polarization distributions. One may consider cases where repulsive 
configurations are present, which would lead to different topologies and periodic lay-outs defined by the distributions of 
magnetic polarizations.

The next section illustrates how these investigations can aid the interpretation of the dynamic behavior of the considered 
class of lattices and potentially inform their design for multi-stability.

3.2. Dynamic reconfiguration

To gather information about how lattice magnetization can affect the transformation of the 2D magneto-elastic lattice, 
numerical simulations are performed by integrating the equations of motion (Eq. (3)) in time. A finite lattice is considered 
with a number of cells chosen so that boundary effects can have minimum influence on the transient behavior of the central 
portion of the lattice. The initial configuration for the finite lattice is determined by imposing an initial angle θ = 30◦ and 
determining the lattice vectors as a function of the applied magnetization levels, and assuming that all springs are at rest 
when the lattice is in the initial regular hexagonal configuration in the absence of magnetization. Solution of the equilibrium 
configurations through minimization of the energy function for the entire finite lattice defines the initial geometry. Such 
geometry may be slightly different in the presence of magnetization, due to the magnetic attraction that leads to small 
changes in the lattice vectors. Such changes, which are accounted for in the simulations, are however too small to be 
noticeable from the graphical representation of the lattice, given the small magnetization levels considered and the forces 
that are only a few percent of the magnitude of the spring restoring forces. Once the initial equilibrium configuration is 
identified, boundary conditions are applied to enforce the stability of the lattice and to avoid rigid body motions. The choice 
of the equilibrium conditions are based on the choice of enforcing symmetry along the mid horizontal line under an equally 
symmetric load distribution, which in this case is a horizontal point force applied at the middle point of the left vertical 
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Fig. 5. (Color online.) Numerical simulation setup for finite lattice. Black lines represent axial springs and black dots represent magnetized masses. Green 
“×”s denote constraint of horizontal displacements, and blue “+”s denote constraint of vertical motion. The dashed red lines show a unit cell for which 
energy is plotted in Fig. 7.

boundary. The selected boundary conditions are pins constraining horizontal and vertical displacements along the vertical 
right boundary, and roller-type constraints along the top and bottom edges to constrain only the vertical displacements. 
Along all boundaries, rotations remain unconstrained. A schematic of the finite lattice with point of loading and boundary 
conditions is shown in Fig. 5.

All simulations are conducted by applying a force varying in time as a rectangular pulse at the location shown. Pulse 
duration and amplitude are chosen empirically to be sufficient to induce transition in the magnetized cases. The energy 
associated with the pulse is sufficient to compensate for the energy needed to transition from the initial stable configuration 
to another in the case of multi-stable layouts. Such energy must overcome all kinetic contributions and dissipation terms. All 
simulations consider a pulse width of 0.08π s and an amplitude F0 = 6kar0. The response of the three different structures is 
presented in Fig. 6. In the unmagnetized case, this pulse perturbs the lattice, but it does not cause its re-configuration, since 
upon removal of the force the lattice returns to its initial configuration, which is the most energetically favorable. As a result 
no transition occurs in the lattice, as shown in Fig. 6(c). For ψ̄(m) = 0.02 the system becomes multistable. The re-entrant 
configuration has a lower energy. Therefore, energy will be released into the lattice during the transformation, with the 
potential to aid in further reconfiguration. Given the 2D geometry of the lattice, the energy associated with the input force 
decays with the distance from the point of application due to geometrical spreading. This leads to the re-configuration to be 
only observed over a limited region of the lattice, within which the cells receive sufficient energy to transition to the lower 
energy states corresponding to the re-entrant configuration (Fig. 6(d–f)). For a higher magnetization, i.e. ψ̄(m) = 0.05, the 
entire lattice reconfigures by the end of the simulations due to the lower energetic level observed at the unit cell level for 
this magnetization (Fig. 6(g–h). The study of the dynamic behavior of the lattice can also be observed in terms of the energy 
within a unit cell. Specifically, the cell highlighted by the red dashed line in Fig. 5 is observed at various instants of time 
during the simulations. These variations are overlaid on the equilibrium curves for the corresponding magnetization levels 
in Fig. 7. The resulting plots show the time evolution of the trajectory of the unit cell configuration and its energy as black 
dots, while the minimum energy curve is the solid red curve. Each black dot shows the energy at an instant, evenly spaced 
in time, and the red curves are the curves of Fig. 4 without the shift. The plots illustrate how such configurations evolve 
dynamically from the initial configuration to a final. All the simulations begin at the local minimum at θ = 30

◦
, which 

is the hexagonal lattice configuration. Then the cell energy increases due to the applied force, and through the dynamics 
of the structure it oscillates about and progresses to its final local energy minimum. Such oscillations are shown in the 
inset of the figures for better clarity. Note that all energy trajectory points are above the red curve for all intermediate 
dynamic configurations, which illustrates how the curve correctly provides a lower bound for the energy content of the 
unit cell under consideration. In the absence of magnetization (Fig. 7(a)) the unit cell undergoes significant distortions 
due to the forcing as illustrated by the large variations of the internal angle θ , which temporarily reaches negative values, 
but it returns to oscillate around the initial configuration. This is because there is no other equilibrium position for it to 
stop at. The magnetized cases shown in Fig. 7(b, c) clearly illustrate the transition of the unit cell energy from the initial 
configuration at θ = 30

◦
to the re-entrant state near θ = −15

◦
, which is the point of arrival upon removal of the force and 

the free motion of the lattice.
Returning to Fig. 6, it is worth noting that the pattern of reconfiguration is not uniform and appears to be character-

ized by a pattern which is common to both magnetization cases. The results seem to suggest the existence of a triangular 
transition front that does not propagate uniformly within the lattice. The pattern of propagation of this front may be af-
fected by the underlying isotropy, or lack thereof, of the lattice, which in turn is determined by the unit cell geometry. 
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Fig. 6. Snapshots of deformed configuration of the lattices observed during dynamic simulations: ψ̄(m) = 0 (a–c), ψ̄(m) = 0.02 (d–f), and ψ̄(m) = 0.05 (g–i).

This aspect certainly deserves further investigation as it may have significant implications for the design of multi-stable 
lattices with desirable transition front propagation characteristics. Of note is also the fact that the energy profile of the 
ψ̄(m) = 0.05 structure allows faster reconfiguration for the same forcing, which is observed in comparing Fig. 6(d–e) and 
Fig. 6(g–h). This is likely because more energy is available to be converted into kinetic energy. The final configuration of the 
ψ̄(m) = 0.05 case (Fig. 6(i)) is much different than the initial configuration and the final configuration of the ψ̄(m) = 0.02
case. It has a much higher density and is composed entirely of anisotropic cells. Three sub-regions of re-entrant cells 
are separated by two bands of cells oriented approximately perpendicularly to the others. These bands can be denoted 
as “transition bands” [4]. The transition bands are the result of the dynamic reconfiguration of the lattice, and different 
forcing has been observed to produce different numbers and positions of transition bands. The local geometric variations 
seen in the transition bands affect the propagation of waves and are expected to aid in wave steering and energy absorp-
tion.

Finally, in simulating the collapse of magneto-elastic lattices such as those presented here it is observed that the 
damping characteristics of the system can greatly affect the dynamics of the system, which can ultimately change the 
final configuration. For the aforementioned study, the damping was all kept constant for simplicity, but if structures 
such as these are to be dynamically reconfigured in a predictable way, the effect of damping must be taken into ac-
count and properly characterized. For example, increasing the contact damping parameter β helps prevent overshoot-
ing when particles come into contact near their secondary stable position. To illustrate this, β is reduced to 5 from 
50 for the ψ̄(m) = 0.02 case and the simulation is repeated. Shown in Fig. 8(a–c), it is clear that the change in β

does not allow some of the particle pairs to remain in contact. Instead, they bounce out of the local energy mini-
mum and the final configuration has only one collapsed cell. It has also been observed that increasing the torsional 
damping cτ allows the system to better distribute the applied force transversely, similar to increasing the viscosity of 
a fluid. For reference, in Fig. 6 there is no torsional damping. To contrast this, simulations of the ψ̄(m) = 0.02 case 
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Fig. 7. (Color online.) Normalized potential energy Ē of the unit cell highlighted in Fig. 5 for the three simulations discussed shown as the cell exhibits 
different values of θ during deformation.

with cτ /(mr2
0) = 0.05 s−1 and 0.50 s−1 were run. The first case (Fig. 8(d–f)) shows deformation spread more evenly 

across the left side of the structure than in Fig. 6(d–f) and results in only 3 collapsed cells in response to the forcing 
instead of 6. The second case (Fig. 8(g–i)) shows that with sufficient torsional damping the applied force will be dis-
tributed and dissipated so well that no reconfiguration can occur under the applied load. These 3 examples are merely 
an example of how reconfiguration can be further tailored through damping, and this aspect requires further investiga-
tion.

4. Conclusion

The dynamic reconfiguration of 2D multistable magneto-elastic structures is shown to be dependent on the magnetiza-
tion of the lattice. Varying magnetization while keeping forcing constant can control whether or not reconfiguration occurs, 
the rate at which a structure reconfigures, and the final configuration. This dependence is the result of magnetization affect-
ing the minimum energy required to transition and the energy released due to the hexagonal to re-entrant reconfiguration. 
Geometrical spreading and lattice isotropy also determine the shape of a transition front, which seems to occur according 
to repeatable pattern. This and the prediction of the final configuration of the structure is of greatest interest to the authors 
due to the implications it has for producing structures that can adapt their functions and properties through reconfiguration. 
The information presented here provides insight into the ways in which 2D magneto-elastic structural reconfiguration can 
be controlled. This study motivates future investigations on the analysis of transition paths and final configurations that will 
aid the design of reconfigurable architectured materials and devices.
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Fig. 8. Snapshots of the lattices with ψ̄(m) = 0.02 observed during dynamic simulations with different damping parameters: β = 5 (a–c), cτ /(mr2
0) = 0.05 s−1

(d–f), and cτ /(mr2
0) = 0.50 s−1 (g–i). Other lattice parameters are left unchanged.
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