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Based on the framework of Flügge’s shell theory, transfer matrix approach and Romberg 
integration method, this paper investigates how corrugation parameters and material 
homogeneity affect the vibration behavior of isotropic and orthotropic oval cylindrical 
shells with sine-shaped hoop. Assume that the Young’s moduli, shear moduli and density of 
the orthotropic material are continuous functions of the coordinate in the circumferential 
direction. The governing equations of non-homogeneous, orthotropic oval cylindrical shells 
with variable homogeneity along its circumference are derived and put in a matrix 
differential equation as a boundary-value problem. The trigonometric functions are used 
with Fourier’s approach to approximate the solution in the longitudinal direction, and 
also to reduce the two-dimensional problem to a one-dimensional one. Using the transfer 
matrix approach, the equations can be written in a matrix differential equation of the first 
order and solved numerically as an initial-value problem. The proposed model is applied 
to get the vibration frequencies and mode shapes of the symmetric and antisymmetric 
vibration modes. The sensitivity of the vibration behavior to the corrugation parameters, 
homogeneity variation, ovality, and orthotropy of the shell is studied for different type 
modes of vibration.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Orthotropic shells with circular and noncircular profiles are more efficient than isotropic ones, not only because of their 
higher wall stiffness, but also because they are less sensitive to initial imperfections. A special type of orthotropic shells, 
discretely reinforced longitudinal or circumferential corrugation, is very cost effective and widely used in various areas of 
modern engineering applications, such as air engineering, marine structures, agricultural silos, and piping. Circumferentially 
corrugated shells are a type of sensitive elastic elements widely used in precision instruments and meters, and they are 
used in structures with low flexural stiffness in the longitudinal direction and high flexural stiffness in the circumferential 
direction. The vibration, bending and stability of corrugated shells should be studied systematically to obtain the entire 
mechanical properties to help designers to achieve a reduction in weight and an increase in stiffness. Mathematically, the 
consideration of non-homogeneity, orthotropy, corrugations and aspect ratios leads to a very complex problem involving 
several parameters. So, numerical or approximate techniques are necessary for their analysis. Since more attention is paid 
to the analysis of the behavior of shells of a non-uniform cross-section with inhomogeneous materials, researches on the 
vibration of isotropic and orthotropic circular cylindrical shells have been undertaken by many researchers, since the basic 
equations for this had been established by Love [1], Rayleigh [2], and Flügge [3]. The best collection of documents can be 
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Fig. 1. Coordinate system and geometry of an inhomogeneous elastic cylindrical shell with a hoop-corrugated oval cross section.

found in Leissa [4], in which more than 500 publications are analyzed and discussed in both linear and non-linear vibration 
cases. Other related literatures for the vibration of homogeneous oval cylindrical shells can be found in [5–11]. On the other 
hand, there are a few publications that studied the vibration characteristics of the isotropic and orthotropic corrugated 
cylindrical shells, e.g., [12–17], whereas Tsiolkovsky [18] was the first one to see that the corrugated shells can be used in 
lighter-than-air engineering. As it has been found recently, a few studies have been directed toward the vibration behavior 
of smooth, inhomogeneous, orthotropic cylindrical shells [19–24]. Despite extensive works have been carried out, it is likely 
that the combined effects of corrugations, orthotropy, and non-homogeneity of materials on the vibration behavior of oval 
and circular cylindrical shells have not been analyzed. This paper aims at studying the combined effects of non-homogeneity 
of materials and corrugations of surface on the vibration behavior of elastic orthotropic shells. The basic equations of the 
vibration of a non-homogeneous, corrugated orthotropic oval cylindrical shell are derived from the framework of Flügge’s 
shell theory. The transfer matrix is employed to get the vibration frequencies and the corresponding mode shapes for the 
symmetric- and antisymmetric-type modes. The results reveal that the variations of the oval cylindrical shell parameters, 
homogeneity variation, orthotropy of material and corrugation parameters have significant effects on the values of the 
natural frequencies and the mode shapes. The results are cited in tabular and graphical forms.

2. The model

2.1. Shell theory

It is known by researchers that the study of vibration problems in shells depends on the shell geometry and on the 
model of shell theory adopted. The present problem is modeled using Flügge’s theory, which is very accurate in the case of 
thin shells due to the consideration of the shear deformation effect in the equilibrium equations.

2.2. Geometric formulation

The present shell is a corrugated orthotropic oval cylindrical shell with a sine-shaped hoop. The curvature of the cross-
section profile of a corrugated oval shell is defined by the equation r0/R(s) = f (s), where R is the variable radius of 
curvature along the cross-section mid-line, r0 is the reference radius of curvature, chosen to be the radius of a circle having 
the same circumference as the oval profile, and f (s) is a prescribed function of s and can be taken as a simple form by the 
first two terms of the Fourier series representation of the curvature of a general cylindrical shell, see [25]; the corrugated 
surface can be taken as:

f (s) = 1 + ε cos(2s) + A sin(2Ns), 0 ≤ s ≤ 2π (1)

where A is the corrugation amplitude and N is the number of circumferential corrugations over the shell surface, as ε is 
the ovality parameter, which measures the eccentricity of the cross section of the shell, and to prevent negative curvature, 
|ε| should be equal to or less than unity. Such a function describes a doubly-symmetric oval cross section and can be 
approximated by an ellipse. The ovality parameter ε is expressed by the semi-major, a, and semi-minor, b, axes of the oval 
profile given by [9]:

ε = 3Q − (36/35)Q 3

Q = (A/B − 1)/(A/B + 1)

B = b/r, A = a/r0 (2)

The position of a point on the middle surface of the shell is defined by the cylindrical coordinates (x, s, z), as shown in Fig. 1. 
The displacements of the middle surface of the shell are denoted by u, υ and w in the axial, hoop and transverse directions, 
respectively. The shell geometry is described by T0, the thickness of the shell, Lx , the axial length, and (Ls = 2πr0), the 
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circumferential length of the shell. If we suppose that the axial and circumferential directions are principal axes of the 
orthotropic material. Then we have:

νx Es = νs Ex (3)

where Ex, Es are Young’s moduli and νx, νs are Poisson’s ratios.

2.3. Model of non-homogeneous materials

In general, non-homogeneous materials can be found in nature and man-made structures and its elastic constants are 
varying continuously in different spatial directions. In most of solutions for elastic non-homogeneity, it is assumed that 
the material of the shell is isotropic or orthotropic, the Poisson’s ratio is constant, the Young’s moduli and the density of 
the shell are either an exponential or a power function of a spatial variable, see [26]. In the present study, the material 
properties of the inhomogeneous orthotropic oval cylindrical shell is assumed to arise due to the variation of Young’s 
moduli, of the shear modulus and of the density along the circumferential direction of the shell. However, in order to take 
into account the non-homogeneity of the present shell material, we assumed that:

(Ex, Eθ , G,ρ) = (Ex0, Eθ0, G0,ρ0)φ(s) (4)

where Ex0 and Eθ0 are the Young’s moduli in the x- and s-directions, respectively, G0 is the shear modulus, and ρ0
is the density of homogeneous material of the shell, and φ is a prescribed continuous function of s accounting for the 
non-homogeneity of materials. For the present study, the non-homogeneous function was chosen to be dependent on the 
tangential angle α, which is between the tangent at the origin of s, located at the end of the semi-major axis, a, and the 
one at any point on the centerline, see Fig. 1. The non-homogeneous function is a parabolic, and takes the form:

φ(α) = 1 + Δα2 (5)

where Δ is a real number expressing the amplitude of the homogeneity variation along the shell’s circumference. Further-
more, we will propose a new ratio, used for the first time, to express comprehensively the non-homogeneity of the shell, 
since the function φ(α) takes a minimum value for α = 0, and a maximum value for α = π/2. Hereby, substituting (5)
into (4) yields:

ExMax/ExMin = EθMax/EθMin = GMax/GMin = ρMax/ρMin = 1 + 2.47Δ (6)

Then, the dependence of the non-homogeneity ratio (H = Max/Min) on Δ takes the form:

H = 1 + 2.47Δ, Δ ≥ 0 (7)

2.4. Governing equations

When the above assumptions are taken into consideration, and for studying the free vibrations of general circular cylin-
drical shells, the equilibrium equations of forces, based on Flügge’s theory [3], take the forms:

N ′
x + N•

sx + ρT0ω
2u = 0

N ′
xs + N•

s + Q s/R + ρT0ω
2υ = 0

Q ′
x + Q •

s − Ns/R + ρT0ω
2 w = 0

Mx + M•
sx − Q x = 0

M ′
xs + M•

s − Q s = 0

Ss − Q s − M ′
sx = 0

Nxs − Nsx − Msx/R = 0 (8)

where Nx, Ns and Q x, Q s are the normal and transverse shearing forces in the x- and s-directions, respectively, Nsx and Nxs
are the in-plane shearing forces, Mx, Ms and Mxs, Msx are the bending moment and the twisting moment, respectively, Ss
is the equivalent shearing force, ρ is the mass density, and ω is the angular frequency of vibration, ′ ≡ ∂/∂x, and • ≡ ∂/∂s. 
The relations between strains and deflections for the cylindrical shells used here are taken from [27,28] as follows:

εx = u′, εs = υ• + w/R, γxs = υ ′ + u•

γxz = w ′ + ψx = 0

γsz = w• + ψs − υ/R = 0

Kx = ψ ′
x, Ks = ψ•

s + (
υ• + w/R

)
/R

Ksx = ψ ′
s, Kxs = ψ•

x + u•/R (9)
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where εx and εs are the normal strains of the middle surface of the shell, γxs , γxz and γsz are the shear strains, and the 
quantities Kx , Ks , Ksx and Kxs represent the change of curvature and the twist of the middle surface, ψx is the bending 
slope, and ψs is the angular rotation. The components of force and moment resultants in terms of (9) are given based 
on [3]:

Nx = Dx(εx + νsεs) + (Kx/R)Kx

Nxs = Dxsγxs + (Ksx/R)Ksx

Ns = Ds(εs + νxεx) − (Ks/R)(Ks − εs/R)

Nsx = Dsxγsx + (Kxs/R)Kxs

Msx = 2Kxs(Kxs − γxs/2R)

Mx = Kx(Kx + νs Ks + εx/R)

Ms = Ks(Ks + νx Kx − εs/R) (10)

where the quantities Dx , Ds and Dxs are the extensional rigidities, and on considering the non-homogeneity of the shell, 
using (5), they become:

Dx = ExT0/(1 − νxνs) = (
Ex0T0/(1 − νxνs)

)
φ = Dx0φ(α)

Ds = Es T0(1 − νsνx) = (
Es0T0(1 − νsνx)

)
φ = Ds0φ(α)

Dxs = T0G = Dxs0φ(α) (11)

and Kx , Ks , and Kxs are the flexural rigidities defined as:

Kx = ExT 3
0/12(1 − νxνs) = (

Ex0T 3
0/12(1 − νxνs)

)
φ = Kx0φ(α)

Ks = Es T 3
0/(1 − νsνx) = Ks0φ

Kxs = GT 3
0/12 = Kxs0φ(α) (12)

and the components with subscript zero denote the homogeneous ones.

3. Solution methodology

For complex geometries of non-circular shells, exact solutions are scarce. In this case, one has to make many approxi-
mations and simplifications in order to reduce the governing differential equations that reduce the original equations to a 
suitable form and to deal with the problem numerically. The effect of the non-homogeneity and orthotropy of material as 
well as shell corrugation complicates considerably the solution to the vibration problem.

3.1. Matrix representation

From Eqs. (8)–(12), by eliminating the variables Q x , Q s , Nx , Nxs , Mx , Mxs and Msx , which are not differentiated with 
respect to s, the vibration system of the partial differential equations for the state variables u, υ , w , ψs , Ms , Ss , Ns and Nsx

of the shell are obtained as follows:

u• = (1/B Dxs)Nsx + (Γ /R B)ψ ′
s − υ ′, w• = υ/r − ψs

υ• = Ns/Ds − w/R − νxu′ − νxΓ ψ ′
x − (1/R Ds)Ms

ψ•
s = (B/Ks)Ms − νx Bψ ′

x − (1/R Ds)Ns + (νx/R)u′

M•
s = Ss − Kxs(Γ /B − 4)ψ ′′

s − (RΓ/B)N ′
sx

N•
s = −Ss/R − N ′

sx − ρ0ω
2T0φ(α)υ

N•
sx = Dx(1 − νxνs)u′′ − (Dxνs/Ds)N ′

s + (Kxνs/R Ks)M ′
s

− Kx
(
(1 − νxνs)/R

)
ψ ′′

x − ρ0ω
2T0φ(α)u

S•
s = Ns/R + (νs B Dx/Ds)M ′′

s − Kx(1 − νxνs B)w ′′′ − (Kx/R)(1 − νxνs)u′′

− (νs DxΓ/Ds)N ′′
s − ρ0ω

2T0φ(α)w, B = 1 + Γ, Γ = T 2
0/12R2 (13)

The solution to the two-dimensional boundary-value problem for the system of partial differential equations (13) that 
satisfies the boundary conditions for a simply supported shell takes the forms:
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u(x, s) = U (s) cos βx,
(
υ(x, s), w(x, s)

) = (
V (s), W (s)

)
sinβx, ψs(x, s) = ψ̄s(s) sin βx(

Nx(x, s), Ns(x, s), Q s(x, s), Ss(x, s)
) = (

N̄x(s), N̄s(s), Q̄ s(s), S̄ s(s)
)

sinβx(
Nxs(x, s), Nsx(x, s), Q x(x, s)

) = (
N̄xs(s), N̄sx(s), Q̄ x(s)

)
cosβx(

Mx(x, s), Ms(x, s)
) = (

M̄x(s), M̄s(s)
)

sinβx(
Mxs(x, s), Msx(x, s)

) = (
M̄xs(s), M̄sx(s)

)
cosβx, β = mπ/Lx, m = 1,2, . . . (14)

m is the axial half wave number. The nature of the axial mode β must be chosen so as to satisfy the required boundary 
conditions at the two ends of the cylindrical shell, where for the simply-supported ends boundary conditions, β = mπ/Lx , 
for the clamped–clamped ends, β = (2m + 1)π/2Lx , and for the clamped-simply supported ones, β = (4m + 1)π/4Lx . 
The quantities U (s), V (s), . . . are state variables, which are undetermined functions of s. To reduce the two-dimensional 
boundary-value problem to one-dimensional problem, we introduce Eqs. (14) into system (13), and after appropriate al-
gebraic operations, the system of vibration equations can be written in the form of linear ordinary differential equations 
referred to the variable s only are obtained, in the following matrix form:

r0
d

ds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũ
Ṽ
W̃
ψ̃s

M̃s

S̃s

Ñs

Ñsx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 V 12 0 V 14 0 0 0 V 18
V 21 0 V 23 0 V 25 0 V 27 0

0 V 32 0 V 34 0 0 0 0
V 41 0 V 43 0 V 45 0 V 47 0

0 0 0 V 54 0 V 56 0 V 58
V 61 0 V 63 0 V 65 0 V 67 0

0 V 72 0 0 0 V 76 0 V 78
V 81 0 V 83 0 V 85 0 V 87 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ũ
Ṽ
W̃
ψ̃s

M̃s

S̃s

Ñs

Ñsx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

By using the state vector of fundamental unknowns Z(s), system (15) can be written as:

r0
dZ(s)

ds
= [V ]Z(s)

Z(s) = (Ũ , Ṽ , W̃ , ψ̃s, M̃s, S̃ s, Ñs, Ñsx)
T

(Ũ , Ṽ , W̃ ) = kx0(Ū , V̄ , W̄ )

ψ̃s = (kx0/β)ψ̄s, M̃s = (
1/β2)M̄s

( S̃ s, Ñs, Ñsx) = (
1/β3)( S̄ s, N̄s, N̄sx) (16)

and the coefficients of matrix [V ] are given here:

V 12 = −β, V 14 = Γ1β
2φ2/C B1, V 18 = Γ1β

3/φμB1, V 21 = νxβ

V 23 = (
1 + νxΓ1β

2)/C, V 25 = Γ1β
2/φη, V 27 = Γ1β

3/φη

V 32 = 1/C, V 34 = −β, V 41 = −νx/C, V 43 = −νxβ
2 B1

V 45 = βB1/φη, V 47 = β2Γ1/Cφη, V 54 = μβφ
(
4 − Γ1/C2 B1

)

V 56 = −β, V 58 = β2Γ1/C2 B1, V 61 = φ(1 − νsνx)/C

V 63 = βφ(1 − νxνs)/2 − λ2φ/Γ1β
3, V 65 = B1β/η

V 67 = (
1 + νsΓ1β

2/η
)
/C, V 72 = −λ2φ/Γ1β

3

V 76 = −1/C, V 78 = β, V 81 = φ(1 − νxνs)/Γ1β − λ2φ/Γ1β
3

V 83 = φ(1 − νxνs)/C, V 85 = νs/Cη, V 87 = −νsβ/η (17)

in terms of the following dimensionless parameters: natural frequency parameter λ = r0ω
√

ρ0(1 − νxνs)/Ex0, thickness ratio 
h0 = T0/r0, axial wave parameter X = β/r0, circumferential and axial orthotropic parameters η = Ds/Dx = Ks/Kx = νs/νx , 
μ = Dxs/Dx = Kxs/Kx = G(1 − νxνs)/Ex , while B1 = 1 + Γ1/C2 and Γ1 = h2

0/12.
By using the transfer matrix T (s) of the shell, the state vector Z(s) of the fundamental unknowns can be expressed as:

Z(s) = [
T (s)

]
Z(0) (18)

The substitution of Z(s) into Eq. (16), assuming (s̄ = s/Ls), yields:

(d/ds̄)
[
T (s̄)

] = 2π
[
V

(
λ,φ(α)

)][
T (s̄)

]
[
T (0)

] = [I], 0 ≤ s̄ ≤ 1 (19)
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The governing system of vibration (19) is too complicated to obtain any closed-form solution, and this problem should 
be solved by a numerical method. Hence, the matrix [T (s̄)] is obtained by using the Romberg integration method, with 
the starting value [T (0)] = [I] which is given by taking s̄ = 0 in (18), and its solution depends only on the geometric and 
martial properties of the shell.

3.2. Modal radius of curvature

Since the solution to Eq. (19) strongly depends on the variable curvature R(s), it follows that the radius of curvature 
should represent the actual geometry of the middle surface of the shell. Using [7], the radius of the corrugated curvature is 
modified to take the form:

R(s̄)/r0 = 1/
(
1 + ε cos(4π s̄) + δ sin(4Nπ s̄)

)
, s̄ = s/Ls (20)

representing the dimensionless radius of corrugated curvature of the shell, C , and the same curvature approximates an 
ellipse having the same semi-major-to-semi-minor axis ratio as the oval. The range of eccentricity parameter is taken to 
be (0 ≤ ε ≤ 1), which corresponds to a semi-major-to-semi-minor axis ratio a/b verifying 1 ≤ a/b ≤ 2.065. As δ = A/r0 is a 
small parameter depending on the corrugation amplitude A, the relation between the tangential angle, α and s̄, is found to 
be:

α = tan−1((b/a)2 tan(2π s̄)
)
, 0 ≤ s̄ ≤ 1 (21)

3.3. Mode types of vibration

For a plane passing through the central axis in a shell with structural symmetry, symmetric and antisymmetric profiles 
can be obtained, and then, only one-half of the shell’s circumference is considered, with the boundary conditions at the ends 
taken to be the symmetric or antisymmetric types of vibration modes. Therefore, the boundary conditions for symmetric-
type modes are:

Ṽ = ψ̃s = 0, S̃ s = Ñsx = 0 (22)

whereas for the antisymmetric-type modes, they are:

Ũ = W̃ = 0, Ñs = M̃s = 0 (23)

The natural modes of vibration of an oval cylindrical shell which has a doubly symmetric profile may be classified as four 
different types of vibration modes (SS, SA, AA, AS) based on whether the modes are symmetric, S, or antisymmetric, A, with 
respect to the minor and major axes of the shell at s̄ = 0 or s̄ = 0.5, and s̄ = 0.25 or s̄ = 0.75, respectively. The substitution 
of (22) and (23) into (18) yields the following vibration equations:

⎡
⎢⎢⎣

T21 T23 T25 T27
T41 T43 T45 T47
T61 T63 T65 T67
T81 T83 T85 T87

⎤
⎥⎥⎦

(0.5)

⎛
⎜⎜⎝

Ũ
W̃
M̃s

Ñs

⎞
⎟⎟⎠

(0)

= 0 for a symmetric vibration, SS, SA (24)

⎡
⎢⎢⎣

T12 T14 T16 T18
T32 T34 T36 T38
T52 T45 T56 T58
T72 T74 T76 T78

⎤
⎥⎥⎦

(0.5)

⎛
⎜⎜⎝

Ṽ
ψ̃s

S̃ s

Ñsx

⎞
⎟⎟⎠

(0)

= 0 for an antisymmetric vibration, AA, AS (25)

Eqs. (24) and (25) give a set of linear homogeneous equations with unknown coefficients (Ũ , W̃ , M̃s, Ñs)
T
(0) and (Ṽ , ψ̃s,

S̃ s, Ñsx)
T
(0) , respectively, at s̄ = 0, and the determinant of the coefficient matrix should be made vanish for a non-trivial 

solution to exist. The non-trivial solution is found by searching the values λ in matrix [T (s̄ = 0.5)] that make its determinant 
zero by using the Lagrange interpolation procedure. The vibration deformations (axial, transverse and circumference deflection 
displacements) at any point of the cross section of the shell are determined by calculating the eigenvectors corresponding 
to λ by using a Gaussian elimination procedure, when X = 1.

4. Presentation of results and discussion

A computer program, based on the analysis described herein, was written by the author to find the frequency parameters 
and the corresponding mode shapes of the vibration of an inhomogeneous corrugated oval cylindrical shell. Our study is 
divided into three parts, in which the Poisson ratio νs and the axial rigidity μ take the values 0.3 and 0.35, respectively.
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4.1. Verification of solution method

In references [29–32], Khalifa presented a number of comparisons between numerical results to verify the validity of the 
used framework and approach method and the accuracy of the results. The comparison studies are calculated by different 
approaches and have confirmed the correctness of the proposed shell theory and of the method used for studying the 
mechanical behavior of such shells.

4.2. Fundamental vibrations

The first three natural frequency parameters are obtained; they correspond to the axial, circumferential, and transverse 
displacements. The fundamental frequencies, whose minimum one is of practical interest, since it is associated with the 
transverse direction. In fact, the study of the vibration finds the frequency parameter λ and the corresponding deflection 
displacements at each value of X . The numerical results present the fundamental vibration for the cases of (SS, SA, AA, AS) 
type modes. Generally, the corrugations in shells lead to more significant changes in the vibration behavior than the smooth 
ones, and the frequency parameters λ increase/decrease with an increase of the corrugation parameters (N, δ) regardless 
of the isotropy/orthotropy and homogeneity/non-homogeneity of the materials. Also, the frequency parameters λ decrease 
with an increase in the value of the ovality parameter, regardless of the smooth/corrugation of the shell, and this result 
confirms the drastic change in the membrane and bending energies of the shell by increasing the non-circularity due to a 
reduction in the area of the oval centrode. The effects of the corrugation parameters (N, δ), homogeneity variation H , ovality 
parameter ε, and orthotropy (η, μ) of the shell on the vibration characteristics, Table 1, govern the behavior of fundamental 
frequency parameters λ for different models of homogeneity and corrugations (H, N, δ). From this table, we can obtain the 
following opinions:

i. the values of the natural frequency parameters λ of S- and A-modes for the (H, N, δ = 1, 0, 0) model may be equal in 
the case of cylindrical shells (ε = 0), and they are almost close together in the case when ε > 1, but the corresponding 
vibration modes will be different due to the independence of the governing equations;

ii. the values of λ for (H = 1, N, δ) model oscillate between increasing and decreasing based on the (N, δ) values, and for 
the shells with corrugations of small amplitudes, they are less than the ones for circular cylindrical shells;

iii. the values of λ for the model where H > 1, N, δ model decrease slowly, but for higher H values they take oscillation 
mode, regardless of the circularity/ellipticity of shell as well as the rate of oscillations for the circular shell is more than 
one for the oval shell;

iv. the values of λ for non-homogeneous, orthotropic oval cylindrical shells change irregularly with the corrugation char-
acteristic of the shell;

v. orthotropy does not change the behavior of λ values, but affects the relative increase in the fundamental frequencies 
with increasing the parameters of corrugations.

Fig. 2 presents the effect of the ovality parameter (ε) of homogeneous and non-homogeneous corrugated shells on the λ
curves. It can be observed from these figures that the increase in the values of the ovality parameter leads to a decrease in 
the frequency curves for the shells of homogeneous materials. On the contrary, the λ curves increase initially and decrease 
later for the shells of non-homogeneous materials in the SS- and AS-modes, and this situation is accompanied by an increase 
in the flexural stiffness in the circumferential direction. Also, it can be seen that the λ curves of the AA- and SA-modes de-
crease linearly in the homogeneous and non-homogeneous cases, regardless of the isotropy/orthotropy of the materials. 
Fig. 3 investigate how the frequency parameter λ depends on the homogeneity variation, regardless of the smooth/corru-
gation of the shells. For all type modes, the exact curves have two main sections depending on the H values. The first 
section corresponds to a small homogeneity ratio, and in this section, the non-homogeneity of materials has not effect on 
the λ curves, and these situations may be considered as homogeneous cases. In the second section, the frequency parameter 
curve decreases and increases, taking wavy shapes. It can be seen that, for oval shells, the curves corresponding to AS and 
SA modes are linear ones with increasing H values, and the changes in the behavior of the curves evidenced in Fig. 3(c, d) 
are due to the dependence of the vibration modes on their cross-section. On the contrary, for a circular cylindrical shell, 
the non-homogeneity of the materials strongly influences the natural frequency curves, regardless of the smoothness or the 
corrugations of the shell, see Fig. 3(a, b). Fig. 4 presents the effects of corrugations number N of circular/oval cylindrical 
shells when they are made vibrate according to the first mode of vibrations. It is found that the increase in the values of 
N leads to a decrease and an increase in the λ curves, which take wavy shapes after they coincide at N = 2 for circular 
cylindrical shells. On the other hand, the increase in the values of N makes the λ curves separate waving ones, which do 
not coincide for oval cylindrical shells. Also, it can be seen that the λ curves of the AA and SS modes engage in behaviors 
similar to those of the SA and AS modes, regardless of the isotropy/orthotropy and the circularity/ovality of the shells. One 
can consider that the increase in the number of corrugation N , for each value of the amplitude parameter δ, makes stiffer 
the non-homogeneous shell that has a noncircular profile. Fig. 5 demonstrates the effect of the corrugation amplitude δ
on the behavior of the λ curves for a non-homogeneous circular/oval cylindrical shell. One can see from these figures that 
the frequency parameters slowly decrease with δ, and that they intersect together at a certain value of δ. Furthermore, the 
corrugation effect becomes unless later. Also, it can be observed that the increase in δ leads to an increase in the SA modes 



M. Khalifa / C. R. Mecanique 343 (2015) 482–494 489
Table 1
The first three fundamental frequencies parameters λ versus the circumferential rigidity η and non-homogeneity parameter H of a corrugated oval/circular 
cylindrical shell, (h0 = 0.02, X = 1, μ = 0.35).

H (N, δ) η = Symmetric vibration Antisymmetric vibration

0.5 1 2 0.5 1 2

ε = 0
1 (0,0) 0.084871 0.102491 0.112014 0.084871 0.102485 0.111988

0.096120 0.104323 0.134042 0.096119 0.104323 0.134042
0.109052 0.145494 0.171190 0.109052 0.145492 0.171190

(2,0.1) 0.083730 0.098746 0.108876 0.083568 0.098732 0.108847
0.092095 0.103665 0.134006 0.092093 0.103549 0.134002
0.109028 0.145778 0.166043 0.108997 0.145777 0.165870

(8,0.1) 0.084762 0.100283 0.109992 0.084941 0.104336 0.114486
0.093819 0.104130 0.133647 0.098960 0.105250 0.133954
0.109181 0.145441 0.172167 0.108788 0.145113 0.171915

(4,0.3) 0.085022 0.104141 0.117377 0.083358 0.098067 0.107861
0.100536 0.108476 0.133361 0.090957 0.101826 0.129465
0.110846 0.144751 0.170761 0.109398 0.144589 0.182630

(7,0.3) 0.085978 0.095508 0.105647 0.082268 0.101990 0.119773
0.088786 0.104372 0.131833 0.101624 0.110643 0.131871
0.108082 0.143780 0.171352 0.112129 0.145526 0.179376

(6,0.8) 0.078312 0.097212 0.104509 0.078348 0.096976 0.104375
0.091567 0.093056 0.115642 0.091543 0.097125 0.125292
0.098948 0.131069 0.134607 0.098807 0.130947 0.178476

3.5 (0,0) 0.058626 0.092298 0.107565 0.064102 0.083004 0.105593
0.084196 0.094026 0.128498 0.102579 0.099582 0.130610
0.110663 0.145329 0.163247 0.112079 0.147529 0.170481

(2,0.1) 0.057612 0.089164 0.104506 0.064632 0.081203 0.103490
0.083506 0.094093 0.128418 0.099955 0.099092 0.129917
0.110622 0.140970 0.158667 0.111069 0.147944 0.161556

(8,0.1) 0.057027 0.090631 0.105987 0.062919 0.085014 0.108146
0.084379 0.095711 0.131047 0.105531 0.098913 0.129639
0.110287 0.143097 0.161458 0.112614 0.147346 0.172286

(4,0.3) 0.057412 0.094176 0.114887 0.063139 0.081278 0.104445
0.084179 0.099096 0.129901 0.103896 0.101393 0.133594
0.108188 0.145320 0.168301 0.107721 0.144501 0.170713

(7,0.3) 0.057003 0.087563 0.102942 0.063038 0.087524 0.112023
0.085413 0.097867 0.134091 0.108590 0.096441 0.126711
0.110417 0.136448 0.155213 0.114832 0.146055 0.181150

(6,0.8) 0.064114 0.076755 0.102483 0.065174 0.070994 0.089745
0.073651 0.094031 0.107560 0.088158 0.094391 0.124307
0.102246 0.124291 0.139157 0.101709 0.133634 0.181953

ε = 0.5
1 (0,0) 0.078515 0.096447 0.107105 0.080566 0.091051 0.101330

0.087920 0.096680 0.121110 0.082887 0.099426 0.127354
0.112500 0.146245 0.159951 0.111861 0.146081 0.178339

(2,0.1) 0.078033 0.093265 0.104092 0.079586 0.088790 0.099547
0.084949 0.096412 0.121068 0.080845 0.098879 0.126977
0.111621 0.146536 0.155661 0.111095 0.146341 0.167998

(8,0.1) 0.079708 0.094859 0.105569 0.079824 0.092684 0.102710
0.086187 0.097955 0.123021 0.084776 0.098692 0.126563
0.112379 0.146280 0.155854 0.111213 0.145884 0.181397

(4,0.3) 0.079445 0.098267 0.110925 0.081326 0.088906 0.100042
0.093015 0.100735 0.124441 0.082372 0.102599 0.133291
0.110734 0.146377 0.160542 0.109216 0.145179 0.164312

(7,0.3) 0.081018 0.093537 0.104851 0.077920 0.092644 0.102082
0.083959 0.098704 0.122206 0.085761 0.097268 0.125970
0.112944 0.142650 0.149430 0.109305 0.145083 0.191194

(6,0.8) 0.068899 0.081870 0.099584 0.072802 0.079283 0.087473
0.089006 0.101878 0.110772 0.076760 0.095438 0.123715
0.108306 0.132649 0.140609 0.100238 0.131321 0.178165

3.5 (0,0) 0.077893 0.081997 0.102640 0.074492 0.074947 0.088712
0.088969 0.091872 0.104032 0.101992 0.095476 0.122311
0.115131 0.147673 0.162672 0.122681 0.149335 0.184803

(2,0.1) 0.075593 0.082171 0.101174 0.073925 0.073811 0.087809
0.088172 0.088859 0.102218 0.101742 0.095002 0.121691
0.114192 0.142784 0.159054 0.119686 0.149457 0.175088

(8,0.1) 0.076486 0.083301 0.102746 0.073728 0.075955 0.089683
0.089690 0.090352 0.103912 0.103962 0.094698 0.121486
0.114975 0.143913 0.159242 0.122481 0.149206 0.187935

(4,0.3) 0.081619 0.085086 0.107554 0.077412 0.075727 0.090806
0.089949 0.095972 0.108212 0.105950 0.100173 0.129978
0.113468 0.148443 0.163989 0.118598 0.146815 0.167856

(7,0.3) 0.075397 0.082146 0.101655 0.072677 0.074702 0.088126
0.090490 0.089583 0.102568 0.106423 0.093698 0.121282
0.115463 0.139360 0.155190 0.118752 0.147946 0.196701

(6,0.8) 0.076094 0.066043 0.082529 0.073043 0.062504 0.073705
0.081584 0.099021 0.111174 0.086785 0.093561 0.121708
0.110513 0.134780 0.148602 0.109512 0.134031 0.180539
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Fig. 2. First 1st frequency parameter versus ovality parameter for homogeneous/inhomogeneous, isotropic/orthotropic corrugated circular and oval cylindrical 
shells for S and A modes (X = 1, h0 = 0.02, μ = 0.35).

Fig. 3. First 1st frequency parameter versus homogeneity parameter for isotropic and orthotropic corrugated circular and oval cylindrical shells for S and A 
modes.

until they become the same as in the AA modes, and to a decrease in the SS modes until they become the same as in AS 
modes. One can think that, for a certain value of δ, the natural frequencies become antisymmetric, see Fig. 5(b).

4.3. Shapes of the vibration modes

We can define the vibration mode of the shell structure that is the deflection of a structure at a certain frequency λ, 
which depends on the geometrical form and on the material properties of the structure. When the shell has a corrugation 
form (longitudinally or circumferentially), it has high bending and compressive stiffness in the corrugation direction; then 
its vibration is more stable than that of its smooth form. To obtain the (SS, AA) vibration modes corresponding to a partic-
ular frequency parameter of the shell, we substitute λ into Eqs. (24) and (25) and, using a Gaussian elimination technique, 
we obtain the state vector at any point of the cross section. It is found that non-homogeneity and the corrugation model 
extremely affect the vibration behavior of such shells. Figs. 6 and 7 depict the transverse, circumferential and longitudinal 
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Fig. 4. Effects of the corrugation number on the vibration frequency parameter of inhomogeneous elastic circular/oval cylindrical shells with a sine-shaped 
hoop for S and A modes.

Fig. 5. Effects of corrugation amplitude parameter on vibration frequency parameter of a corrugated elastic circular and oval cylindrical shells for S and A 
modes.

deflections, with thick curves, along the circumference of smooth/corrugated, isotropic/orthotropic circular/oval cylindrical 
shells with homogeneous/non-homogeneous materials for (SS, SA, AA, AS) type modes that correspond to some natural fre-
quency parameters λ, listed in Table 1, whereas the dotted curves show the original corrugated shell shape based on (N, δ)
values before deformation. There are considerable differences between the modes of homogeneous, smooth and corrugated 
shells corresponding to the models (H = 1, N = 0, δ = 0) and (H = 1, N > 0, δ > 0), respectively, where the vibration modes 
are distributed regularly over the shell surface for the smooth shells, whereas most modes become more pronounced around 
the regions (s̄ = 0, 0.5) than the corrugated ones due to high bending and compressive stiffness in the hoop direction, re-
gardless of the circularity/ovality of the shells. For the corrugated shells of small corrugation parameters, the mode shapes 
of deflections are distributed regularly for smooth ones, whereas the situation is different for big corrugation parameters; 
especially, for the axial deflection (u/umax), the modes are more reduced around the area (s̄ = 0.25) due to low flexural 
stiffness in the longitudinal direction, see Figs. 6 and 7, when H = 1. On the contrary, for non-homogeneous corrugated 
shells, the transverse, circumferential and longitudinal deflections are not distributed regularly on the shell circumference, 
and may be concentrated around the area (s̄ = 0.25), where the homogeneity variation is the maximum, as well as they 
become more pronounced by increasing the corrugation parameters, regardless of the circularity/ovality of the shells, see 
Fig. 7, when H = 3.5. From these figures, one may be observe that the three vibration modes become clearer in the area of 
the oval centrode when the ovality parameter increases, regardless of the homogeneity/non-homogeneity of the materials. 
One may conclude that the effects of the corrugation parameters and of the homogeneity of the materials are more signif-
icant than that of the smooth shell on the vibration behavior, regardless of the fact shells are isotropic or orthotropic, and 
no difference is observed between the isotropic and orthotropic cases of the type modes. The orthotropy of the material, 
which is represented by the ratios μ and η, does not considerably influence the shape of the vibration modes, regardless of 
the circularity or of the ovality of the shells.

5. Conclusions

A new approach to the analysis of the vibration behavior of circumferentially, corrugated circular, and oval cylindrical 
shells with non-homogeneous material is presented. Basic relations have been obtained for orthotropic cylindrical shells; it 
has been evidenced that Young’s moduli and density vary continuously in the circumferential direction, depending on the 
tangential angle. Due to the Flügge’s shell theory and the transfer matrix of the shell, the governing equations are formulated 
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Fig. 6. The vibration modes of homogeneous/inhomogeneous, isotropic/orthotropic corrugated circular cylindrical shell for S and A modes (ε = 0, X = 1, 
h0 = 0.02).

and reduced to eight first-order differential ones in the circumferential coordinate; they can be solved as a one-dimensional 
boundary-value problem using the Romberg integration method. The computed results allowed us to find the fundamental 
vibration frequencies and the corresponding mode shapes of the deflection displacements for four type modes of vibration 
(SS, SA, AA, AS). In detail, a parametric study is assumed to investigate the influence of various parameters, such as ovality, 
corrugations, orthotropy and non-homogeneity of materials, on the vibration behavior of the shell. From this study, it could 
be concluded that:
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Fig. 7. The vibration modes of homogeneous/inhomogeneous, isotropic/orthotropic corrugated oval cylindrical shell for S and A modes (ε = 0.5, X = 1, 
h0 = 0.02).

• the computed results confirm that the fundamental frequencies for shells with corrugations of small amplitudes are 
less than those for circular shells, and that the circumferential corrugated shells have a larger vibration margin than the 
smooth ones, regardless of the isotropy/orthotropy of the shell material;

• the effect of corrugation becomes stronger by increasing its length and amplitude due to the imperfection of the local 
radius of shell;

• when the amplitude of the corrugations reaches a certain value, the natural frequencies become almost equal for all 
type modes of vibrations, and the corrugations become useless, and an increase in the number of corrugations makes 
the shell stiffer, which leads to an increase in frequencies, regardless of the cross-section geometry of shell;

• the non-homogeneity of the material has a significant effect on the vibration behavior of circular and oval cylindrical 
shells, regardless of the isotropy or orthotropy of material, and for higher H values, the effects become more dominant 
for the corrugated shells than for the smooth ones;
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• as the ovality parameter ε increases, the effect of non-homogeneity on the SS and AS modes of vibration increases 
initially and decreases with high values of ε, whereas the effect of non-homogeneity is insignificant for the AA and SA 
modes with ε values;

• the mode shapes of vibration for the corrugated shells are not distributed regularly over the shell surface as in the case 
of the smooth ones, and become more sensitive to an increase in the corrugation parameters (N, δ);

• the mode shapes of vibration are more sensitive to the corrugations parameters and ovality parameter than the non-
homogeneity ratio and the orthotropy parameters of the shell;

• the vibration behavior of a corrugated, isotropic and orthotropic oval shell is found to have an almost identical behavior, 
regardless of the homogeneity/non-homogeneity of material, and the mode shapes vary significantly compared to those 
in the case of a circular cylinder;

• in general, the geometry of the shell and the properties of the material play an important role in the vibrational 
mechanical behavior.
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