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One studies the structure of 2D symmetric fourth-order tensors, i.e. having both minor and 
major indicial symmetries. Verchery polar decomposition is rewritten in a tensorial form 
entitled Tensorial Polar Decomposition. The main result is that any 2D symmetric fourth-
order tensor can be written in terms of second-order tensors only in a decomposition 
that makes explicitly appear invariants and symmetry classes. The link with harmonic 
decomposition is made thanks to Kelvin decomposition of its harmonic term.
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r é s u m é

On étudie la structure des tenseurs 2D symétriques d’ordre 4, c’est-à-dire : ayant aussi 
bien la symétrie indicielle mineure que la symétrie majeure. La décomposition polaire de 
Verchery est réécrite sous forme tensorielle nommée décomposition polaire tensorielle. Le 
résultat principal est que tout tenseur 2D symétrique d’ordre 4 peut s’écrire à l’aide de 
tenseurs d’ordre 2 uniquement dans une décomposition faisant apparaître explicitement 
les invariants et les classes de symétrie. Le lien avec la décomposition harmonique est fait 
en utilisant la décomposition de Kelvin de son terme harmonique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

The structure of 3D fourth-order elasticity tensor has been intensively studied since 19th-century controversy on the 
number of independent elasticity constants. Major and minor symmetries reduce to 21 the number of material parameters 
(symmetric tensors T referred to as multi-constant tensors), when an elasticity tensor having all Cauchy indicial symmetries 
Ti jkl = Tikjl only has 15 material parameters (supersymmetric or rari-constant tensors).

A well-known tool for the study of symmetry classes is the isomorphic harmonic decomposition 2H0 ⊕ 2H2 ⊕ H4 of 
symmetric tensors space [1–4], defining a scalar (real) space as H0, second-order harmonic tensors h ∈ H2 as traceless 
(deviatoric, 

∑
k hkk = 0) symmetric tensors and fourth-order harmonic tensors H ∈ H4 as traceless supersymmetric/rari-
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constant tensors (Hi jkl = Hikjl , 
∑

k Hkki j = ∑
k Hkikj = 0). In other words, any symmetric tensor T, such as a triclinic elasticity 

tensor, can be represented by two Lamé isotropic constants ∈ H0, by two second-order harmonic tensors ∈ H2 and by one 
fourth-order harmonic tensor ∈ H4.

In 2D, some simplifications arise as scalar expressions for the components Ti jkl(θ) of symmetric tensor T (having both 
minor and major symmetries) may be derived by making explicitly appear the dependency upon frame angle θ [5] and 
upon invariants [6–9]. Theses expressions do not have a complete tensorial counterpart in the literature [10].

In the present note, we therefore propose a tensorial rewriting and an associated interpretation of Verchery polar decom-
position for 2D fourth-order tensors with both minor and major indicial symmetries. It is shown in Section 2 that any 2D 
symmetric tensor T (resp. any 2D harmonic fourth-order tensor H ∈ H4(2D)) can be expressed by means of 2 scalar invari-
ants and of 2 second-order deviatoric tensors ∈ H2(2D) (respectively of only one second-order deviatoric tensor h0 ∈ H2(2D)). 
The link with harmonic decomposition is made in Section 4. The general tensorial expression of harmonic elements ∈ H4(2D)

is retrieved in Section 5 by the use of the Kelvin decomposition.
Tensorial products ⊗, ⊗, ⊗ will be used. They are defined as follows: (X⊗Y)i jkl = XikY jl , (X⊗Y)i jkl = XilY jk ,

X⊗Y = 1
2 (X⊗Y + X⊗Y).

1. 2D quadratic form using the polar formalism

Let us consider any 2D fourth-order tensor T with minor and major symmetries. In the polar formalism [6,7], five 
invariants are defined; four out of them are elastic moduli (t0, t1, r0, r1), and the last one is the angular difference ϕ0 − ϕ1
(each ϕn is not an invariant by itself, see the discussion on joint invariant at the end of Section 2). A basic result of the 
polar formalism is the expression of the Cartesian components of T in terms of polar parameters, in a frame rotated of an 
angle θ :

T1111(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) + 4r1 cos 2 (ϕ1 − θ)

T1112(θ) = r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ)

T1122(θ) = −t0 + 2t1 − r0 cos 4 (ϕ0 − θ)

T1212(θ) = t0 − r0 cos 4 (ϕ0 − θ)

T1222(θ) = −r0 sin 4 (ϕ0 − θ) + 2r1 sin 2 (ϕ1 − θ)

T2222(θ) = t0 + 2t1 + r0 cos 4 (ϕ0 − θ) − 4r1 cos 2 (ϕ1 − θ) (1)

t0 and t1 terms are frame independent (they define the isotropic part of T from a generalization of Lamé constants to 
anisotropy), r1 terms rotates in cos 2 (ϕ1 − θ) and sin 2 (ϕ1 − θ) as second-order tensors do (Eq. (2)), the r0 term rotates 
twice more in cos 4 (ϕ0 − θ) and sin 4 (ϕ0 − θ). In a given frame θ , the knowledge of the six independent coefficients of any 
2D symmetric tensor T is equivalent to the knowledge of the five invariants (t0, t1, r0, r1, ϕ0 − ϕ1) and of one angle, either 
ϕ0 − θ or ϕ1 − θ .

Still in 2D, a general expression for any symmetric second-order tensor s, making appear explicitly frame angle θ , is

s = sm1 + s′ = sm1 + seq

[
cos 2(ϕ − θ)) sin 2(ϕ − θ)

sin 2(ϕ − θ) − cos 2(ϕ − θ)

]
with

{
sm = 1

2 tr s

seq =
√

1
2 s′ : s′ (2)

with first (mean) and second (2D von Mises) invariants defined as sm and seq and where ϕ is the orientation of principal 
basis of s (it is not an invariant of s). The expression of the associated quadratic form is:

1

2
s : T : s = 2t0s2

eq + 4t1s2
m + 2r0s2

eq cos 4 (ϕ0 − ϕ) + 8r1smseq cos 2 (ϕ1 − ϕ) (3)

Explicit formulae giving polar invariants as a function of components Ti jkl can be found in [7].

2. Proposed Tensorial Polar Decomposition

Introducing the two second-order deviatoric tensors R0, R1,

R0 = R′
0 =

[
cos 2(ϕ0 − θ) sin 2(ϕ0 − θ)

sin 2(ϕ0 − θ) − cos 2(ϕ0 − θ)

]
R1 = R′

1 =
[

cos 2(ϕ1 − θ) sin 2(ϕ1 − θ)

sin 2(ϕ1 − θ) − cos 2(ϕ1 − θ)

]
(4)

of 2D von Mises equivalent norm R0 eq = R1 eq = 1, and of principal direction ϕ0, ϕ1, of course possibly different from 
principal direction ϕ of tensor s. One has first equalities concerning r1-term,

(s : R′ ) tr s = tr(s · R′ · s) = 4smseq cos 2 (ϕ1 − ϕ) (5)
1 1
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From (s : R′
0)

2 = 4s2
eq cos2 2(ϕ0 − ϕ) = 2s2

eq (1 + cos 4(ϕ0 − ϕ)) and 2s2
eq = s′ : s′ second equality concerning r0-term is:

2r0s2
eq cos 4 (ϕ0 − ϕ) = r0

[(
s : R′

0

)2 − s′ : s′] (6)

The quadratic form (3) can therefore be rewritten into the following intrinsic form

1

2
s : T : s = t0 s′ : s′ + t1 (tr s)2 + r0

[(
s : R′

0

)2 − s′ : s′] + 2r1 tr
(
s · R′

1 · s
)

(7)

From the last equation, the intrinsic form of the polar decomposition of a symmetric fourth-order tensor T is obtained in 
terms of polar invariants t0, t1, r0 and r1 and of the two second-order deviatoric tensors R′

0 and R′
1,

T = 2t0J+ 2t11 ⊗ 1 + 2r0
[
R′

0 ⊗ R′
0 − J

] + 2r1
(
1 ⊗ R′

1 + R′
1 ⊗ 1

)
(8)

It is equivalent in the present 2D case to

T = 2t0J+ 2t11 ⊗ 1 + 2r0
[
R′

0 ⊗ R′
0 − J

] + 2r1
(
1 ⊗ R′

1 + R′
1 ⊗ 1

)
(9)

thanks to the mathematical property (5) valid ∀s, which implies:

1 ⊗ R′
1 + R′

1 ⊗ 1 = 1 ⊗ R′
1 + R′

1 ⊗ 1 (10)

Eq. (10) is not intrinsic to tensorial products, it stands only in 2D. The tensor J = I − 1
2 1 ⊗ 1 (defined here in 2D) takes the 

deviatoric part of any second-order tensor X (i.e. J : X = X′).
Equations (8)–(9) define the Tensorial Polar Decomposition of any 2D tensor T having both minor and major symmetries. 

As both r0- and r1-terms are found rari-constant, the rari-constancy Ti jkl = Tikjl amounts to t0 = t1.
Note that joint invariant R′

0 : R′
1 reads

R′
0 : R′

1 = 2 cos 2 (ϕ0 − ϕ1) (11)

It is an invariant of tensor T, as is the polar angular invariant ϕ0 − ϕ1.
The intrinsic form of the polar decomposition makes explicitly appear polar moduli and angles, therefore the material 

symmetries, including ordinary orthotropies ϕ0 −ϕ1 = k π4 , k ∈ {0, 1} [7]. For instance, if T is a 2D elasticity tensor, isotropy 
is r0 = r1 = 0, the square symmetry is r1 = 0, the r0-orthotropy is r0 = 0, the ordinary orthotropy, with k = 0 is R′

0 = R′
1 and 

the ordinary orthotropy with k = 1 is R′
0 : R′

1 = 0.

3. Orthogonality of generators

Tensorial Polar Decomposition (9) can be recast as the sum of polar moduli 2gn times generators G(n) , which are fourth-
order tensors (factors 2 appear for consistency with original Verchery work, polar moduli gn standing either for tn or for rn),

T =
3∑
0

2gnG
(n) =

2∑
1

2tnG
(n)
t +

2∑
1

2rnG
(n)
r (12)

Fourth-order generator tensors G(n) are of two kinds: the G(n)
t are definite positive and do not depend upon frame orienta-

tion θ , while the G(n)
r = G

(n)
r (θ) are frame dependent:

G
(0)
t = J , G

(1)
t = 1 ⊗ 1 , G

(0)
r = R′

0 ⊗ R′
0 − J , G

(1)
r = 1 ⊗ R′

1 + R′
1 ⊗ 1 (13)

The generators are orthogonal with respect to the scalar product :: as

G
(n) :: G(m) =

2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

G(n)

i jkl G(m)

i jkl = 0 ∀ m �= n (14)

They all have a constant norm, frame independent, as

G
(0)
t :: G(0)

t = 2 G
(1)
t :: G(1)

t = 4 G
(0)
r :: G(0)

r = 2 G
(1)
r :: G(1)

r = 8 (15)

4. Link with harmonic decomposition

In 3D there are only two independent traces d = tr12 T = tr34 T (of components 
∑3

k=1 Tkki j) and v = tr13 T = tr23 T =
tr14 T = tr24 T (of components 

∑3
k=1 Tkikj) for the symmetric tensor T. The symmetric second-order tensor d is dilatation 

tensor, of deviatoric part d′ , the symmetric second-order tensor v is the Voigt tensor, of deviatoric part v′ . The 3D harmonic 
decomposition 2H0 ⊕ 2H2 ⊕H4 of fourth-order tensor vector space reads then [2–4]:

T = λ1 ⊗ 1 + 2μ1⊗1 + 1 ⊗ h1 + h1 ⊗ 1 + 1⊗h2 + h2⊗1 + 1⊗h2 + h2⊗1 +H (16)
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or in an equivalent manner

T = λ1 ⊗ 1 + 2μ I+ 1 ⊗ h1 + h1 ⊗ 1 + 2
(
1⊗h2 + h2⊗1

) +H (17)

with as constants λ = 1
30 (4 tr d − 2 tr v) and μ = 1

30 (3 tr v − tr d), as traceless symmetric second-order tensor h1 = h′
1 =

1
7 (5d′ − 4v′) ∈ H2 and h2 = h′

2 = 1
7 (3v′ − d′) ∈H2 and as traceless rari-constant tensor H ∈ H4.

In 2D (see [10]), in a consistent manner with mathematical property (10) and 2D equality v′ = d′ , if one still sets 
d = tr12 T, v = tr13 T of components dij = ∑2

k=1 Tkki j and vij = ∑2
k=1 Tkikj , the harmonic decomposition of fourth-order 

tensor vector space reads 2H0 ⊕H2(2D) ⊕H4(2D) or

T = λ1 ⊗ 1 + 2μ I+ 1 ⊗ h + h ⊗ 1 +H (18)

with as 2D constants λ = 1
2 (tr d − tr v) and μ = 1

2 (2 tr v − tr d), as 2D the harmonic tensors h = d′/2 = v′/2 ∈ H2(2D) and 
H ∈ H4(2D) . One easily recognizes the constant and linear terms of Tensorial Polar Decomposition (9), using I = J + 1

2 1 ⊗ 1, 
with

t0 = μ, t1 = λ + μ

2
, 2r1 = heq , 2r1R′

1 = h (19)

The harmonic H4(2D)-term is given in explicit form in Section 2 thanks to polar decomposition by means of an extra 
traceless second-order tensor h0 = h′

0 = √
2r0 R′

0 ∈ H2(2D) as

H = 2r0
[
R′

0 ⊗ R′
0 − J

] = h0 ⊗ h0 − 1

2
h0 : h0 J tr12 H = tr13 H = 0 (20)

This shows that the Tensorial Polar Decomposition of 2D symmetric fourth-order tensors is the direct sum 2H0 ⊕ 2H2(2D) .
We propose in next section to use the Kelvin decomposition in order to derive the explicit r0-form of H and to prove 

that r0 ≥ 0, as needed.

5. Retrieving the explicit r0-form of H ∈H4(2D)

The harmonic fourth-order tensor H introduced in the previous section is

H = T− λ1 ⊗ 1 − 2μ I− 1 ⊗ h − h ⊗ 1 (21)

Let us use its harmonic properties tr12 H = tr13 H = 0 and the remark that they correspond to the orthogonality of generator 
G

(0)
r with respect to both constant generators G(0)

t = J and G(1)
t = 1 ⊗ 1.

The Kelvin (spectral) decomposition of H [11–14,8], gives, here in 2D,

H =
2∑

I=0

�I e
I ⊗ eI eI : e J = δI J (22)

with H : eI = �I eI (no sum) defining Kelvin’s moduli �I and modes eI . The traceless condition H : 1 = 1 : H = tr12 H = 0
implies that 1 is an eigentensor (a Kelvin mode) of H, associated with Kelvin’s modulus �2 = 0, and that the first two 
eigentensors eI are deviatoric, eI = eI′ . The mathematical property of Kelvin’s projectors to give a partition of the unit 
tensor reads then

e1′ ⊗ e1′ = I− 1

2
1 ⊗ 1 − e0′ ⊗ e0′ = J− e0′ ⊗ e0′ (23)

so that Kelvin’s decomposition (22) becomes

H = (�0 − �1)e0′ ⊗ e0′ + �1J (24)

By construction, H is orthogonal to generator G(0)
t = J = I − 1

2 1 ⊗ 1. This gives:

H :: J= (�0 − �1)e0′ ⊗ e0′ :: J+ �1J :: J= 0

= (�0 − �1)e0′ : e0′ + 2�1 = (�0 − �1) + 2�1 = 0 (25)

This shows that �1 = −�0 so that one just has proven that any H ∈ H4(2D) has for expression

H = �0

[
2e0′ ⊗ e0′ − J

]
(26)

Setting R′
0 = √

2 e0′ as deviatoric second-order tensor of equivalent norm R0 eq = 1, ends up to

H = 2r0
[
R′

0 ⊗ R′
0 − J

]
r0 = �0 (27)
2
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There are two possibilities for the definition of tensor R′
0 and of modulus r0 as there are two Kelvin modes I = 0 and 

I = 1 orthogonal to Kelvin’s mode e2 = 1/
√

2. Only the one at positive eigenvalue, set as I = 0, �0 ≥ 0 (leaving then �1 ≤ 0
for I = 1) gives a positive r0 as retained in standard polar decomposition of 2D symmetric tensors and as needed at the end 
of previous section. The polar modulus r0 = �0/2 ≥ 0 is therefore shown to be a half-positive eigenvalue of the harmonic 
fourth-order tensor H and R′

0 is the associated Kelvin mode multiplied by 
√

2.
Altogether with expression (21) due to harmonic decomposition, the present derivations (and key Eq. (27)) are an al-

ternate proof of Verchery polar decomposition, using tensorial mathematical tools instead of a complex variable method in 
case of original proof.

6. Conclusion

We have proposed a tensorial intrinsic form for Verchery polar decomposition of any 2D fourth-order symmetric ten-
sor T. Two proofs are given, a first one from the rewriting of quadratic form (3) associated with tensor T, a second one 
combining both harmonic and Kelvin decompositions.

Compared to harmonic decomposition, the main results are:

– the generators obtained are found orthogonal to each other (in sense of scalar product :: for fourth-order tensors) and 
of constant norm, independent from frame angle,

– the polar invariants of tensor T explicitly appear, making easy the study of symmetry classes and sub-classes,
– the structure of the harmonic fourth-order tensor H ∈ H4(2D) is given: any traceless rari-constant (harmonic) tensor H

is shown to be expressed thanks to a single deviatoric (harmonic) second-order tensor h0 or in an equivalent manner 
in the polar formalism thanks to the polar invariant r0 and to the deviatoric tensor R′

0 of the unit 2D von Mises norm.

As a conclusion, any 2D symmetric fourth-order tensor can be expressed thanks to two scalars and to two symmetric 
second-order deviatoric tensors in a decomposition that makes explicitly appear invariants and symmetry classes.
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