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Normal propagation of the longitudinal wave through the piezoelectric medium with 
periodically embedded electrodes is considered. Each pair of electrodes is connected via 
a circuit with capacitance C . The paper analyzes in detail the unusual features of the 
dispersion spectrum ω(K T ) (K is the Floquet–Bloch wavenumber, T is the period) arising 
in the special case of a negative value of C . The solution of the dispersion equation shows 
explicitly the evolution of the passbands and stopbands tunable by varying C < 0. One of 
the striking features is the existence of the poles of ImK T (infinite attenuation) and of 
the corresponding jumps of the phase ReK T from 0 to π in the stopbands for a certain 
range (C0, C1) of negative C . Besides, for C ∈ (C0, C∞) where C∞ < C1, the spectrum 
possesses a low-frequency absolute stopband starting from the quasistatic limit ω = 0 and 
including the tunable pole of ImK T inside. This stopband is related to the negative value 
of the quasistatic effective elastic constant in the range (C0, C∞). At C = C∞ , the effective 
constant is infinite while the spectrum degenerates to the straight line K = 0 at any ω. For 
C close to C∞, the spectrum consists of the branches with high group velocity and of the 
quasiflat branches.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

During the last decade, many ways of tuning the band diagrams of phononic crystals (PC) have been investigated. They 
mostly rely on the application of an external field stimulus (heat, magnetic or electric field, mechanical stress...) that modi-
fies either the constitutive parameters of the PC components or their geometry [1–6]. Also, specifically for waveguides, the 
use of piezoelectric patches connected with appropriate electric circuits has shown a certain efficiency for tuning the band-
diagrams [7–9]. More recently, other works have envisaged a different approach based on bulk control of the propagation 
with no external stimuli, but with thin embedded charged electrodes implying jumps of the electric induction and therefore 
jumps of the strain field across the electrodes [10–14]. Hence, controlling the charges within the electrodes with an appro-
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Fig. 1. (Color online.) Structure of the piezoelectric phononic crystal under consideration.

priate external impedance allows one to control efficiently the induced band diagrams of the structure with a tuning rate 
that is much higher. Specifically, Refs. [10–14] have considered the propagation of the longitudinal wave through a periodic 
structure of electrodes embedded into an elastic/piezoelectric multilayer or a homogeneous piezoelectric material. The con-
nection of the electrodes via external electric circuits with the capacitance C enables the tunability of the wave properties. 
The dispersion equation for the cases of single-layered or bilayered unit cell has been obtained in [10,11] and generalized for 
the case of arbitrary multilayered unit cell in [12]. The dynamical effective constants of the periodic structure were derived 
in [12]. The papers [10–12] have dealt with positive C . At the same time, as it has been noted in [10,11], the capacitance 
C of the external circuit may be negative. A negative capacitance can be created electronically, for instance using negative 
impedance converters built of the so-called current conveyors (see [15,16]). Such devices have being increasingly used in 
the context of active vibration control and sound transmission loss [16–20]. The tunability of the elastic/piezoelectric PC 
using an external circuit with C < 0 has been preliminary considered in [13,14]. In particular, it has been shown in [13] and 
confirmed in [14] that negative values of C can create the low-frequency stopband starting from the quasistatic limit ω = 0.

The present paper provides a complete analysis of the unusual spectral features that are made possible by the negative 
capacitance C of the external circuits connecting the electroded interfaces of the piezoelectric layers. For the sake of trans-
parency, the case of periodic structure of identical electroded piezoelectric layers (single-layered unit cell) is considered. The 
tunability of the passbands and stopbands of the dispersion spectrum ω(K T ) (K is the Floquet–Bloch wavenumber, T is the 
period) by means of varying C < 0 is described explicitly. It is shown that there is a certain range (C0, C1) of negative C for 
which the stopbands contain the poles of ImK T (infinite attenuation) and the corresponding jumps of the phase ReK T from 
0 to π . The poles appear one by one as C decreases from C0 to a certain critical value C∞ < C1 and then successively disap-
pear as C further decreases from C∞ to C1. At C = C∞ , the whole spectrum degenerates to the straight line K = 0 at any ω. 
For C close to C∞ , the spectrum consists of the branches with high group velocity and of the quasiflat branches. Besides, for 
C ∈ (C0, C∞) the spectrum possesses a broad quasistatic stopband starting at ω = 0 and including the tunable pole of ImK T
inside. This stopband is related to the negative value of the quasistatic effective elastic constant in the range (C0, C∞).

The paper is organized as follows. The background of the problem is provided in Section 2. It is shown that despite 
the 4 × 4 size of the initial piezoelectric propagator matrix, the dispersion spectrum ω(K T ) can be described via the 2 × 2
propagator acting on the elastic state vector. Section 3 discusses unusual features in the evolution of the dispersion spectrum 
for an arbitrary piezoelectric material as C decreases from zero. Section 4 presents numerical examples for a PZT material. 
Concluding remarks are mentioned in Section 5.

2. Background

Consider a pure longitudinal time-harmonic wave propagating through the transversely isotropic piezoelectric medium 
along the principal axis X3 perpendicular to the periodically embedded infinitely thin electrodes that are connected via the 
external capacitance C , see Fig. 1. Denote the mass density, the elastic constant at constant electric field, the elastic constant 
at constant electric induction, the piezoelectric constant and the dielectric constant at constant strain, respectively, by

ρ, cE
33 ≡ cE, cD

33 ≡ cD = cE + e2/ε, e33 ≡ e, εS
33 ≡ ε

We will omit the indices of the traction and of the elastic and electric displacements, so that σ33 ≡ σ , u3 ≡ u, D3 ≡ D . 
Denoting the electric potential by ϕ , the governing equations in the piezoelectric medium regardless of the boundary con-
ditions are

σ ′ = −ρω2u, D ′ = 0

σ = cEu′ + eϕ′, D = eu′ − εϕ′ (1)

where ′ = d/dz and z is the coordinate along X3. Equations (1) may be cast as

η′ = Qη with η =
⎛
⎜⎝

u
ϕ
σ
D

⎞
⎟⎠ , Q =

⎛
⎜⎝

0 0 1/cD e/εcD

0 0 e/εcD −cE/εcD

−ρ ω2 0 0 0
0 0 0 0

⎞
⎟⎠ (2)

Note that we have defined Q as real. If there are no electrodes between the initial a and end points b, then the solution of 
(2) is
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Fig. 2. (Color online.) Schematic view of the electrical connections of two piezoelectric layers with external capacitors within the unit cell.

η(b) = M4×4[b,a]η(a), where M4×4[b,a] = exp((b − a)Q) (3)

In particular, if a = 0 and b = T with T being the period, then the corresponding transfer matrix is called the monodromy 
matrix M4×4 ≡ M4×4[T , 0]. It has the following structure [21] (with the corresponding values for the homogeneous medium 
case):

M4×4 =
⎛
⎜⎝

M11 0 M13 M14
M21 1 M14 M24
M31 0 M11 M21

0 0 0 1

⎞
⎟⎠ ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M11 = cos kT , M21 = h(M11 − 1), M13 = sin kT

Z

M14 = hM13, M31 = −Z sin kT , M24 = hεM14 − T

ε

k = ω

√
ρ/cD, h = e/ε, Z = ω

√
ρcD

(4)

In order to obtain the transfer matrix M4×4[b, a], one should put b − a instead of T in (4).
In addition to Eq. (3), the electrical network of capacitors brings the following periodic boundary conditions, here ex-

pressed for the electrode at z = T :⎧⎪⎨
⎪⎩

C(ϕ(0) − ϕ(T )) = q1
C(ϕ(T ) − ϕ(2T )) = q2
q2 − q1 + Q (T ) = 0
D(T + 0) − D(0 + 0) = Q (T )/S

(5)

where q1, q2 are the charges on the capacitors connected to the electrode at z = T , Q is the charge on the electrode and 
S is its surface area, see Fig. 2. Note that equations (5) correspond, respectively, to: the voltage/charge relationship of the 
capacitances C ; the conservation of charges over the two capacitors and the electrode; and the Gauss law expressed at the 
electrode. Equations (5) lead to

F (0) ≡ S

C
D(+0) + ϕ(0) − ϕ(T ) = F (T ) ≡ S

C
D(T + 0) + ϕ(T ) − ϕ(2T ) (6)

Equation (6) shows that the function F has the same value on each electrode nT . Using the second line of (3) with [a, b] =
[0, T ] and (4), (6) we find

D(0) = M21u(0) + M14σ(0) + F (0)

S
C − M24

(7)

where for brevity +0 is omitted. Inserting (7) into first and third lines of (3) with [a, b] = [0, T ] (see also (4) and (6)) yields:

ζ (T ) = m3×3ζ (0), ζ =
(

ξ
F

)
, ξ =

(
u
σ

)
(8)

with the 3 × 3 matrix

m3×3 ≡
(

m h
01×2 1

)
, 01×2 = (0 0 ) , h = 1

S
C − M24

(
M14
M21

)
(9)

where m is 2 × 2 propagator

m ≡
(

M11 M13
M31 M11

)
+ 1

S − M

(
M14
M21

)(
M21
M14

)�
(10)
C 24
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� means transposition. The 2 × 2 transfer matrix m plays the same role as the transfer matrix through an elastic medium 
because it acts on the elastic vector ξ (8). The determinant of m and hence of m3×3 is equal to 1, see details in [12]. 
Omitting exceptional cases of degeneracy of eigenvalues, the matrix m3×3 has three eigenvalues λ j and three eigenvectors 
ζ j satisfying

m3×3ζ j = λ jζ j, j = 1,2,3 (11)

These eigenvalues and eigenvectors are

λ1 = eiK T , λ2 = e−iK T , ζ 1 =
(

ξ1
0

)
, ζ 2 =

(
ξ2
0

)
(12)

λ3 = 1, ζ 3 =
(

ξ3
1

)
, ξ3 = (I − m)−1h (13)

where I is the identity matrix, λ1,2 and ξ1,2 are eigenvalues and eigenvectors of m and K = −i log(λ1)/T is the wave 
number. Using the fact that the sum of the eigenvalues is just the trace of the matrix, we obtain a simple dispersion 
equation expressing the dependence of the wave number K on the frequency ω:

2 cos K T = Trace(m) (14)

or (see (10) and (4))

cos K T = M11 + M14M21
S
C − M24

⇒ cos K T =
( S

C + T
ε

)
cos kT − h2 sin kT

Z
S
C + T

ε − h2 sin kT
Z

(15)

Note that a different derivation of the dispersion equation (15) was given in [11]. The edges of stopbands are defined by 
equation (15) with cos K T = ±1, which corresponds to the periodic and antiperiodic solutions (center and edges of the 
Brillouin zone). According to [11], the solutions of equation (15) with cos K T = 1 are kT = 2πn, n = 0, 1, 2, . . . and the 
solutions of equation (15) with cos K T = −1 are

kT = π + 2πn, n = 0,1,2, . . . and tan
kT

2
= β

kT

2
with β =

(
S

C
+ T

ε

)
cD

h2T
(16)

where it is assumed that k 	= 0 and β 	= 0 (the special case β = 0 ⇔ C = C∞ = −εS/T is considered in Section 3). Note 
that the matrix m is the identity matrix at kT = 2πn 	= 0 (while it has the Jordan form at kT = 0 and kT = π + 2πn). 
According to the general theory [22], this means that the open stopbands never arise at the center of the Brillouin zone 
K T = 0 except for the quasistatic stopband (see Section 3).

Let us discuss the solutions with initial data ζ (0) = ζ j , j = 1, 2, 3. For j = 3 we have that ζ (T ) = ζ (0) and hence the 
corresponding solution ζ is periodic. So the components u, σ , F and hence D , ϕ(· + T ) − ϕ(·) (6) are also periodic. It 
is also obvious that ϕ(T ) − ϕ(0) 	= 0 because otherwise, i.e. if ϕ(T ) − ϕ(0) = 0, then D(0) = D(T ) = C/S (see (6) with 
F = 1) and the vector (u(0) ϕ(0) σ(0) D(0))� is an eigenvector of M4×4 (4) corresponding to an eigenvalue of 1. This is a 
contradiction because the matrix Q (2) does not have eigenvectors with a non-zero fourth component corresponding to an 
eigenvalue of 0, and hence M4×4 = exp(T Q) neither have eigenvalues with a non-zero fourth component corresponding to 
an eigenvalue of 1. Thus we have ϕ(T ) − ϕ(0) 	= 0 and therefore the value

ϕ(nT ) − ϕ(0) = ϕ(nT ) − ϕ((n − 1)T ) + . . . + ϕ(T ) − ϕ(0) = n(ϕ(T ) − ϕ(0)) (17)

tends to ∞ for n → ∞ which means that ϕ has infinite linear growth.
Now consider the solution with initial data ζ (0) = ζ j , j = 1, 2. Let Im(K T ) 	= 0. Then because |eiK T | > 1 or |eiK T | < 1, this 

solution ζ (nT ) and hence the components u, σ , ϕ, D have exponential growth for n → ∞ or n → −∞. Next, let ImK T = 0
and eiK T 	= 1. Then the solution with initial data ζ (0) = ζ j , j = 1, 2 has quasiperiodic and bounded components u, σ , F = 0
and D (see (7)) and a bounded component ϕ because

ϕ(nT ) − ϕ(0) = ϕ(nT ) − ϕ((n − 1)T ) + . . . + ϕ(T ) − ϕ(0)

= (ϕ(T ) − ϕ(0))

n∑
j=0

ei jK T = (ϕ(T ) − ϕ(0))
ei(n+1)K T − 1

eiK T − 1
(18)

Finally let eiK T = 1. Then kT = 2πn and the matrix m is the identity matrix (unless k = 0 for C 	= C∞). Thus m has 
two linearly independent eigenvectors ξ1 and ξ2 corresponding to an eigenvalue of 1. We can construct the solution ξ =
α1ξ1 +α2ξ2 for which u(0) = 0(= u(T )) and hence D(0) = 0(= D(T )) (see (7) with M14 = 0 and F = 0). Then, according to 
(6), ϕ(T ) = ϕ(0), which leads to the periodic solution (u, ϕ, σ , D)� .

In summary, extending the above remarks to the solutions with any initial data ζ (0) = ∑3
j=1 α jζ j , α j ∈C, we may con-

clude that if ImK T 	= 0 then all solutions are unbounded and hence the corresponding frequency ω(K T ) lies in a stopband. 
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On the other hand, if ImK T = 0, then there exists a non-trivial bounded solution with initial data ζ (0) = ∑2
j=1 α jζ j and 

hence the corresponding frequency ω(K T ) lies in a passband. This conclusion is expectable indeed, but not obvious because 
our problem involves a 4 × 4 propagator matrix, whereas the spectrum is expressed in terms of dispersion curves (14)
corresponding to a 2 × 2 propagator matrix.

3. Special features of the spectrum ω(K T ) at C < 0

Consider the solutions of (162) in detail for C < 0 (recall that the case of negative C values lies beyond the scope of 
[11]). Denote all positive solutions of (162) as 0 < k1T < k2T < . . .. For large n, they have the following asymptotics

kn T =

⎧⎪⎨
⎪⎩

π(2n − 1) − 4
βπ(2n−1)

+ O
(

1
n2

)
, β < 0 or β > 1

π(2n + 1) − 4
βπ(2n+1)

+ O
(

1
n2

)
, 0 < β ≤ 1

(19)

Invoking (161), all stopbands γn (where ImK T 	= 0) lying above the first dispersion branch can be expressed in terms of kT
as follows:

γn =
{

(π(2n − 1),kn T ), β < 0 ⇔ C∞ < C < 0
(kn T ,π(2n + 1)), 0 < β ≤ 1 ⇔ C0 ≤ C < C∞
(kn T ,π(2n − 1)), β > 1 ⇔ C < C0 or C > 0

(20)

where n ≥ 1 and

C0

S
= −εcD

T cE
= − ε

T
(1 + �2),

C∞
S

= − ε

T
(21)

where �2 = e2

εcE is the squared piezoelectric coupling coefficient as defined in [23]. In addition there is the quasistatic 
stopband

γ0 = (0,π) for C0 ≤ C < C∞ (22)

The edges of all stopbands γn , n ≥ 1 and the upper edge of the quasistatic stopband γ0 correspond to K T = π while the 
lower edge ω = 0 of the quasistatic stopband corresponds to K T = 0.

Another approach to visualize the arrival of the quasistatic stopband is based on the analysis of the quasistatic effective 
elastic constant. Substituting asymptotics (see (4))

M11(ω) = 1 − Tρ ω2

2(cD)2
+ O (ω4), M14(ω) = eT

εcD
+ O (ω2) (23)

M21(ω) = −T eρ ω2

2ε(cD)2
+ O (ω4), M24(ω) = T (e2 − εcD)

ε2
+ O (ω2) (24)

into the dispersion equation (15) leads to the following quasistatic limit

v = lim
K→0

ω

K
=

√
c0

eff

ρeff
with c0

eff = cE + e2

C T
S + ε

, ρeff = ρ (25)

It is seen from (25) that c0
eff is negative for the interval C ∈ (C0, C∞) where C0 and C∞ introduced in (21) are zero and pole 

of c0
eff, respectively. This leads to a quasistatic absolute stopband that starts from kT = 0 (ω = 0) and extends to kT = π .

The value C = C∞ = −Sε/T , which is when the external capacitance C is equal to minus the capacitance of the layer, 
is the special one for our problem. Inserting C = C∞ into (15) reduces the dispersion equation to the form cos K T = 1, 
hence the solution ω(K T ) degenerates for C = C∞ to the value K T = 0 at any ω. Note that the monodromy matrix m at 
C = C∞ has the lower Jordan form for all ω such that kT 	= 2πn, n = 0, 1, 2, . . . and hence m has only one eigenvector ξ1
with u(0) = 0, σ(0) 	= 0. This yields ϕ(T ) 	= ϕ(0) (see (7) and (6) with F (0) = 0) and then the potential has an unbounded 
linear growth ϕ(nT ) → ∞ (see (17)). Therefore the degenerate solution K T = 0 at any ω, which arises at C = C∞ , does not 
belong to the propagative spectrum, except for the set of points kT = 2πn, n = 0, 1, 2, . . ..

Another remarkable feature of the spectrum at C < 0 is the occurrence of the poles of ImK T and the corresponding 
jumps of the phase ReK T from 0 to π in the stopbands. According to Eq. (15), the poles of ImK T are associated with the 
poles of the monodromy matrix m, which come about at S/C − M24 = 0 unless C = C∞ (then S/C − M24 = −hM14 and 
zeros of the denominator and the numerator in Eq. (15) occur at the same value M14 = 0, i.e. kT = πn). With reference to 
(4), the equality S/C = M24 yields the following equation on the poles

R(ω) ≡ sin kT = β (26)

kT
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Fig. 3. (Color online.) Dependence of the quasistatic effective elastic constant c0
eff on the external capacitance C for the PZT periodically layered structure 

depicted in Fig. 1.

where β is defined in (16). The frequencies ωn and the corresponding capacitances Cn of the appearances and disappear-
ances of poles are exactly the points where the graph of the function on the left-hand side (26) is tangent to the horizontal 
line on the right-hand side. Thus the frequencies ωn of appearance and disappearance of the poles are, respectively, the 
(negative) minima and (positive) maxima of the function R(ω). After a new pole arrives at a minimum of R(ω), it splits 
into two ones with further decrease of C . The local extremes ωn of R(ωn) can be found explicitly. Denoting the roots of the 
equation tan x = x by xn , n = 0, 1, . . .:

x0 = 0, x1 ≈ 4.5002, . . . , xn = π(2n − 1)

2
− 2

π(2n − 1)
+ O

(
1

n2

)
, . . . (27)

we obtain that kT = xn or

ωn = xn

T

√
cD

ρ
⇒ Cn = Sε

T e2

εcD
sin xn

xn
− T

(28)

Note that the global maximum and minimum of R(ω) are R(ω0) and R(ω1). Hence using (26) and (28) we always have at 
least one pole for given C if and only if

C0 < C < C1(< 0) (29)

where C0 is first introduced in (211). Thus, as the capacitance C decreases from 0, the first pole appears at ω1 for the 
capacitance C1. After that new poles appear at higher frequencies ω2n+1 for the capacitances C2n+1 (note that C1 > C3 > . . .). 
As C → C∞ , the number of poles increases (but stays finite) and they tend to the points kT = πn. This creates quasiflat 
passbands lying between kT = 2πn and the neighboring poles. Recall that at C = C∞ the solution of the dispersion equation 
degenerates to the straight line K T = 0 at any ω, so all the poles merge with points kT = πn and disappear. For the 
capacitances C2n < C∞ , the poles arrive again and begin to disappear one by one starting from large frequencies ω2n

because C0 < C2 < . . . The last pole disappears at ω0 = 0 for the capacitance C0, see Eq. (29). Recall that C0 is exactly the 
value at which the quasistatic stopband vanishes. If C < C0, then there are no poles.

4. Example

Following [10,11], consider an example of the PZT periodically layered structure where each PZT layer is electroded and 
connected as shown in Fig. 2. Let T = 10 mm. The material constants taken from [10,11] are

e = 19.2 N/V · m, ε = 8.33 10−9 F/m, cE = 7.421 1010 N/m2, ρ = 7500 kg/m3

The dependence (25) of the quasistatic effective elastic constant c0
eff on C is plotted in Fig. 3. The value c0

eff is negative for 
C/S ∈ (C0/S, C∞/S) where C0/S ≈ −1.3295 pF/mm2, C∞/S = −0.833 pF/mm2 (see (21)).

Fig. 4 presents the low-frequency part of the dispersion spectra ω(K T ) for various C < 0 that are compared with the 
trivial spectrum cos K T = cos kT of the electrically open case C = 0. First of all, we note that the points kT = π + 2πn ⇒
K T = π are located at the lower or upper edges of the stopbands for C > C∞ or C < C∞ respectively, see (20), and that 
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Fig. 4. (Color online.) Low-frequency dispersion curves for the PZT periodically layered structure (see Fig. 1) for various negative capacitances C . The black 
and red curves show ReK T and ImK T , respectively; the dashed lines indicate the spectrum for C = 0. The ratio v/v0, where v is the quasistatic speed 
(25) of the Floquet wave and v0 = √

cD/ρ = 3974 m/s is the reference speed of sound in the piezoelectric at C = 0, is equal to 1.72 (a), 2.36 (b), 2.55 (c), 
24.96 (d), 0.11 (g), 0.6 (h).

there are no stopbands at kT = 2πn ⇔ K T = 0 except the quasistatic stopband. Fig. 5 shows the graphical solutions of 
Eq. (26) describing the appearance and disappearance of the poles of ImK T as C/S varies. Now consider the evolution of 
the spectra with the decrease of C < 0 in detail, focusing our attention on the first stopband. At C/S ∈ (C∞/S, 0), it is 
located at K T = π , between the first and the second branches, see Fig. 4a. The pole of ImK T arises in the first stopband 
at C1/S ≈ −0.77 pF/mm2, f1 = ω1/2π ≈ 0.28 MHz, see (28) and Figs. 4b and 5. At C < C1 this pole splits into two poles 
that move towards the edges of the stopband along with the corresponding jumps of the phase ReK T , see Fig. 4c. As 
C/S approaches C∞/S = −0.833 pF/mm2 from above (see Fig. 4d) the quasistatic phase velocity (25) and hence the group 
velocity dω/dK of the first branch at the origin point ω = 0, K = 0 tends to infinity. We also observe from Figs. 4d and 6
that for C tending to C∞ from either side, all poles of ImK T and corresponding jumps of ReK T tend to the points kT = πn. 
This leads to quasiflat dispersion branches ω(K T ) lying between the points kT = 2πn and the neighboring poles (see in 
particular the inset in Fig. 4d). The group velocity of the other (not quasiflat) upper branches is finite at K T = 0 but tends 
to infinity at infinitesimally small K T as C tends to C∞ . The value C = C∞ is the special one at which c0

eff is infinite and 
the solution of the dispersion equation degenerates to the straight line K T = 0. When C passes C∞ , the passbands and 
stopbands swap (compare Figs. 6a and 6b) and below C∞ the quasistatic stopband γ0 (21) arises. It starts from ω = 0 and 
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Fig. 5. Graphical solutions of eq. (26) defining the spectral positions of ImK T for the different values of C/S (and hence of β , see (16)) used in Fig. 4.

Fig. 6. (Color online.) Dispersion curves in the vicinity of the degeneracy point C∞/S = −0.83. The notations are the same as in Fig. 4.

extends to kT = π for any C in the interval C/S ∈ (C0/S, C∞/S) in which c0
eff < 0 (see Fig. 3). This quasistatic stopband 

contains the pole of ImK T , which is why the first dispersion branch starts at the edge of the Brillouin zone K T = π
(see Fig. 4e,f). The pole moves towards ω = 0 as C tends to C0 (see Fig. 4f). At C/S = C0/S ≈ −1.3295 pF/mm2, both the 
quasistatic stopband and the pole of ImK T disappear. At C < C0 the quasistatic elastic constant c0

eff and hence the quasistatic 
phase velocity begin to grow from zero, so that the first dispersion branch reappears (first as a quasiflat branch) at its origin 
ω = 0, K T = 0 (see Fig. 4g). There are no poles at C < C0. Further decrease of C affects the position of the lower stopband 
edges (see Fig. 4h).

5. Conclusions

The dispersion spectrum ω(K T ) of the longitudinal wave propagating through the periodic structure of identical piezo-
electric layers, whose interfaces are electroded and connected via external electric circuits with the capacitance C , has been 
analyzed in the case of negative values of C . The spectrum for C < 0 displays a number of unusual features such as the 
quasistatic stopband extending from ω = 0 to a certain nonzero ω, the poles of ImK T and corresponding jumps of ReK T
from 0 to π , the occurrence of the infinitely growing group velocity and of the quasiflat dispersion branches. Explicit anal-
ysis of these features is facilitated by a simple form of the dispersion equation for the case of identical piezoelectric layers 
(a single-layered unit cell), which is why this case has been chosen for consideration. At the same time, similar spectral 
features can also be observed in the case of a multilayered unit cell containing elastic and electroded piezoelectric layers. 
The only difference in this case is that the propagator m through a period, whose trace appears on the right-hand side 



688 A.A. Kutsenko et al. / C. R. Mecanique 343 (2015) 680–688
of the dispersion equation (14), is now a product of the 2 × 2 propagators through individual layers. As we have seen, 
the propagator through each electroded piezoelectric layer has a pole for a certain C < 0, which leads to the pole of the 
aggregate propagator m and hence of ImK T . Furthermore, the common physical reason for the existence of the quasistatic 
stopband is the negative value of the quasistatic effective elastic constant c0

eff , which occurs at certain C < 0 for either a 
single-layered or a multilayered unit cell, see [13].

Finally, let us note that certain extreme features of the presented band diagrams, in particular the arbitrarily large values 
of the phase and group velocities in the low-frequency domain, have been obtained while considering quasistatic descrip-
tions for the electrical network and the piezoelectric part of the structure. Specifically for such very fast electro-mechanical 
Floquet waves within the heterostructure, taking into account a non-quasistatic piezoelectric model and discarding the 
assumption of the ‘instantaneous’ response of the electrical network are likely to limit the caused variations in the disper-
sion spectrum. Nevertheless, it is shown here that the electric control of a phononic structure with the help of negative 
impedance allows drastic and unusual modifications of the band diagrams for a structure that was initially mechanically 
homogeneous.
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