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In this Note, we address the construction of a class of stochastic Ogden’s stored energy 
functions associated with incompressible hyperelastic materials. The methodology relies 
on the maximum entropy principle, which is formulated under constraints arising in part 
from existence theorems in nonlinear elasticity. More specifically, constraints related to 
both polyconvexity and consistency with linearized elasticity are considered and potentially 
coupled with a constraint on the mean function. Two parametric probabilistic models are 
thus derived for the isotropic case and rely in part on a conditioning with respect to the 
random shear modulus. Monte Carlo simulations involving classical (e.g., Neo-Hookean or 
Mooney–Rivlin) stored energy functions are then performed in order to illustrate some 
capabilities of the probabilistic models. An inverse calibration involving experimental 
results is finally presented.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on s’intéresse à la construction d’une classe de modèles stochastiques 
pour des matériaux hyperélastiques incompressibles. La méthodologie de construction 
repose sur le principe du maximum d’entropie, formulé à partir de contraintes induites 
par les théorèmes d’existence en élasticité non linéaire. Plus précisément, des contraintes 
associées à la polyconvexité et à la cohérence avec l’élasticité linéarisée sont introduites, et 
éventuellement couplées avec une contrainte relative à la fonction moyenne. Deux modèles 
probabilistes paramétriques pour les densités d’énergie considérées sont par suite proposés 
dans le cas isotrope, et reposent notamment sur un conditionnement vis-à-vis du module 
de cisaillement aléatoire. Des simulations numériques de Monte Carlo pour des potentiels 
classiques (e.g., Néo-Hookéen ou Mooney–Rivlin) sont ensuite conduites afin d’illustrer les 
capacités du modèle. Une identification inverse basée sur des résultats expérimentaux est 
enfin présentée.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this work, we address the construction of parametric probabilistic representations for stored energy functions defin-
ing incompressible hyperelastic materials. Such models are dedicated to predictive modeling in nonlinear elasticity, where 
engineered or biological materials can exhibit uncertainties (at some scale of interest) that are worth taking into account. 
This random behavior may arise from, e.g., batch-to-batch variability or processing defects for manufactured composites, or 
from intrinsic variability in the case of complex heterogeneous materials (see [1] and the references therein for a discussion 
regarding experimental results in biomechanics, for instance). Unlike the linear case, where the modeling and propagation 
of uncertainties gave rise to an extensive literature (both in applied mathematics and computational mechanics; see the 
references below), the nonlinear case has surprisingly received little attention – at least, from a modeling standpoint. Un-
certainty propagation from microscale to macroscale was analytically addressed in [2], where bounds on effective properties 
are expressed, by means of Hashin–Shtrikman bounds, in terms of the fluctuation terms. Computational multiscale frame-
works based on a microscale description were further proposed in [3,4] and rely on the combination between interpolation 
schemes (in the space of macroscopic deformations) and polynomial chaos expansions [5]. The construction of relevant 
parametric probabilistic representations for stored energy functions exhibiting some uncertainties therefore remains an in-
tricate and open question. In this paper, we propose a very first contribution to this field in the framework of Information 
Theory, and restrict the derivations to the isotropic case for the sake of readability. The aim is to develop a methodology for 
the derivation of relevant probabilistic models for stochastic stored energy functions, thanks to the principle of maximum 
entropy. In order to ensure mathematical consistency, the latter is formulated under constraints related to existence theo-
rems in nonlinear elasticity and coherence at small strains. These constraints can be subsequently supplemented with an 
additional one associated with the mean function, if need be. The paper is organized as follows. For completeness, a brief 
review of hyperelasticity is first presented in Section 2. The construction of a class of stochastic stored energy functions for 
incompressible hyperelastic materials is then addressed in Section 3. Monte Carlo simulations and an inverse identification 
based on experimental data are finally presented in Section 4 in order to illustrate the model capabilities.

Notation Throughout this paper, use will be made of the following matrix sets:

(i) Md(R) the set of real (d × d) matrices;
(ii) Ld(R) the set of real (d × d) matrices with an unitary determinant.

Deterministic (resp. stochastic) scalar-valued random variables are denoted α or a (resp. α or A). Similarly, deterministic 
(resp. stochastic) vectors are denoted by a (resp. A).

2. Framework for deterministic hyperelasticity

Let � ⊂ R3 be a bounded open connected set with a sufficiently regular boundary, and denote by � its closure. It is 
assumed that � is occupied by a homogeneous incompressible isotropic hyperelastic material characterized by a stored 
energy function ŵ : L3(R) → R such that [6–9]:

[T̂ ([F ])] = ∂ ŵ([F ])
∂[F ] − h̃[F ]−T , ∀[F ] ∈ L3(R) (1)

where [T̂ ] : L3(R) → M3(R) is the response function associated with the first Piola–Kirchoff tensor [T ] : � → M3(R), [F ] is 
the deformation gradient and h̃ is a Lagrange multiplier (which is typically interpreted as an hydrostatic pressure) en-
forcing the incompressibility condition. In addition to isotropy, the stored energy function is classically assumed to satisfy 
frame-invariance, so that according to representation theorems, there exists a function w such that:

ŵ([F ]) = w(υ1([F ]), υ2([F ]), υ3([F ])) (2)

where {υ j([F ])}3
j=1 are the eigenvalues of [F ]. Such a class of strain energy functions was extensively studied for natu-

ral rubbers and proposed, on the basis of phenomenological concerns, by Ogden [10,11]. More specifically, the following 
algebraic form was postulated [10]:

ŵ([F ]) =
m∑

i=1

αi�γi ([F ]) +
n∑

j=1

β jϒδ j ([F ]) , ∀ [F ] ∈ L3(R) (3)

where {αi, γi}m
i=1 and {β j, δ j}n

j=1 are sets of model parameters. In Eq. (3), � : L3(R) → R and ϒ : L3(R) → R are the 
functions defined as

�γ ([F ]) = υ1([F ])γi + υ2([F ])γi + υ3([F ])γi − 3 (4)
i
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and

ϒδ j ([F ]) = (υ1([F ])υ2([F ]))δ j + (υ1([F ])υ3([F ]))δ j + (υ2([F ])υ3([F ]))δ j − 3 (5)

for any deformation gradient [F ] ∈ L3(R). The above stored energy density function can be shown to be polyconvex when-
ever the above parameters verify αi > 0 for 1 � i � m, γ1 � · · · � γm � 1, β j > 0 for 1 � j � n and δ1 � · · · � δn � 1. This 
polyconvexity property, together with suitable growth conditions, ensures the existence of minimizers for the total energy 
functional [12] (see also [13,7] for discussions). If γ1 � 2 and δ1 � 3/2, the stored energy density function defined by 
Eq. (3) can be shown to exhibit a coercivity property which implies the existence of a global minimizer of the total energy 
function for pure displacement, pure traction and displacement-traction problems [14] (note that similar results exist for 
compressible materials; see [12,7]).

For m = n = 1 and γ1 = δ1 = 2, the stored energy function under consideration reduces to the Mooney–Rivlin model for 
incompressible materials:

ŵ([F ]) = α1

(
‖[F ]‖2 − 3

)
+ β1

(
‖Cof([F ])‖2 − 3

)
, ∀ [F ] ∈ L3(R) (6)

where α1 > 0 and β1 > 0 by the constraint of polyconvexity. The Neo-Hookean model for incompressible materials [15] can 
be recovered by disregarding the second term in the right-hand side of Eq. (3) and by setting m = 1 and γ1 = 2:

ŵ([F ]) = α1

(
‖[F ]‖2 − 3

)
, ∀ [F ] ∈ L3(R) (7)

with α1 = μ/2 > 0 by the consistency condition. Specific discussions on existence theorems for the Neo-Hookean model 
can be found in [12,16].

3. Stochastic models of stored energy functions for incompressible hyperelastic materials

3.1. Definition of a parametric probabilistic representation

Let Ŵ be the stochastic stored energy function corresponding to the probabilistic modeling of ŵ , and let p and η be 
the vectors in Rnp such that

p = (α1, . . . ,αm, β1, . . . , βn) , η = (γ1, . . . , γm, δ1, . . . , δn) (8)

with np := m + n. In this work, it is assumed that the model exponents involved in Ŵ are deterministic (and may cor-
respond to a fit with respect to a mean response function, for instance), whereas the remaining coefficients are modeled 
as statistically dependent random variables. Let P be the vector-valued random variable corresponding to the stochastic 
modeling of p and for which the probabilistic model is sought. The construction of the latter is performed by imposing that 
the stochastic stored energy function is:

(i) polyconvex almost surely (a.s.), which follows whenever 0 < Pk , 1 � k � np , a.s.;
(ii) coherent at small strains, meaning that P and η satisfy the usual consistency condition with linearized theory [8,9]:

np∑
k=1

Pkη
2
k = 2μ (9)

where μ is the random variable with values in ]0, +∞[ modeling the stochastic shear modulus, and

Pk <
2μ

η2
k

, 1 � k � np (10)

almost surely (recall that ηk > 0, 1 � k � np , by construction). For an incompressible Mooney–Rivlin material, the above 
constraints reduce to 2(P1 + P2) = μ and 0 < Pk < μ/2, i ∈ {1, 2}, a.s.

Note that since the exponents are assumed to be deterministic, the coercivity property does not constraint the construction 
of the probabilistic model. From a methodological standpoint, and following Eqs. (9) and (10), a probabilistic model is first 
constructed for the random shear modulus μ, and the one related to P is then derived through a conditioning on μ. In 
order to ensure that Eq. (9) holds a.s., an arbitrary component of P , say Pnp , is algebraically defined as

Pnp = 1

η2
np

{
2μ −

nq∑
k=1

Pkη
2
k

}
(11)

so that the construction of the probabilistic model is achieved on the random vector Q := (P1, . . . , Pnq ) that takes its 
values in a subset of Rnq , with nq := np − 1. Note here that the probabilistic models for Q and μ completely define the 
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system of marginal probability distributions for the stochastic process {Ŵ ([F ]), [F ] ∈ L3(R)}. One is then concerned with 
the construction of the joint probability density function pμ, Q of random variables μ and Q such that:

pμ, Q (μ,q) = pμ(μ) × p Q |μ=μ(q) (12)

Next, a normalized vector-valued random variable U is introduced and defined as

Uk :=
(

η2
k

2μ

)
(Q k|μ = μ) , 1 � k � nq (13)

with μ > 0 a.s. Hence

p Q |μ=μ(q) = pU ([G(μ)]−1q) × 1

(2μ)nq

nq∏
k=1

η2
k (14)

where [G(μ)] is the invertible diagonal (nq × nq) matrix given by

[G(μ)]kk = 2μ

η2
k

, 1 � k � nq (15)

and

pμ, Q (μ,q) = pμ(μ) × pU ([G(μ)]−1q) × 1

(2μ)nq

nq∏
k=1

η2
k (16)

It can be deduced from Eqs. (10), (11) and (13) that U takes its values in the interior of the nq-dimensional simplex S , 
independent of the shear modulus, such that:

S :=
{

u ∈ Rnq | 0 < uk < 1, 1 � k � nq, 1 −
nq∑

k=1

uk > 0

}
(17)

Below, the explicit forms of pμ and pU are constructed in the framework of Information Theory and more precisely, by in-
voking the principle of maximum entropy (MaxEnt) [17–19]. The latter allows for the derivations of probability distributions 
that, while consistent with the information available on the random variables to be defined, maximize the uncertainties as 
measured by Shannon’s differential entropy. Such an approach is therefore well suited in order to derive unbiased proba-
bilistic models, and was fruitfully used so as to construct stochastic representations for tensor-valued random variables and 
random fields in linear elasticity [20–23]. To the best knowledge of the authors, this work is the first attempt to construct 
information-theoretic models in finite elasticity.

3.2. Stochastic modeling of the random shear modulus

It is assumed that random variable μ satisfies the following constraints:

E {μ} = μ (18a)

E {log(μ)} = ν , |ν| < +∞ (18b)

The first constraint given by Eq. (18a) means that the mean value of μ is known, whereas the second one is a repulsive 
constraint implying that μ and μ−1 are both second-order random variables [24]. The MaxEnt based probability density 
function of random variable μ is then given by:

pμ(μ) = 1R∗+(μ) k0 μρ1−1 exp

(
− μ

ρ2

)
, ∀μ > 0 (19)

where 1R∗+ is the indicator function of R∗+ , k0 is the normalization constant and (ρ1, ρ2) is a set of strictly positive Lagrange 
multipliers raised by the MaxEnt principle. It can further be shown after little algebra that (ρ1, ρ2) = (δ−2

μ , μδ2
μ), with δμ

and μ the coefficient of variation and mean value of μ respectively, so that the above probability density function writes

pμ(μ) = 1R∗+(μ)
μδ−2

μ −1

(μδ2)δ
−2
μ �(δ−2

μ )
exp

(
− μ

μδ2
μ

)
, ∀μ > 0 (20)
μ
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where � is the Gamma function [25] defined as:

�(z) =
+∞∫
0

tz−1 exp (−t)dt , ∀z > 0 (21)

It follows that under the constraints defined by Eqs. (18a) and (18b) (which correspond to the minimal mathematical 
requirements), the random shear modulus is a Gamma-distributed random variable with parameters (δ−2

μ , μδ2
μ).

3.3. Construction of a probabilistic model under constraints related to polyconvexity and coherence at small strains

3.3.1. General derivations

Let us consider the following constraints on random variable U :

E {log (Uk)} = νk, 1 � k � nq (22a)

E

{
log

(
1 −

nq∑
k=1

Uk

)}
= νnp (22b)

where |νk| < +∞ for 1 � k � np . These equality constraints are repulsive with respect to the boundaries of simplex S , thus 
insuring that U has values in S almost surely. Let (1 − λ1), . . . , (1 − λnp ) be the associated (np) Lagrange multipliers. It can 
then be shown that the probability density function pU of U takes the form

pU (u) = 1S(u)

⎧⎨⎩�
(∑np

k=1 λk

)
∏np

k=1 �(λk)

⎫⎬⎭
( nq∏

k=1

uλk−1
k

)(
1 −

nq∑
k=1

uk

)λnp −1

, ∀u ∈ S (23)

It follows that U is distributed according to a Dirichlet-type I distribution [26] with parameters λ1, . . . , λnp . Whereas the in-

tegrability condition requires that the Lagrange multipliers are all strictly positive, the property λk > 1, 1 � k � np , is further 
imposed in order to ensure unimodal first-order marginal probability functions, as well as proper repulsion conditions from 
the boundaries of S . Let Dλ denote the admissible set for the vector-valued representation of the Lagrange multipliers:

Dλ := {λ ∈ Rnp | λk > 1, 1 � k � np} (24)

In addition, it can be deduced that each random variable Uk , 1 � k � nq , follows a beta-type I distribution with parameters 
(λk, χk), where χk := (

∑np

�=1 λ�) − λk , and

pUk (u) = 1]0;1[(u) {B (λk,χk)}−1 uλk−1(1 − u)χk , ∀u ∈]0,1[ (25)

in which B : R∗+ × R∗+ → R is the beta function given by [25]:

B (x, y) =
1∫

0

tx−1(1 − t)y−1dt (26)

The following proposition can then be deduced from the above derivations.

Proposition 3.1. Let ̂W : L3(R) → R be the stochastic stored energy function defined as

Ŵ ([F ]) :=
m∑

i=1

Q i |μ�γi ([F ]) +
n−1∑
j=1

Q m+ j|μϒδ j ([F ]) + δ−2
n

(
2μ −

nq∑
k=1

Q k|μη2
k

)
ϒδn ([F ]) (27)

for all [F ] ∈ L3(R), in which nq := m + n − 1 and

(1) γ1 � 2 and γ1 � · · ·γm � 1;
(2) δ1 � 3/2 and δ1 � · · ·� δn � 1;
(3) the random shear modulus μ is a Gamma-distributed random variable with parameters (δ−2

μ , μδ2
μ) , in which μ and δμ are 

respectively the mean value and coefficient of variation of μ;
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(4) the random variable Q |μ is defined component-wise as (Q k|μ = μ) := 2μUkη
−2
k , 1 � k � nq, where the random variable U

takes its values in the interior of the nq-dimensional simplex

S :=
{

u ∈ Rnq | 0 < uk < 1, 1 � k � nq, 1 −
nq∑

k=1

uk > 0

}
and follows a Dirichlet-type I distribution with vector-valued parameter λ such that λk > 1 for 1 � k � np.

Then, ̂W is polyconvex, coherent at small strains and satisfies the coerciveness inequality almost surely.

The above proposition ensures that for the constructed class of stochastic stored energy function, there exists a global 
minimizer for the energy functional almost surely (which is a fundamental property). Finally, and from a practical stand-
point, it is worth noticing that if Y1, . . . , Ynp are independent Gamma random variables with respective parameters 
(λ1, 1), . . . , (λnp , 1), then the random variable U such that

Ui := Yi ×
( np∑

k=1

Yk

)−1

, 1 � i � nq (28)

is distributed according to a Dirichlet-type 1 distribution with parameters (λ1, . . . , λnp ) (see Theorem 4.1, p. 594 in [27] for 
instance) – hence providing a very simple and robust generator for the random variable U involved in the above proposition.

3.3.2. Particular case of an incompressible Neo-Hookean material
For an incompressible isotropic Neo-Hookean material, the stochastic stored energy function then takes the following 

form:

Ŵ ([F ]) = μ

2

(
‖[F ]‖2 − 3

)
, ∀[F ] ∈ L3(R) (29)

in which μ is the Gamma-distributed random variable defined in Section 3.2, with parameters (δ−2
μ , μδ2

μ).

3.3.3. Particular case of an incompressible Mooney–Rivlin material
In the case of an incompressible isotropic Mooney–Rivlin model (for which m = n = 1 and γ1 = δ1 = 2), the stochastic 

stored energy function reduces to:

Ŵ ([F ]) = Q |μ
(
‖[F ]‖2 − 3

)
+

(μ

2
− Q |μ

)(
‖Cof([F ])‖2 − 3

)
, ∀[F ] ∈ L3(R) (30)

where (Q |μ = μ) := μ U/2 and the random variable U follows a beta-type I distribution with parameters λ1 > 1 and 
λ2 > 1:

pU (u) = 1S(u) {B (λ1, λ2)}−1 uλ1−1 (1 − u)λ2−1 , ∀u ∈ S (31)

with S =]0, 1[.

3.4. Construction of a probabilistic model under constraints related to polyconvexity, coherence at small strains and mean values

3.4.1. General derivations
Here, the previous constraints are supplemented with constraints related to the mean values. More specifically, the 

probabilistic model is derived under the constraints given by Eqs. (22a)–(22b), as well as under the following algebraic 
constraint

E {U } = u (32)

related to the mean value of U . The probability density function pU of U then takes the form:

pU (u) = 1S(u) k0

( nq∏
k=1

uλk−1
k

)(
1 −

nq∑
k=1

uk

)λnp −1

exp

(
−

nq∑
k=1

ξkuk

)
(33)

where S is the nq-dimensional simplex defined by Eq. (17), k0 is the normalization constant, {λk}np

k=1 and {ξk}nq

k=1 are the 
sets of Lagrange multipliers associated with constraints given by Eqs. (22a)–(22b) and Eq. (32), respectively. Note that the 
above probability density function corresponds to a multivariate Kummer–Beta distribution whenever ξk = ξ , 1 � k � nq , in 
which case an explicit algebraic expression for k0 can be obtained in terms of confluent hypergeometric functions [28]. It 
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is worth mentioning that the result stated in Proposition 3.1 similarly holds when U follows the probability distribution 
defined by Eq. (33), hence ensuring the consistency of the proposed probabilistic model.

Finally, it should be pointed out that the above probability density function is a labelled but nonstandard one, for which 
there is no simple generator available. In this work, the adaptive algorithm proposed in [29] is used for sampling purposes.

3.4.2. Particular case of an incompressible Mooney–Rivlin material
For the incompressible Mooney–Rivlin model, the probability density function pU of the normalized random variable U

is a Kummer–Beta distribution with parameters (λ1, λ2, ξ1), that is:

pU (u) = 1]0;1[(u) k0 uλ1−1(1 − u)λ2−1 exp (−ξ1u) (34)

where λ1 > 1, λ2 > 1 and ξ1 ∈ R. It can be deduced that the normalization constant takes the form:

k−1
0 = B (λ1, λ2)F (λ1, λ1 + λ2,−ξ1) (35)

in which F stands for the confluent hypergeometric function (see e.g. [25]):

F(x, y, z) = 1

B(x, y − x)

1∫
0

ux−1(1 − u)y−x−1 exp (zu)du (36)

for all x > 0, y > 0 and z ∈ R.

Upon evaluating the constraints given by Eqs. (22a), (22b) and (32) (with m = n = 1), it can be shown that the Lagrange 

multipliers satisfy the following set of nonlinear equations:

ν1 = ψ (λ1) − ψ (λ1 + λ2) + ∂ log (F (λ1, λ1 + λ2,−ξ1))

∂λ1
(37a)

ν2 = ψ (λ2) − ψ (λ1 + λ2) + ∂ log (F (λ1, λ1 + λ2,−ξ1))

∂λ2
(37b)

E {U } = λ1

λ1 + λ2

F (λ1 + 1, λ1 + λ2 + 1,−ξ1)

F (λ1, λ1 + λ2,−ξ1)
(37c)

where ψ is the Digamma function defined as [25] (see [30] for results similar to Eqs. (37a) and (37b)):

ψ(z) = �′(z)

�(z)
, ∀z > 0 (38)

In practice, solving for ξ1 in the last equation of Eqs. (37a)–(37c) allows one to enforce the constraint on the mean value 
for given repulsion conditions (as controlled in a forward manner by λ1 and λ2) at the boundaries of S .

4. Numerical illustrations and model calibration with experimental data

4.1. Monte Carlo simulations without constraints on mean values

In this section, an incompressible isotropic Ogden material defined by the stochastic stored energy function given by 
Eq. (27) is considered. It is assumed that a coupon occupied by this material undergoes a simple tension defined by the 
principal stretches υ1 = υ and υ2 = υ3 = υ−1/2. Let � be the real-valued random variable corresponding to the stochastic 
modeling of the non-vanishing principal Cauchy stress. Upon substituting the expression of the stochastic stored energy 
function in the definition of the Cauchy stress, it can be shown that the random principal Cauchy stress � takes the form:

�(υ) =
m∑

i=1

Q i|μγi

(
υγi − υ−γi/2

)
+

n−1∑
j=1

Q m+ j|μ δ j

(
υδ j/2 − υ−δ j

)

+ δ−1
n

(
2μ −

nq∑
k=1

Q k|μη2
k

)(
υδn/2 − υ−δn

)
(39)

for any υ � 0. Below, the computation of the Lagrange multipliers for given equality constraints is not addressed: alter-
natively, these multipliers are considered as free model parameters and parametric studies are subsequently performed in 
order to illustrate the model capabilities.
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Fig. 1. (Color online.) Confidence regions (with a probability level of 0.9) of the Cauchy stress for the incompressible Neo-Hookean model. Confidence 
regions are delimited by squares for δμ = 0.3, triangles for δμ = 0.2 and circles for δμ = 0.1.

Fig. 2. (Color online.) Confidence regions at 0.9 of the Cauchy stress for different values of λ1 = λ2 = λ. Square markers: λ = 1 + 10−16. Triangle markers: 
λ = 5. Circle markers: λ = 30. Left panel: δμ = 0.05. Right panel: δμ = 0.2.

4.1.1. Incompressible Neo-Hookean material
The random Cauchy stress in the case of the incompressible Neo-Hookean model is given by:

�(υ) = μ

(
υ2 − 1

υ

)
(40)

The mean value μ of the shear modulus is chosen as μ = 4.1860 kg · cm−2. Confidence intervals (at 90%) for the random 
Cauchy stress (with υ ∈ [1, 10]) are shown in Fig. 1, for different values of δμ . As expected, the model allows one to generate 
different levels of statistical fluctuations around the given mean function υ 
→ μ

(
υ2 − 1/υ

)
. For a given value of δμ , the 

variance thus exhibited turns out to increase along with the stretch, which is in accordance with the experimental trends 
provided elsewhere [1] (see also the references therein).

4.1.2. Incompressible Mooney–Rivlin material
In the particular case of an incompressible Mooney–Rivlin material, the above stochastic Cauchy stress reduces to:

�(υ) =
(

2Q |μ + μ − 2Q |μ
υ

)(
υ2 − 1

υ

)
(41)

where (Q |μ = μ) := μU/2 and U follows a beta-type I distribution with parameters λ1 > 1 and λ2 > 1. Confidence intervals 
(at 90%) for the random Cauchy stress are shown in Fig. 2 for λ1 = λ2 = λ ∈ {1 + 10−16, 5, 30}, δμ = 0.2 (left panel) and 
δμ = 0.05 (right panel). It is seen that due to symmetrical repulsion conditions (since λ1 = λ2), the mean function remains 
the same, regardless of the current value of λ (for given values of μ and δμ). It is also found that the level of statistical 
fluctuations increases together with υ . The evolution of the coefficient of variation for the random variable �(10), denoted 
by δ�(10) hereinafter, is shown in Fig. 3 for λ1 = λ2 = λ ∈ [1 +10−16, 50] and δμ ∈ {0.05, 0.1, 0.2}. As expected, it is seen that 
the mapping λ 
→ δ�(10) is monotonically decreasing, no matter the value of δμ , and that larger levels of fluctuations are 
obtained for larger values of the coefficient of variation for the random shear modulus. Similar results are finally displayed 
in Figs. 4 and 5, for various combinations of λ1 and λ2. It is seen that different behaviors can be emulated by properly 
selecting the values of the Lagrange multipliers, hence illustrating the flexibility offered by the formulation.
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Fig. 3. Graph of the coefficient of variation for the random Cauchy stress �(10) w.r.t the Lagrange multipliers λ1 = λ2 = λ. Squares (�) for δμ = 5%, triangles 
(�) for δμ = 10% and circles (◦) for δμ = 20%.

Fig. 4. (Color online.) Confidence regions (with a probability level of 0.9) of the Cauchy stress for different sets of Lagrange multipliers (λ1, λ2) delimited 
by (left panel) (1, 5) for squares, (5, 1) for triangles, (right panel) (1, 30) for circles and (30, 1) for down triangles (δμ = 0.1, μ = 4.1860 kg · cm−2).

Fig. 5. (Color online.) Confidence regions (with a probability level of 0.9) of the Cauchy stress for different sets of Lagrange multipliers (λ1, λ2) delimited 
by (left panel) (5, 1) for squares, (1, 5) for triangles, (right panel) (30, 1) for circles and (1, 30) for down triangles (δμ = 0.2, μ = 4.1860 kg · cm−2).

4.2. Monte Carlo simulations with constraints on mean values: case of a Mooney–Rivlin material

This section is devoted to forward simulations for the stochastic representation arising from the MaxEnt formulation with 
repulsion and mean constraints. In the case of a Mooney–Rivlin material, the random variable U follows a Kummer–Beta 
distribution (defined by the probability density function given by Eq. (34)) with parameters λ1, λ2 and ξ1 (see Section 3.4.2). 
Confidence regions of the random Cauchy stress are displayed in Fig. 6 for λ1 = λ2 = 15 and several values of ξ1. It is seen 
that whereas the additional Lagrange multiplier ξ1 allows for specifying some mean function, its value slightly affects the 
level of fluctuations whenever the repulsion conditions remain fixed. In order to proceed with a target mean function while 



512 B. Staber, J. Guilleminot / C. R. Mecanique 343 (2015) 503–514
Fig. 6. (Color online.) Confidence regions (with a probability level of 0.9) of the Cauchy stress for λ1 = λ2 = 15 and δμ = 0.2. Left panel: (�) ξ1 = 5, 
(�) ξ1 = 10 and (◦) ξ1 = 20. Right panel: (�) ξ1 = −5, (�) ξ1 = −10 and (◦) ξ1 = −20.

Fig. 7. (Color online.) Graph of (λ1, λ2) 
→ ξ1 for all (λ1, λ2) ∈ ({2,3,4,5})2 such that E{Q } = 0.8372, μ = 4.1860 kg · cm−2 and δμ = 0.2.

selecting a given level of fluctuations, it is then necessary to enforce that Eq. (37c) holds for arbitrary couples (λ1, λ2). 
For illustration purposes, let us assume that the target mean value of random variable Q is given by E{Q } = 0.8372, with 
μ = 4.1860 kg · cm−2 and δμ = 0.2 (hence, E{U } = 0.4). For any (λ1, λ2) in (]1, +∞[)2, ξ1 must satisfy the equation

λ1

λ1 + λ2

F (λ1 + 1, λ1 + λ2 + 1,−ξ1)

F (λ1, λ1 + λ2,−ξ1)
= 0.4 (42)

which can be solved by using, for instance, a nonlinear least-square algorithm. The graph (λ1, λ2) 
→ ξ1 thus constructed is 
shown in Fig. 7. Next, confidence regions for the random Cauchy stress obtained for all these triplets are shown in Fig. 8
(left panel), where the corresponding probability density functions associated with random variable U are also shown on 
right panel. As expected, the probabilistic model allows for prescribing a desired mean function, as well as a target level of 
statistical fluctuations, and therefore exhibits enhanced capabilities as regards inverse identification based on (experimental) 
data.

4.3. Model calibration with experimental data

Below, we finally address the calibration of the stochastic representation defined in Section 3.3, taking into account some 
experimental realizations. The material under consideration is a Styrene-Ethylene-co-Butylene-Styrene (SEBS) thermoplastic 
elastomer. Results from uniaxial quasi-static tensile tests (see [32] for details) demonstrate an isotropic and incompressible 
behavior, and exhibit a non-negligible variability. In practice, each realization of the stress-stretch curve is seen to be very 
well represented by having recourse to an Odgen-type model, with m = 1 and n = 2. Therefore, the stochastic stored energy 
function is written as

W ([F ]) = Q 1|μ�γ1([F ]) + Q 2|μϒδ1([F ]) +
(

2μ − γ 2
1 Q 1|μ − δ2

1 Q 2|μ
)

ϒδ2([F ]) , ∀[F ] ∈ L3(R) (43)

and depends on:
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Fig. 8. (Color online.) Confidence regions (with a probability level of 0.9) of the Cauchy stress for (λ1, λ2) ∈ ({2, 3, 4, 5})2 (left panel). Associated probability 
density functions u 
→ pU (u) (right panel).

Fig. 9. (Color online.) Confidence region (with a probability level of 0.9) of the Cauchy stress for the calibrated stochastic stored energy function.

– the deterministic vector η = (γ1, δ1, δ2) corresponding to the model exponents;
– the parameters involved in the probability distribution of the shear modulus, namely μ and δμ;
– the Lagrange multipliers (λ1, λ2, λ3) defining the probability distribution of random variable U (see Eq. (23)).

In a first step, the mean model (as defined by η, μ and q := E{ Q }) is calibrated by imposing a nominal stress-stretch curve. 
The latter is obtained by fitting the mean experimental curve, making use of a classical least-square algorithm [31]. Next, 
and upon using the properties of the Dirichlet-type-I distribution, it can be shown that the (total) mathematical expectation 
of random variable Q is defined as:

E {Q 1} = 2μλ1

γ 2
1 (λ1 + λ2 + λ3)

, E {Q 2} = 2μλ2

δ2
1 (λ1 + λ2 + λ3)

(44)

Solving for (λ1, λ2) in the above system then yields

λ1 = γ 2
1 q

1

2μ − γ 2
1 q

1
− δ2

1q
2

λ3 , λ2 = δ2
1q

2

2μ − γ 2
1 q

1
− δ2

1q
2

λ3 (45)

where only λ3 > 1 remains unknown (and such that λ1 > 1 and λ2 > 1). Therefore, the Lagrange multiplier λ3 and δμ
can be both considered as tunable parameters, the values of which may be selected in order to enforce some level of 
statistical fluctuation at given stretches (in the linear part and for some large stretch, for instance). Here, and given the very 
limited number of realizations (which does not allow for the definition of converged statistical metrics), the values of δμ
and λ3 are simply calibrated so that the experimental curves are all contained in the confidence region at 90% (see below). 
This confidence region, estimated for the stochastic model thus calibrated, is shown, together with the fitted experimental 
results, in Fig. 9.

It is seen that the stochastic representation allows for properly modeling the variability exhibited by the experimental 
results, for stretches up to 20.



514 B. Staber, J. Guilleminot / C. R. Mecanique 343 (2015) 503–514
5. Conclusion

This work has been devoted to the construction of a class of stochastic models for Odgen-type stored energy functions 
associated with isotropic incompressible materials. An information-theoretic methodology was proposed and involves al-
gebraic constraints related to polyconvexity, coerciveness and consistence with linearized elasticity. Upon plugging these 
constraints in a maximum entropy formulation, parametric probabilistic models were defined, hence yielding stochastic 
stored energy functions that are covered, almost surely, by existence theorems in nonlinear elasticity. It is important to 
note that the methodology can be readily generalized to non-isotropic materials, provided that existence theorems hold for 
the case under consideration. Forwards simulations involving Neo-Hookean and Mooney–Rivlin materials were then per-
formed and complemented with an inverse identification procedure involving experimental results. Whereas the case of 
random exponents could also be considered, it should be pointed out that the proposed models are shown to properly 
reproduce the general trends observed in experimental results, and that the case of uncertain exponents can be handled by 
the proposed framework (at the expense of notational complexity though). In addition, the models interestingly depend on 
a vector-valued hyperparameter, the low-dimension of which is intended to facilitate calibration with limited data. Finally, 
the generalization to compressible hyperelastic materials is worth investigating: these cases, together with procedures for 
statistical inverse identification, are under investigation and will be presented in a forthcoming paper.
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